
Predicate Abstraction with Minimum Predicates
?

Sagar Chaki Edmund Clarke Alex Groce Ofer Strichman

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
chaki|emc|agroce|ofers@cs.cmu.edu

Abstract. Predicate abstraction is a popular abstraction technique employed in for-

mal software verification. A crucial requirement to make predicate abstraction effective

is to use as few predicates as possible, since the abstraction process is in the worst case

exponential (in both time and memory requirements) in the number of predicates in-

volved. If a property can be proven to hold or not hold based on a given finite set of

predicates P, the procedure we propose in this paper finds automatically a minimal

subset of P that is sufficient for the proof. We explain how our technique can be used

for more efficient verification of C programs. Our experiments show that predicate min-

imization can result in a significant reduction of both verification time and memory

usage compared to earlier methods.

1 Introduction

Predicate abstraction [13] is a commonly used abstraction technique in formal
verification of both software and hardware. Like other abstractions, when suc-
cessful it can be used to prove the correctness (or incorrectness) of a property
with only partial information about the reachable states of the system. This
facilitates the verification of systems larger than would otherwise be possible.
Predicate abstraction has been used widely both for hardware [5] and software [2,
9] verification. In this article we focus on its application to the verification of C
programs.

Verification of programs typically concentrates on the control flow of the
program (e.g. checking if a particular control point is reachable), rather than
on the data manipulated by it (e.g. checking functional correctness). Predicate
abstraction is a common abstraction technique used in this context. Given a
program Π and a set of predicates P, verification with predicate abstraction
consists of constructing and analyzing an automaton A(Π,P), an abstraction of
Π relative to P.

We will describe in more detail predicate abstraction for verification of C
programs in section 2. For now let us just mention that the process of construct-
ing A(Π,P) is in the worst case exponential, both in time and space, in |P|.
? This research was sponsored by the Semiconductor Research Corporation (SRC)

under contract no. 99-TJ-684, the National Science Foundation (NSF) under grant
no. CCR-9803774, the Office of Naval Research (ONR), and the Naval Research
Laboratory (NRL) under contract no. N00014-01-1-0796.

Therefore a crucial point in deriving efficient algorithms based on predicate ab-
straction is the choice of a small set of predicates. In other words, one of the main
challenges in making predicate abstraction effective is distinguishing a small set
of predicates that are sufficient for determining whether a property holds or not.
In this article we present an automated technique for finding the minimal such
set from a given set of candidate predicates.

In the original article describing predicate abstraction [13] the process of
selecting predicates is done manually. An automatic method for choosing pred-
icates was suggested by Ball and Rajamani [2]. They follow a CounterExample
Guided Abstraction Refinement (CEGAR) loop, which we now describe. Let φ
be the property that we wish to verify over the program Π. We denote by MC
a model checking algorithm that takes both A(Π,P) and φ as inputs and out-
puts true if A(Π,P) |= φ and a counterexample τ otherwise. We assume φ is a
safety property, so that τ is a finite acyclic trace of A(Π,P). Since τ is a trace
of A(Π,P), it is often called an abstract trace. Let γ be a trace concretization
function that maps every abstract trace to a sequence of instructions of Π con-
sistent with the control flow graph. In order to check whether this sequence is a
valid trace of Π, we define a Trace Checking algorithm T C that takes Π and τ
as inputs and returns true if γ(τ) is a valid trace of Π and false otherwise. In
the latter case τ is called a spurious counterexample. Finally, if τ is spurious, we
need to eliminate it from the abstract model. We say that a set of predicates P ′
eliminates τ iff for every trace τ ′ of A(Π,P ′), γ(τ) 6= γ(τ ′); i.e. , the concretiza-
tion of all traces in A(Π,P ′) are different from γ(τ). Given these definitions, we
now describe the four steps of the CEGAR loop (usually P = ∅ initially):

1. Abstract. Construct A(Π,P).
2. Verify. If MC(A(Π,P), φ) = true, return property holds.

Otherwise let τ be the counterexample.
3. Check. If T C(Π, τ) = true return property does not hold.
4. Refine. Update P so as to eliminate τ . Go to step 1.

Step 4 is the crucial one, and also the subject of this article. In previous work [2,
9] the refinement is done by adding predicates that eliminate the new spurious
counterexample while maintaining the predicates that were found in previous
iterations. This guarantees that no spurious counterexample will be repeated.
However, this accumulative approach cannot guarantee a minimal set of predi-
cates, because it depends on the order in which the counterexamples are identi-
fied and the choice of predicates at each step.

For example, consider a scenario where the first counterexample, τ1, can be
eliminated by either p1 or p2, and the process chooses p1. Now it finds another
counterexample, τ2, which can only be eliminated by the predicate p2. The pro-
cess now proceeds with both p1 and p2, although p2 by itself is sufficient to
eliminate both τ1 and τ2. The framework that we present in this article, on the
other hand, finds a minimal set of predicates that eliminate all the spurious
counterexamples discovered so far. This guarantees a minimal set of predicates

throughout the process, which is expected to reduce the overall verification time
and required space. Our experimental results show that indeed the number of
predicates and consequently the amount of memory required are significantly
reduced.

Related work. Predicate abstraction was introduced by Graf and Saidi in [13].
It was subsequently used with considerable success in both hardware and soft-
ware verification [2, 8, 9]. The notion of CEGAR was originally introduced by
Kurshan [10] (originally termed localization) for model checking of finite state
models. Both the abstraction and refinement techniques for such systems, as
applied in his and consequent works, are essentially different than the predicate
abstraction approach we follow. For example, abstraction in localization reduc-
tion is done by assigning non-deterministic values to selected sets of variables,
while refinement corresponds to gradually returning to the original definition of
these variables. More recently the CEGAR framework has also been successfully
adapted for verifying infinite state systems [12], and in particular software [3, 9].
The problem of finding small sets of predicates (yet not minimal) is also being
investigated in the context of hardware designs in [5].

The rest of this article is structured as follows. In the next section we discuss
in more detail the CEGAR loop for predicate abstraction and how it is used
for verifying C programs. In section 3 we describe in detail the procedure for
selecting a minimal set of predicates. In section 4 we present the results of
applying our technique to several realistic examples and detail our conclusions.

2 Predicate Abstraction/Refinement for C Programs

In the introduction we discussed the overall structure of a CEGAR loop. In this
section we explain how this framework can be applied for verifying C programs.
We do so by describing how the various basic blocks of the CEGAR loop are
implemented. In particular, we discuss the construction of A(Π,P) in section
2.1, the notion of trace concretization (γ) in section 2.2, the trace checking algo-
rithm T C in section 2.3, and a method for checking whether a set of predicates
eliminates a spurious counterexample in section 2.4.

2.1 Constructing the abstract model

We begin with the process of constructing A(Π,P) given a C program Π and
an initial set of predicates P. For the sake of simplicity, we assume that Π con-
sists of a single monolithic C main procedure obtained via inlining (we disallow
function pointers and recursion in order to make inlining effective). Without loss
of generality, we can assume that there are only four kinds of statements in Π:
assignments, if-then-else branches, goto and return. We denote by Stmt the
set of statements of Π and by Exp the set of all pure (side-effect free) C expres-
sions over the variables of Π. As a running example we use the following simple
C program and the property that label L4 is unreachable.

int x,y;
L0: x = 1;
L1: y = 1;
L2: if (x == y)
L3: y = 1;
L4: else y = 2;

Initial abstraction with control flow automata. The construction ofA(Π,P)
begins with the construction of the control flow automaton (CFA) of Π. The
states of a CFA correspond to control points in the program. The transitions
between states in the CFA correspond to possible transitions between their as-
sociated control points in the program, assuming that every branch in the pro-
gram can be taken. Thus, a CFA of a program is a conservative abstraction of
the program’s control flow, i.e. it allows a superset of the possible traces of the
program.

Formally the CFA is a 4-tuple 〈SCF , ICF , TCF ,L〉 where:
– SCF is a set of states.
– ICF ∈ SCF is an initial state.
– TCF ⊆ SCF × SCF is a set of transitions.
– L : SCF \ {final} → Stmt is a labeling function.
SCF contains a distinguished final state which does not belong to the domain
of L. The transitions between states reflect the flow of control between their
labeling statements: L(ICF) is the initial statement of Π and (s1, s2) ∈ TCF iff
one of the following conditions hold:
– L(s1) is an assignment or goto with L(s2) as its unique successor.
– L(s1) is a branch with L(s2) as its then or else successor.
– L(s1) is a return statement and s2 = final .

The CFA is equivalent, as we will shortly see, to A(Π, ∅).

Example 1. The CFA of our example program is shown in Figure 1(a), where
every state s is labeled with L(s). Henceforth we will refer to each CFA state by
the corresponding statement label. We will use final for the final state. Therefore
the states of the CFA in Figure 1(a) are L0 ...L4 and final with L0 being the
initial state. ut

Predicate inference. The main challenge in predicate abstraction is to iden-
tify the predicates that are necessary for proving the given property. In our
framework we require P to be a subset of the branch statements in Π. Therefore
we sometimes refer to P or subsets of P simply as a set of branches, where the
actual meaning is the predicates that serve as the guards in these branches. The
construction of A(Π,P) associates with each state s of the CFA a finite subset of
Exp derived from P, denoted by Ps. The process of constructing the Ps’s from
P is known as predicate inference and is described by the algorithm PredInfer
in Figure 2. Note that Ps is always ∅ if s is either the final state or L(s) is a
return statement.

The algorithm uses a procedure for computing the weakest precondition WP
of a predicate p relative to a given statement. We defineWP in the same way as

L0: x = 1

L1: y = 1

L2: x == y

L3: y = 1 L4: y = 2

L0: x = 1

L1: y = 1

L2: x == y

L3: y = 1 L4: y = 2

final final

{(x == y)}

{(x == 1)}

{ } { }

{ }

{ }

L2, x==y

L1, x==1

L3,

L1, !(x==1)

L2, !(x==y)

L4,

final,

L0,

(a) (b) (c)

Fig. 1. (a) The CFA for our example program, (b) The CFA labeled with inferred
predicates if P = {(x == y)}, i.e., it contains the only branch in the program, and (c)
The abstract automaton A(Π,P), which proves that L4 is not reachable.

Ball and Rajamani [2]. First, consider a C assignment statement a of the form
v = e;. Let ϕ be a pure C expression (ϕ ∈ Exp). Then the weakest precondition of
ϕ with respect to a, denoted byWP(ϕ, a) is obtained from ϕ by replacing every
occurrence of v in ϕ with e. A second case considers a C assignment statement
a in which e is assigned to a variable whose address is stored in v, i.e. a is of
the form ∗v = e;. Let {v1, . . . , vn} be the set of variables appearing in ϕ and
for 1 ≤ i ≤ n let ai be the assignment statement vi = e; WP(ϕ, a) is then:
(||ni=1((v == &vi) &&WP(ϕ, ai))) || (&&n

i=1((v! = &vi)) && ϕ)

Input: Set of branch statements P
Output: Set of Ps’s associated with each CFA state

Initialize: ∀s ∈ SCF ,Ps := ∅
Forever do

For each s ∈ SCF do

If L(s) is an assignment statement and L(s′) is its successor

For each p′ ∈ Ps′ add WP(p′,L(s)) to Ps
Else if L(s) is a branch statement with condition c
If L(s) ∈ P add c to Ps
If L(s′) is a ‘then’ or ‘else’ successor of L(s), Ps := Ps ∪ Ps′

Else If L(s) is a ‘goto’ statement with successor L(s′), Ps := Ps ∪Ps′
If no Ps was modified in the ‘for’ loop, exit

Fig. 2. Algorithm PredInfer for predicate inference.

The weakest precondition is clearly an element of Exp as well. The purpose of
predicate inference is to create Ps’s that lead to a very precise abstraction of
the program relative to the predicates in P. Intuitively, this is how it works. Let
s, t ∈ SCF such that L(s) is an assignment statement and (s, t) ∈ TCF . Suppose

a predicate pt gets inserted in Pt at some point during the execution of PredInfer
and suppose ps = WP(pt,L(s)). Now consider any execution state of Π where
the control has reached L(t) after the execution of L(s). It is obvious that pt
will be true in this state iff ps was true before the execution of L(s). In terms
of the CFA, this means that the value of pt after a transition from s to t can be
determined precisely on the basis of the value of ps before the transition. This
motivates the inclusion of ps in Ps. The cases in which L(s) is not an assignment
statement can be explained analogously.

Note that PredInfer may not terminate in the presence of loops in the CFA.
However, this does not mean that our approach is incapable of handling C pro-
grams containing loops. In practice, we force termination of PredInfer by limiting
the maximum size of any Ps. Using the resulting Ps’s, we can compute the states
and transitions of the abstract model as described in the next section. Irrespec-
tive of whether PredInfer was terminated forcefully or not, the resulting model
is guaranteed to be a sound abstraction of Π. We have found this approach to
be very effective in practice. A similar algorithm was proposed by Dams and
Namjoshi [7].

Example 2. Consider the CFA described in Example 1. Suppose P contains the
only branch (L2) in our example program. Then PredInfer begins with PL2 =
{(x == y)}. From this it obtains PL1 = {WP((x == y), y = 1;)} = {(x == 1)}
and then PL0 = {WP((x == 1), x = 1;)} = {(1 == 1)}. As (1 == 1) is trivially
true, we do not include it in PL0. Thus PL0 = ∅. Finally PL3 = PL4 = Pfinal = ∅.
Figure 1(b) shows the CFA with each state s labeled on the outside by Ps. ut

The states and transitions of the abstract model. So far we have described
a method for computing the initial abstraction (the CFA) and a set of predicates
associated with each location in the program. The states of the abstract system
A(Π,P) correspond to the various possible valuations of the predicates in each
location (this is the reason why the abstract graph is exponential in the number
of predicates). Formally, for a CFA node s suppose Ps = {p1, . . . , pk}. Then a
valuation of Ps is a boolean vector v1, . . . , vk. Let Vs be the set of all predicate
valuations of Ps. Then the predicate concretization function Γs : Vs → Exp is
defined as follows. Given a valuation V = {v1, . . . , vk} ∈ Vs, Γs(V) =

∧k
i=1 p

vi
i

where ptrue
i = pi and pfalse

i = ¬pi. As a special case, if Ps = ∅, then
Vs = {⊥} and Γs(⊥) = true.

Example 3. Suppose Ps = {(a == 0), (b > 5), (c < d)}, V1 = {0, 1, 1} and
V2 = {1, 0, 1}. Then Γs(V1) = (¬(a == 0)) ∧ (b > 5) ∧ (c < d) and
Γs(V2) = (a == 0) ∧ (¬(b > 5)) ∧ (c < d). ut

Computing the transitions between the states in A(Π,P) requires a theorem
prover. We add a transition between two abstract states unless we can prove that
there is no transition between their corresponding concrete states. If we cannot
prove this, we say that the two states (or the two formulas representing them)
are admissible. This problem can be reduced to the problem of deciding whether
¬(ψ1 ∧ ψ2) is valid, where ψ1 and ψ2 are arbitrary quantifier free first order

logic formulas. In general this problem is known to be undecidable. However
for our purposes it is sufficient that the theorem prover be sound and always
terminate. Several publicly available theorem provers (such as Simplify [11])
have this characteristic.

Given arbitrary formulas ψ1 and ψ2, we say that the formulas are admissi-
ble if the theorem prover returns false or unknown on ¬(ψ1 ∧ ψ2). We de-
note this by Adm(ψ1, ψ2). Otherwise the formulas are inadmissible, denoted by
¬Adm(ψ1, ψ2).

A procedure for constructing A(Π,P). We now define A(Π,P). Formally,
it is a triple 〈SA, IA, TA〉 where:
– SA = ∪s∈SCF

{s} × Vs is the set of states.
– IA = {ICF} × VICF

is the initial set of states.
– TA ⊆ SA×SA is the transition relation, defined as follows: ((s1, V1), (s2, V2)) ∈
TA iff (s1, s2) ∈ TCF and one of the following conditions hold:
1. L(s1) is an assignment statement and Adm(Γs1(V1),WP(Γs2(V2),L(s1))).
2. L(s1) is a branch statement with a branch condition c, L(s2) is its then

successor, Adm(Γs1(V1), Γs2(V2)) and Adm(Γs1(V1), c).
3. L(s1) is a branch statement with a branch condition c, L(s2) is its else

successor, Adm(Γs1(V1), Γs2(V2)) and Adm(Γs1(V1),¬c).
4. L(s1) is a goto statement and Adm(Γs1(V1), Γs2(V2)).
5. L(s1) is a return statement and s2 is the final state.

Example 4. Recall the CFA from Example 1 and the predicates corresponding to
CFA nodes discussed in Example 2. The A(Π,P) obtained in this case appears
in Figure 1(c). Let us see why there is a transition from (L0,⊥) to (L1, true).
Since L(L0) is an assignment statement, by rule 1 above we compute the following
expressions:
– ΓL0(⊥) = true

– ΓL1(true)= (x == 1).
– L(L0) = (x = 1)
– WP(ΓL1(true), L(L0)) =WP((x == 1), x = 1;) = (1 == 1) = true

– Adm(true,true).
Thus, we add a transition from (L0,⊥) to (L1, true). Examining a possible tran-
sition from (L0,⊥) to (L1, false), we similarly compute ΓL1(false) = (¬(x ==
1)) and WP((¬(x == 1)), x = 1;) = (¬(1 == 1)). Since ¬Adm(true, (¬(1 ==
1))), there is no transition between these two abstract states. The presence or
absence of other transitions can be explained in a similar manner. As no state
labeled by L4 is reachable, we have proven that our example property holds. ut

Clearly, if we do not limit the size of Ps, |SA| is exponential in |P|. Hence so are
the worst case space and time complexities of constructing A(Π,P).

2.2 Trace concretization

A trace of A(Π,P) is a finite sequence 〈(s1, V1), . . . , (sn, Vn)〉 such that (i)
for 1 ≤ i ≤ n, (si, Vi) ∈ SA, (ii) (s1, V1) ∈ IA and (iii) for 1 ≤ i < n,

Input: A trace τ of A(Π,P) s.t. γ(τ) = 〈s1, . . . , sn〉
Output: true iff τ is valid (can be simulated on the concrete system)

Variable: X of type formula

Initialize: X := true

For i = n to 1
If si is an assignment

X := WP(X, si)
Else If si is a branch with condition c
If (i < n)

If si+1 is the ‘then’ successor of si, X := X ∧ c
else X := X ∧ ¬c

If (X ≡ false) return false

Return true

Fig. 3. Algorithm T C to check the validity of a trace of Π.

((si, Vi), (si+1, Vi+1)) ∈ TA. Given such a trace τ = 〈(s1, V1), . . . , (sn, Vn)〉 of
A(Π,P), the concretization of τ is defined as γ(τ) = 〈L(s1), . . . ,L(sn)〉. Thus,
the concretization of an abstract trace is a trace of Π: a sequence of statements
that correspond to some trace in the control flow graph of Π.

2.3 Trace checking

The T C algorithm, described in Figure 3, takes Π and a counterexample τ as
inputs and returns true if γ(τ) is a valid trace of Π. This is a backward traversal
based algorithm. There is an equivalent algorithm [3] that is forward traversal
based and uses strongest postconditions instead of weakest preconditions.

2.4 Checking trace elimination

Given a spurious counterexample τ = 〈(s1, V1), . . . , (sn, Vn)〉 and a set of branches
P, we will need to determine if P eliminates τ . To do so we: (i) construct A(Π,P)
and (ii) determine if there exists a trace τ ′ of A(Π,P) such that γ(τ) = γ(τ ′).
The algorithm, called TraceEliminate, is described in Figure 41.

3 Predicate Minimization

We now present the algorithm for discovering a minimal set of branches P of a
program π that will help us prove or disprove a safety property φ.

3.1 The Sample-and-Eliminate algorithm

Algorithm Sample-and-Eliminate, described in Figure 5, is based on an abstrac-
tion refinement loop that keeps the set of predicates minimal throughout the
process. It is modeled after the Sample-and-Separate algorithm [6], where it is
1 Note that in practice this step can be carried out in an on-the-fly manner without

constructing the full A(Π,P).

Input: Spurious trace τ s.t. γ(τ) = 〈s1, . . . , sn〉 and a set of predicates P
Output: true if τ is eliminated by P and false otherwise

Compute A(Π,P) = 〈SA, IA, TA〉
Variable: X,Y of type subset of SA
Initialize: X := {(s, V) ∈ SA | s = s1}
If (X = ∅) return true

For i = 2 to n do

Y := {(s′, V ′) ∈ SA|(s′ = si) ∧ ∃(s, V) ∈ X . ((s, V), (s′, V ′)) ∈ TA}
If (Y = ∅) return true

X := Y
Return false

Fig. 4. Algorithm TraceEliminate to check if a spurious trace can be eliminated.

used in a CEGAR framework for hardware verification. At each step it finds a
counterexample if one exists and checks whether it corresponds to a concrete
counterexample, as usual. Unlike previous approaches [3, 9], however, it finds a
minimal set of predicates that eliminate all the concrete spurious traces that
were found so far (in the last line of the loop.) Our approach to solving this
minimization problem is the subject of Section 3.2.

Input: Program Π, safety property φ
Output: true if proved that Π |= φ, false if proved Π 6|= φ, and unknown

otherwise.

Variable: T set of spurious counterexamples, P set of predicates

Initialize: T := ∅, P := ∅
Forever do

If MC(A(Π,P), φ) = true return true

Else let τ be the abstract counterexample

If T C(τ) = true return false

If P is the set of all branches in Π then return unknown

T := T ∪ {τ}
P := minimal set of branches of Π that eliminates all elements of T

Fig. 5. Algorithm Sample-and-Eliminate uses a minimal set of predicates taken from
a program’s branches to prove or disprove Π |= φ, if such a proof is possible.

3.2 Minimizing the eliminating set

The last line of Sample-and-Eliminate presents the following problem: given a
set of spurious counterexamples T and a set of candidate predicates P (all the
branches of Π in our case), find a minimal set p ⊆ P which eliminates all the
traces in T . We present a three step algorithm for solving this problem. First,
find a mapping T 7→ 22P between each trace in T and the set of sets of predicates
in P that eliminate it. This can be achieved by iterating through every p ⊆ P and
τ ∈ T , using TraceEliminate to determine if p can eliminate τ . This approach

is exponential in |P | but below we list several ways to reduce the number of
attempted combinations:
– Limit the size or number of attempted combinations to a small constant, e.g.

5, assuming that most traces can be eliminated by a small set of predicates.
– Stop after reaching a certain size of combinations if any eliminating solutions

have been found.
– Break up the control flow graph into blocks and only consider combinations

of predicates within blocks (keeping combinations in other blocks fixed).
– Use data flow analysis to only consider combinations of related predicates.
– For any τ ∈ T , if a set p eliminates τ , ignore all supersets of p with respect

to τ (as we are seeking a minimal solution).
Second, encode each predicate pi ∈ P with a new Boolean variable pbi . We use
the terms ‘predicate’ and ‘the Boolean encoding of the predicate’ interchange-
ably. Third, derive a Boolean formula σ, based on the predicate encoding, that
represents all the possible combinations of predicates that eliminate the elements
of T . We use the following notation in the description of σ. Let τ ∈ T be a trace:
– kτ denotes the number of sets of predicates that eliminate τ (1 ≤ kτ ≤ 2|P |).
– s(τ, i) denotes the i-th set (1 ≤ i ≤ kτ) of predicates that eliminates τ . We

use the same notation for the conjunction of the predicates in this set.
The formula σ is defined as follows:

σ
def=
∧
τ∈T

kτ∨
i=1

s(τ, i) (1)

For any satisfying assignment to σ, the predicates whose Boolean encodings are
assigned true are sufficient for eliminating all elements of T .

From the various possible satisfying assignments to σ, we look for the one
with the smallest number of positive assignments. This assignment represents
the minimal number of predicates that are sufficient for eliminating T . Since
σ includes disjunctions, it cannot be solved directly with a 0-1 ILP solver. We
therefore use PBS [1], a solver for Pseudo Boolean Formulas.

A pseudo-Boolean formula is of the form
∑n
i=1 ci·bi ./ k, where bi is a Boolean

variable and ci is a rational constant for 1 ≤ i ≤ n. k is a rational constant and
./ represents one of the inequality or equality relations ({<,≤, >,≥,=}). Each
such constraint can be expanded to a CNF formula (hence the name pseudo-
Boolean), but this expansion can be exponential in n. PBS does not perform
this expansion, but rather uses an algorithm designed in the spirit of the Davis-
Putnam-Loveland algorithm that handles these constraints directly. PBS accepts
as input standard CNF formulas augmented with pseudo-Boolean constraints.
Given an objective function in the form of pseudo-Boolean formula, PBS finds
an optimal solution by repeatedly tightening the constraint over the value of this
function until it becomes unsatisfiable. That is, it first finds a satisfying solution
and calculates the value of the objective function according to this solution. It
then adds a constraint that the value of the objective function should be smaller
by one. This process is repeated until the formula becomes unsatisfiable. The

objective function in our case is to minimize the number of chosen predicates
(by minimizing the number of variables that are assigned true):

min
n∑
i=1

pbi (2)

Example 5. Suppose that the trace τ1 is eliminated by either {p1, p3, p5} or
{p2, p5} and that the trace τ2 can be eliminated by either {p2, p3} or {p4}.
The objective function is min

∑5
i=1 p

b
i and is subject to the constraint:

σ = ((pb1 ∧ pb3 ∧ pb5) ∨ (pb2 ∧ pb5))∧
((pb2 ∧ pb3) ∨ (pb4))

The minimal satisfying assignment in this case is pb2 = pb5 = pb4 = true. ut

Other techniques for solving this optimization problem are possible, including
minimal hitting sets and logic minimization. The PBS step, however, has not
been a bottleneck in any of our experiments.

4 Experiments and Conclusions

We implemented our technique inside the MAGIC [4] tool. MAGIC was designed
to check weak simulation of properties of labeled transition systems (LTSs) de-
rived from C programs. We experimented with MAGIC with and without predi-
cate optimization. We also performed experiments with a greedy predicate mini-
mization strategy implemented on top of MAGIC. In each iteration, this strategy
first adds predicates sufficient to eliminate the spurious counterexample to the
predicate set P. Then it attempts to reduce the size of the resulting P by using
the algorithm described in Figure 6. The advantage of this approach is that it re-
quires only a small overhead (polynomial) compared to Sample-and-Eliminate,
but on the other hand it does not guarantee an optimal result. Further, we
performed experiments with Berkeley’s BLAST [9] tool. BLAST also takes C
programs as input, and uses a variation of the standard CEGAR loop based
on lazy abstraction, but without minimization. Lazy abstraction refines an ab-
stract model while allowing different degrees of abstraction in different parts of
a program, without requiring recomputation of the entire abstract model in each
iteration. Laziness and predicate minimization are, for the most part, orthogonal
techniques. In principle a combination of the two might produce better results
than either in isolation.

Benchmarks. We used two kinds of benchmarks. A small set of relatively
simple benchmarks were derived from the examples supplied with the BLAST
distribution and regression tests for MAGIC. The difficult benchmarks were de-
rived from the C source code of openssl-0.9.6c, several thousand lines of code
implementing the SSL protocol used for secure transfer of information over the
Internet. A critical component of this protocol is the initial handshake between

Input: Set of predicates P
Output: Subset of P that eliminates all spurious counterexamples so far

Variable: X of type set of predicates

LOOP: Create a random ordering 〈p1, . . . , pk〉 of P
For i = 1 to k do

X := P \ {pi}
If X can eliminate every spurious counterexample seen so far

P := X
Goto LOOP

Return P

Fig. 6. Greedy predicate minimization algorithm.

a server and a client. We verified different properties of the main routines that
implement the handshake. The names of benchmarks that are derived from the
server routine and client routine begin with ssl-srvr and ssl-clnt respec-
tively. In all our benchmarks, the properties are satisfied by the implementation.
The server and client routines have roughly 350 lines each but, as our results
indicate, are non-trivial to verify.

Results. Figure 7 summarizes our results. Time for all experiments is given in
seconds. All experiments were performed on an AMD Athlon XP 1600 machine
with 900 MB of RAM running RedHat 7.1. The column Iter reports the number
of iterations through the CEGAR loop necessary to complete the proof. Predi-
cates are listed differently for the two tools. For BLAST, the first number is the
total number of predicates discovered and used and the second number is the
number of predicates active at any one point in the program (due to lazy ab-
straction this may be smaller). In order to force termination we imposed a limit
of three hours on the running time. We denote by ‘*’ in the Time column exam-
ples that could not be solved in this time limit. In these cases the other columns
indicate relevant measurements made at the point of forceful termination.

For MAGIC, the first number is the total number of expressions used to prove
the property, i.e. | ∪s∈SCF

Ps|. The number of predicates (the second number)
may be smaller, as MAGIC combines multiple mutually exclusive expressions
(e.g. x == 1, x < 1, and x > 1) into a single, possibly non-binary predicate,
having a number of values equal to the number of expressions (plus one, if the
expressions do not cover all possibilities.) The final number for MAGIC is the
size of the final P. For experiments in which memory usage was large enough to
be a measure of state space size rather than overhead, we also report memory
usage (in megabytes).

The first MAGIC results are for the MAGIC tool operating in the standard
refinement manner: in each iteration, predicates sufficient to eliminate the spu-
rious counterexample are added to the predicate set. The second MAGIC results
are for the greedy predicate minimization strategy. The last MAGIC results are
for predicate minimization. Rather than solving the full optimization problem,
we simplified the problem as described in section 3. In particular, for each trace

BLAST MAGIC MAGIC + GREEDY MAGIC + MINIMIZE
Program Time Iter Pred Mem Time Iter Pred Mem Time Iter Pred Mem Time Iter Pred Mem
funcall-nes 1 3 13/10 × 5 2 10/9/1 × 6 2 10/9/1 × 5 2 10/9/1 ×
fun lock 5 7 7/7 × 5 4 8/3/3 × 5 5 8/3/3 × 6 4 8/3/3 ×
driver.c 1 4 3/2 × 6 5 6/2/4 × 5 5 6/2/4 × 5 5 6/2/4 ×
read.c 6 11 20/11 × 5 2 15/5/2 × 6 3 15/5/1 × 5 2 15/5/1 ×
socket-y-01 5 13 16/6 × 5 3 12/4/2 × 5 3 12/4/2 × 6 3 12/4/2 ×
opttest.c 7499 38 37/37 231 145 5 7/7/8 63 150 5 4/4/4 63 247 25 4/4/4 63
ssl-srvr-1 2398 16 33/8 175 250 12 56/5/22 43 * 103 16/3/5 51 226 14 5/4/2 38
ssl-srvr-2 691 13 68/8 60 752 16 72/6/30 72 2106 62 8/4/3 34 216 14 5/4/2 38
ssl-srvr-3 1162 14 32/7 103 331 12 56/5/22 47 * 100 22/3/7 53 200 12 5/4/2 38
ssl-srvr-4 284 11 27/5 44 677 14 63/6/26 72 8465 69 14/4/5 56 170 9 5/4/2 38
ssl-srvr-5 1804 19 52/5 71 71 5 22/4/8 24 * 117 23/5/9 56 205 13 5/4/2 36
ssl-srvr-6 * 39 90/10 805 11840 23 105/11/44 1187 * 84 22/4/8 337 359 14 8/4/3 89
ssl-srvr-7 359 11 76/9 37 2575 20 94/7/38 192 * 99 19/3/6 62 196 11 5/4/2 38
ssl-srvr-8 * 25 35/5 266 130 8 32/5/14 58 * 97 19/4/7 142 211 10 8/4/3 40
ssl-srvr-9 337 10 76/9 36 2621 15 65/8/28 183 8133 99 11/4/4 69 316 20 11/4/4 38
ssl-srvr-10 8289 20 35/8 148 561 16 75/6/30 73 * 97 12/3/4 77 241 14 8/4/3 38
ssl-srvr-11 547 11 78/11 51 4014 19 89/8/36 287 * 87 26/4/9 65 356 24 8/4/3 38
ssl-srvr-12 2434 21 80/8 120 7627 22 102/9/42 536 * 122 23/4/8 180 301 17 8/4/3 42
ssl-srvr-13 608 12 79/12 54 3127 17 75/9/32 498 * 106 19/4/7 69 436 29 11/4/4 38
ssl-srvr-14 10444 27 84/10 278 7317 22 102/9/42 721 * 115 18/3/6 254 406 20 8/4/3 52
ssl-srvr-15 * 31 38/5 436 615 15 81/28/5 188 2112 37 8/4/3 118 179 7 8/4/3 40
ssl-srvr-16 * 33 87/10 480 3413 21 98/8/40 557 * 103 22/3/7 405 356 17 8/4/3 58
ssl-clnt-1 348 16 28/5 43 110 10 43/4/18 25 225 27 5/4/2 20 156 12 5/4/2 31
ssl-clnt-2 523 15 28/4 52 156 11 53/5/20 31 1393 63 5/4/2 23 185 18 5/4/2 29
ssl-clnt-3 469 14 29/5 49 421 13 52/7/24 58 * 136 29/4/10 28 195 21 5/4/2 29
ssl-clnt-4 380 13 27/4 45 125 10 35/5/18 27 152 29 5/4/2 20 191 19 5/4/2 29

TOTAL 81794 447 1178/221 3584 46904 322 1428/185 4942 163163 1775 381/102 2182 5375 356 191/107 880
/559 /129 /67

AVERAGE 3146 17 45/9 171 1804 12 55/7/22 235 6276 68 15/4/5 104 207 14 7/4/3 42

Fig. 7. Results for BLAST and MAGIC with different refinement strategies. ‘*’ indicate
run-time longer than 3 hours. ‘×’ indicate negligible values. Best results are emphasized.

we only considered the first 1,000 combinations and only generated 20 eliminat-
ing combinations. The combinations were considered in increasing order of size.
After all combinations of a particular size had been tried, we checked whether
at least one eliminating combination had been found. If so, no further combina-
tions were tried. In the smaller examples we observed no loss of optimality due
to these restrictions. We also studied the effect of altering these restrictions on
the larger benchmarks and we report on our findings later.

For the smaller benchmarks, the various abstraction refinement strategies
do not differ markedly. However, for our larger examples, taken from the SSL
source code, the refinement strategy is of considerable importance. Predicate
minimization, in general, reduced verification time (though there were a few
exceptions to this rule, the average running time was considerably lower than
for the other techniques, even with the cutoff on the running time). Moreover,
predicate minimization reduced the memory needed for verification, which is an
even more important bottleneck. Given that the memory was cutoff in some
cases for other techniques before verification was complete, the results are even
more compelling.

The greedy approach kept memory use fairly low, but almost always failed
to find near-optimal predicate sets and converged much slower than the usual
monotonic refinement or predicate minimization approaches. Further, it is not
clear how much final memory usage would be improved by the greedy strategy
if it were allowed to run to completion. Another major drawback of the greedy
approach is its unpredictability. We observed that on any particular example, the
greedy strategy might or might not complete within the time limit in different
executions. Clearly, the order in which this strategy tries to eliminate predicates
in each iteration is very critical to its success. Given that the strategy performs
poorly on most of our benchmarks using a random ordering, more sophisticated
ordering techniques may perform better. We leave this issue for future research.

ssl-srvr-4 ssl-srvr-15 ssl-clnt-1
ELM SUB Time It |P| Mem TG MG Time It |P| Mem TG MG Time It |P| Mem TG MG

50 250 656 8 2 64 34 1 1170 15 3 72 86 1 1089 13 2 67 66 1
100 250 656 8 2 64 34 1 1169 15 3 72 86 1 1089 13 2 67 66 1
150 250 657 8 2 64 34 1 1169 15 3 72 86 1 1090 13 2 67 66 1
200 250 656 8 2 64 34 1 1170 15 3 72 86 1 1089 13 2 67 66 1
250 250 656 8 2 64 34 1 1168 15 3 72 86 1 1090 13 2 67 66 1

Fig. 8. Results for optimality. ELM = MAXELM, SUB = MAXSUB, It is the number
of iterations, TG is the total number of eliminating subsets generated, and MG is the
maximum size of any eliminating subset generated.

Optimality. We experimented with two of the parameters that affect the op-
timality of our predicate minimization algorithm: (i) the maximum number of
examined subsets (MAXSUB) and (ii) the maximum number of eliminating sub-
sets generated (MAXELM) (that is, the procedure stops the search if MAXELM
eliminating subsets were found, even if less than MAXSUB combinations were
tried). We first kept MAXSUB fixed and took measurements for different values
of MAXELM on a subset of our benchmarks viz. ssl-srvr-4, ssl-srvr-15 and
ssl-clnt-1. Our results, shown in Figure 8, clearly indicate that the optimality
is practically unaffected by the value of MAXELM.

ssl-srvr-4 ssl-srvr-15 ssl-clnt-1
SUB Time It |P| Mem TG MT MG Time It |P| Mem TG MT MG Time It |P| Mem TG MT MG
100 262 8 2 44 34 2 1 396 12 3 50 62 2 1 310 11 2 40 58 2 1
200 474 7 2 57 27 2 1 917 14 3 65 81 2 1 683 12 2 51 63 2 1
400 1039 9 2 71 38 2 1 1110 8 3 76 45 2 1 2731 13 2 208 67 3 1
800 2182 7 2 165 25 2 1 2797 9 3 148 51 2 1 5843 14 2 296 75 3 1
1600 6718 9 2 410 35 3 1 10361 11 3 410 76 3 1 13169 12 2 633 61 3 1
3200 13656 9 2 461 40 3 1 14780 9 3 436 50 3 1 36155 12 2 1155 67 4 1
6400 26203 9 2 947 31 3 1 33781 10 3 792 51 3 1 > 57528 4 1 2110 22 4 1

Fig. 9. Results for optimality. SUB = MAXSUB, It is the number of iterations, TG is
the total number of eliminating subsets generated, MT is the maximum size of subsets
tried, and MG is the maximum size of eliminating subsets generated.

Next we experimented with different values of MAXSUB (the value of MAX-
ELM was set equal to MAXSUB). The results we obtained are summarized in
Figure 9. It appears that, at least for our benchmarks, increasing MAXSUB
leads only to increased execution time without reduced memory consumption or
number of predicates. The additional number of combinations attempted or con-
straints allowed does not lead to improved optimality. The most probable reason
is that, as shown by our results, even though we are trying more combinations,
the actual number or maximum size of eliminating combinations generated does
not increase significantly. It would be interesting to investigate whether this is
a feature of most real-life programs. If so, it would allow us, in most cases, to
achieve near optimality by trying out only a small number of combinations or
only combinations of small size.

Acknowledgments We thank Rupak Majumdar and Ranjit Jhala for their
help with BLAST.

References

1. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search pseudo
Boolean solver. In Symposium on the theory and applications os satisfiability testing
(SAT), pages 346–353, 2002.

2. T. Ball and S. Rajamani. Automatically validating temporal safety properties of
interfaces. Lecture Notes in Computer Science, 2057, 2001.

3. T. Ball and S. K. Rajamani. Generating abstract explanations of spurious coun-
terexamples in C programs. Technical Report MSR-TR-2002-09, Microsoft Re-
search, Redmond, January 2002.

4. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In International Conference on Software Engineering
(ICSE), To appear, 2003.

5. E. Clarke, O. Grumberg, M. Talupur, and D. Wang. Making predicate abstraction
efficient: eliminating redundant predicates. In To appear in CAV’03.

6. E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction - refine-
ment using ILP and machine learning techniques. In Proc. 14th Intl. Conference
on Computer Aided Verification (CAV’02), volume 2404 of LNCS, July 2002.

7. D. Dams and K. S. Namjoshi. Shape analysis through predicate abstraction and
model checking. In VMCAI, 2003.

8. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In Computer
Aided Verification, pages 160–171, 1999.

9. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Symposium on Principles of Programming Languages, pages 58–70, 2002.

10. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, 1995.

11. G. Nelson. Techniques for Program Verification. PhD thesis, Stanford, 1980.
12. V. Rusu and E. Singerman. On proving safety properties by integrating static

analysis, theorem proving and abstraction. Lecture Notes in Computer Science,
1579:178–192, 1999.

13. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grum-
berg, editor, Computer Aided Verification, volume 1254, pages 72–83. Springer
Verlag, 1997.

