
Finding Model-Checkable Needles in Large
Source Code Haystacks: Modular Bug-Finding

via Static Analysis and Dynamic Invariant
Discovery

Mohammad Amin Alipour,∗ Alex Groce,∗ Chaoqiang Zhang,∗ Anahita Sanadaji,∗ and Gokul Caushik,∗
∗School of Electrical Engineering and Computer Science

Oregon State University {grocea,zhangch,alipourm,sanandaa,caushikg}@onid.oregonstate.edu

Abstract—In this paper, we present a novel marriage
of static and dynamic analysis. Given a large code base
with many functions and a mature test suite, we propose
using static analysis to find functions 1) with assertions
or other evident correctness properties (e.g., array bounds
requirements or pointer access) and 2) with simple enough
control flow and data use to be amenable to predicate-
abstraction based or bounded model checking without hu-
man intervention. Because most such functions in realistic
software systems in fact rely on many input preconditions
not specified by the language’s type system (or annotated
in any way), we propose using dynamically discovered
invariants based on a program’s test suite to characterize
likely preconditions, in order to reduce the problem of false
positives. While providing little in the way of verification,
this approach may provide an additional quick and highly
scalable bug-finding method for programs that are usually
considered “too large to model check.” We present a simple
example showing that the technique can be useful for a more
typically “model-checkable” code base, even in the presence
of a poorly designed test suite and bad invariants.

I. INTRODUCTION

While new tools and techniques are being devised to
conquer software verification problems, software systems
themselves are becoming more complicated, with multiple
layers of software/hardware interactions, functioning in
dynamic, uncertain environments. Even where teams of
model checking experts are in place, and formal veri-
fication is acknowledged as a valuable practice, model
checking is seldom applied to complete modern code
bases for realistic-scaled systems. For example, while
model checking was applied to small portions (typically
10,000 lines or less) of the code base for NASA/JPL’s
Curiosity rover [12], even the Laboratory for Reliable
Software did not attempt to apply model checking to the
full approximately 2 million lines of Curiosity software.

Static analysis methods, on the other hand, are ex-
pected to scale to real-world code bases. Even the popular
technical press [14] has noted the use of Coverity and
other tools on huge code bases for the Curiosity rover, the
CERN particle accelerator, and other big mission-critical
systems.

While model checking can be applied to whole systems
when a research team drives the system design and real-
world deadlines and constraints are removed, its role in
most critical system development efforts is typically rele-
gated to verifying (or finding bugs in) small components.
One approach to escaping this limitation is to enhance the
fundamental scalability of model checking by using ab-
straction or other techniques to manage huge state spaces,
and especially by using compositional reasoning [9], [6],
[10], [4] to handle large code bases. Such efforts are an
important contribution, but thus far have yet to crack
anything like the 1 million LOC mark in an automated
fashion.

Beyond the fundamental problem of the state space
explosion, there is a second scalability problem with
most current model checking tools: they are far less
“industrially hardened” than commercial static analysis
tools, and fail for a variety of essentially engineering
reasons for very large code bases — partly because they
are seldom tested on more than a few thousand lines of
code at a time. Model checking tools work best, and most
automatically, when given code fragments only the size
of a few small functions, in which case both predicate
abstraction [4] and bounded model checking [3], [5] can
be used even by upper-level undergraduate students to
verify properties and find subtle bugs. This fact may lie
behind the success of model checkers for finding bugs in
container classes [15].

This paper proposes and presents very preliminary
results for a novel “modular” method for applying model
checking automatically to real-world code bases that does
not require conquering the state-space explosion prob-
lem, or automatically decomposing such a system into
components in the traditional fashion for verification.
We propose to exploit precisely the current strengths of
model checking by mining a large code base for small,
self-contained, portions of code suitable for push-button
model checking. The core idea is to use static analysis
to identify functions (or small sets of functions) without
recursion or recursive datatypes, overly complex pointer



Figure 1: The core workflow of our modular verification approach

manipulations, or whatever other features typically frus-
trate model checking efforts. Additionally, such code
fragments should contain assertions or other statements
(e.g. array or pointer accesses, system calls) that make
it easy to generate properties to check without human
intervention. We call our search verification task triage:
our contribution is to propose that one effective way to
apply model checking to large systems is to simply cherry
pick the parts of the system that can be model checked.
This turns on its head the usual effort to apply human
effort to verifying the components of most interest in
a large system, which can proceed independently. Our
approach to “modular verification” works more like many
static analysis algorithms, which “give up” on pointers
when alias analysis fails, and abandon overly complex
paths. A more fanciful way to understand the idea is
to consider the not infrequent occasion of a graduate
student or model checking researcher combing a large,
critical system (e.g. OpenSSL) for some functions suitable
for specification and verification. We aim to replace such
a human with a static analysis algorithm that is less
intelligent, but much faster and able to generate many
likely candidates rather than being satisfied after finding
one or two functions.

Unfortunately, naive verification task triage plus model
checking is unlikely to yield effective results, even for the
purpose of bug finding. We believe that most functions
in complex code bases rely on preconditions over inputs
and data values accessed that are not represented by the
language’s type system or by other annotations. Model
checking without these preconditions will probably lead
to an unmanageable number of uninteresting bug reports
— the false positives that have always plagued static
analysis efforts.

We propose to mitigate this problem by using dynamic
invariant detection [7] in a (to our knowledge) novel
way: as a tool for generating approximations of pre-
conditions needed to avoid false positives in large code
bases. The idea, shown in Figure 1, involves a two-
stage workflow. First, we perform verification task triage
to identify suitable small pieces of code to model checking

a large code base. Then, the test suite for the large
system is run, with instrumentation inserted to extract
trace information over the suitable functions. Dynamic
invariant generation takes program traces and identifies,
via “empirical” rather than static means, invariants —
propositions that are true for all observed executions of
the system. These invariants are then used to annotate the
triage-identified functions with “preconditions” generaliz-
ing the data values seen during execution of the test suite.
The annotated pieces of code are model checked, with the
expectation that any bugs detected are likely to be real
faults since the invariants ensure that data ranges and
relationships are like those observed over the test suite.
As a simple example, consider the case of a function f
that takes as one input a value int m. In typical world-
world C code, m may in fact represent a highly constrained
quantity, such as the number of minutes since midnight,
but the type system will not express this constraint.
Model checking f without this information may produce a
counterexample involving, for example, integer overflow
due to multiplying m by 60. Even if a real off-by-one bug
exists when m = 1, the overflow bug may be much easier
for a SAT solver in a bounded model checker to detect.
Model checking the code with the added assumption
that 0 <= m < 3600, however, the model checker will
report the real bug. Even though 1 did not appear in the
test suite, the generalization algorithms in the invariant
detector generalized the actual input range to include it.
Extremely large values of m also did not appear during
test suite execution, of course, but the range observed
was sufficiently small that invariant detection proposed
that the range was likely restricted.

An obvious objection to this approach is that the in-
variants from a test suite will often over-constrain the
behavior of many small components, unless the test suite
is very high quality. We hope that even highly inaccurate
invariants may allow a model checker to find a real bug.
For example, in the case of f, if the test suite falsely
suggests that 0 <= m < 60 because tests only run for
1 hour, the model checker can still find the real bug.
Our claim is that our use of dynamic invariants relies on



their ability to crudely “carve away” the data values that
a function is not expected to work rather than on their
strict accuracy. A gross underapproximation of behavior
can still lead to the discovery of real bugs, while an
overappoximation buries a user in false positives. We
provide suggestive evidence for the possibility that poor
invariants can still be useful by applying our technique to
a simple container class and a radically non-representative
test suite. A more complex example with hand-generated
“invariants” shows that even simple triage can discover
useful targets for verification and avoid false positives
using invariants.

In the remainder of the paper, we first discuss key
related work in Section II, to place our core idea in
context, elaborate our proof-of-concept example in Sec-
tion III, demonstrate verification triage in Section IV, and
discuss the challenges in bringing the full vision of a
“static analysis-like” approach to modularity for model
checking in Section V.

II. RELATED WORK

To our knowledge, the idea of mining large code bases
for arbitrary sub-components suitable for model check-
ing has not been previously explored. The most closely
related ideas are efforts to scale model checking by ap-
proximating the weakest precondition under which a sub-
component satisfies its correctness properties [11], [2],
[6]. The primary difference is that where these methods
aim to learn or iterate to a “good” assumption that is
as weak as possible, we simply want a precondition that
removes false positives, even if it is too strong, and, of
course, that such methods have no concept of mining a
code base for possible targets for model checking.

III. EXAMPLE: BINARY TREES

As a simple example of how our approach might work
in practice, assuming that an effective verification task
triage can be designed, we apply our method to a fre-
quently studied binary tree implementation [15], [8]. We
use a RepOK function to test the validity of the tree
structure, and have implemented a simple random testing
system to test it, shown in Figure 3. We choose to verify
the remove function, and instrument the code for the
binary tree with extended invariants [1], as shown in
Figure 2/footnoteInstrumentation for add, not remove is
shown as it is easier to follow. to help us limit the behavior
of the code to valid trees only. We use Daikon [7] to
infer invariants from all traces generated during random
testing. Extended invariants introduce history variables
that allow Daikon to provide “invariants” in the form
of code coverage facts as well as more traditional data
invariants, to capture relationships such as, e.g., that a
loop always executes a number of times equal to twice
the value of a certain input. Unfortunately, when running
the random tester for 5,000 tests, we choose to use tests
with a maximum length of only 4 steps, which leads to

public void add(int x) {
Node current = root;
if (root == null) {

br0 = br0 + 1;
root = new Node(x);
return;

}
while (current.value != x) {

if (x < current.value) {
if (current.left == null) {

br1 = br1 + 1;
current.left = new Node(x);

} else {
br2 = br2 + 1;
current = current.left;}

} else {
if (current.right == null) {

br3 = br3 + 1;
current.right = new Node(x);

} else {
br4 = br4 + 1;
current = current.right;

}
}

}
}

Figure 2: Function add after instrumentation for branch count.

extended invariants that radically underapproximate the
behavior of the class:

this.br1 one of { 0, 1, 2 }
this.br3 one of { 0, 1, 2 }

Using these invariants (which restrict the structure to
up to two right children or up to two left children), we
generate a simple CBMC harness, knowing (thanks to our
triage and invariant examination) that a shallow loop
unwinding will suffice, and that no types encountered are
likely to make verification difficult, as shown in Figure 4.

With this extremely restricted harness, CBMC was able
to find the bug in binary tree [8], despite the fact that
the shallow random testing did not discover the bug.

IV. SIMPLE VERIFICATION TASK TRIAGE

Given that using even poor tests to generate potentially
incorrect invariants for model checking can still lead to
fast, effective bug discovery, the core of our modular
verification approach becomes finding functions where
this can be applied to large, real-world code bases. Figure
5 shows a function from the source code for version 1.6 of
Mozilla’s SpiderMonkey JavaScript engine. This function
was automatically identified using a very simple 100-line
Python script that crawls through a set of C source files
and identifies functions that:



Random rand = new Rand(20);
for(i = 0; i < N; i ++){

BinTree SUT = new BinTree();
for(int j = 0; j < M; j++){

int op = rand.nextInt(3);
int value = rand.nextInt(20);
switch(op){

case 0:
SUT.add(value);
break;

case 1:
SUT.remove(value);
break;

case 2:
SUT.find(value);
break;

}
assert(SUT.RepOK());

}
}

Figure 3: A simple random tester for the BinTree.

void main()
{ int v1,v2,v3,v4; // symbolic inputs

/* Using calls for simplicity;
in practice would encode structure
from Daikon invariants as a series
of assumptions. */

add(v1);
add(v2);
add(v3);

/* Invariant */
assume(0<=br1 && br1<=2 &&

0<=br2 && br2<=2);

remove(v4);
assert(repOK);

}

Figure 4: CBMC Harness for BinTree.

• do contain at least some assert statement or poten-
tially crashing memory dereference (i.e., functions
that have a “specification” even without human in-
tervention) and

• do not take parameters or declare local variables that
cannot be resolved to simple C types (int, short, long,
void, and char).

This triage approach is both over-restrictive (in many
cases functions taking structures or arrays as input can
be handled easily) and not restrictive enough (it does not
filter out functions with recursion or references to global

values of “bad” types). In practice, we expect triage to
require a deeper static analysis that includes more types
and uses summaries of functions called by a function.
Calling a “bad” function is not necessarily a problem,
because the return value may be replaced by a value
generated by our invariant generator in many cases.

Even using this simplistic version of triage, however, we
can obtain results. Reading through the roughly 40K lines
of non-comment C code in SpiderMonkey 1.6 would be a
time-consuming task for a human, even ignoring the need
to resolve typedefs. The 11 functions chosen as possible
verification targets by the simple algorithm include some
unsuitable targets (including one case where the textual
type analysis fails to notice a complex compiler state
structure parameter). A few functions are simple bit-
twiddling or offset-computing code that can be trivially
verified without invariants. The code in Figure 5 however
is of considerably more interest. It implements the Boyer-
Moore-Harspool substring-finding algorithm [13]. After
resolving the types to ground C types and choosing string
sizes based on jsfunfuzz tests, we were able to incre-
mentally increase loop bounds to not only verify memory
safety for chosen strings, but to “discover” the worst case
complexity of the algorithm, the point where unwinding
assertions held. When we introduce an off-by-one error
into the code (a case that should not be found by our
testing due to the values chosen for start, we believe),
CBMC instantly detects the error.

On the one hand, because the size of strings analyzed is
relatively small, this is not a complete verification of the
Boyer-Moore-Horspool implementation in SpiderMonkey.
On the other hand, in practice for bug finding, an informal
“small model” assumption suggests that most code that
works for all small inputs works for large inputs, at least
short of integer overflow problems. Note that the small
input size bounds in our verification are used to also gen-
erate small array sizes, so we can detect memory safety
problems with small inputs, because our memory bounds
are also artificially small due to the way we translate the
code into a verification problem. One problem with this
approach is that when small inputs can lead to larger
outputs, and this invariant is not detected, our approach
might result in false positives. It remains to be seen how
important this is in practice.

That a Boyer-Moore-Horspool implementation is the
most interesting verification target detected by our initial
triage system is fitting. The problem of finding a substring
is often discussed (as in the Wikipedia entry for the
algorithm) as the “needle in a haystack” problem with
the pattern to find called the “needle.” Our approach
is essentially the search for model-checkable needles in
the haystacks of large, complex software systems not
otherwise amenable to formal verification without large
investments of expert effort.



jsint
js_BoyerMooreHorspool(const jschar *text, jsint textlen,

const jschar *pat, jsint patlen,
jsint start)

{
jsint i, j, k, m;
uint8 skip[BMH_CHARSET_SIZE];
jschar c;

JS_ASSERT(0 < patlen && patlen <= BMH_PATLEN_MAX);
for (i = 0; i < BMH_CHARSET_SIZE; i++)

skip[i] = (uint8)patlen;
m = patlen - 1;
for (i = 0; i < m; i++) {

c = pat[i];
if (c >= BMH_CHARSET_SIZE)

return BMH_BAD_PATTERN;
skip[c] = (uint8)(m - i);

}
for (k = start + m;

k < textlen;
k += ((c = text[k]) >= BMH_CHARSET_SIZE) ? patlen : skip[c]) {

for (i = k, j = m; ; i--, j--) {
if (j < 0)

return i + 1;
if (text[i] != pat[j])

break;
}

}
return -1;

}

Figure 5: Verification target from Mozilla SpiderMonkey 1.6 source.

V. CORE CHALLENGES AND FUTURE WORK

We speculate that while model checking cannot apply
to as many functions as static analysis, our method may
be of considerable value for bug detection because of the
precision and complete exploration of model checking.
However, the critical question is whether dynamic invari-
ants can actually produce accurate enough preconditions
to reduce the false positive rate to a manageable level.
Determining whether dynamic invariants over even poor
test suites can still find bugs for realistic systems requires
the development of a tool for automatic verification task
triage. Our initial efforts suggest that this task is complex,
though not infeasible. In particular, our early efforts to
triage C programs have shown that the first steps are
identifying code patterns that frustrate a particular model
checker, and this requires a complete analysis of the
accessed data types and call graphs from each function
for “bad” patterns, like complex recursive data structures
or system calls. We have identified some likely candidate
functions in the Mozilla JavaScript engine and SQLite,

and plan to use these modest sized code bases to tune
a method for handling larger programs with more com-
plex build environments. The next steps are continued
development of the triage tools and experimentation with
actual invariants from the test suites for our subject
programs.

REFERENCES

[1] M.A. Alipour and A. Groce. Extended program invariants: appli-
cations in testing and fault localization. In Proceedings of the 2012
Workshop on Dynamic Analysis, pages 7–11. ACM, 2012.

[2] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional ver-
ification by learning assumptions. In Computer Aided Verification,
pages 289–292. Springer, 2005.

[3] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 193–
207, 1999.

[4] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular veri-
fication of software components in C. In International Conference
on Software Engineering, pages 385–395, 2003.

[5] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ansi-c
programs. Tools and Algorithms for the Construction and Analysis
of Systems, pages 168–176, 2004.



[6] J.M. Cobleigh, G.S. Avrunin, and L.A. Clarke. Breaking up is hard
to do: an investigation of decomposition for assume-guarantee
reasoning. In Proceedings of the 2006 international symposium on
Software testing and analysis, pages 97–108. ACM, 2006.

[7] M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1):35–45,
2007.

[8] J. Geldenhuys, M.B. Dwyer, and W. Visser. Probabilistic symbolic
execution. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pages 166–176. ACM, 2012.

[9] M. Gheorghiu Bobaru, C. Păsăreanu, and D. Giannakopoulou. Au-
tomated assume-guarantee reasoning by abstraction refinement.
In Computer Aided Verification, pages 135–148. Springer, 2008.

[10] M. Gheorghiu Bobaru, C. Păsăreanu, and D. Giannakopoulou. Au-
tomated assume-guarantee reasoning by abstraction refinement.
In Computer Aided Verification, pages 135–148. Springer, 2008.

[11] D. Giannakopoulou, Z. Rakamarić, and V. Raman. Symbolic
learning of component interfaces. Static Analysis, pages 248–264,
2012.

[12] Alex Groce, Gerard Holzmann, Rajeev Joshi, and Ru-Gang Xu.
Putting flight software through the paces with testing, model
checking, and constraint-solving. In International Workshop on
Constraints in Formal Verification, pages 1–15, 2008.

[13] R. N. Horspool. Practical fast searching in strings. Software -
Practice & Experience, 10(6):501–506, 1980.

[14] Anna Leach. Boffins zapped ’2,000 bugs’ from Curiosity’s 2
MILLION lines of code. http://www.theregister.co.uk/2012/08/
22/mars rover software coverity/.

[15] W. Visser, C.S. Păsăreanu, and R. Pelánek. Test input generation for
Java containers using state matching. In Proceedings of the 2006
international symposium on Software testing and analysis, pages
37–48. ACM, 2006.

http://www.theregister.co.uk/2012/08/22/mars_rover_software_coverity/
http://www.theregister.co.uk/2012/08/22/mars_rover_software_coverity/

	Introduction
	Related Work
	Example: Binary Trees
	Simple Verification Task Triage
	Core Challenges and Future Work
	References

