
Bounded Model Checking and Feature Omission
Diversity

Amin Alipour and Alex Groce
School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, OR
Email: {alipour,alex}@eecs.oregonstate.edu

Abstract—In this paper we introduce a novel way to speed up
the discovery of counterexamples in bounded model checking,
based on parallel runs over versions of a system in which
features have been randomly disabled. As shown in previous
work, adding constraints to a bounded model checking problem
can reduce the size of the verification problem and dramatically
decrease the time required to find counterexample. Adapting a
technique developed in software testing to this problem provides
a simple way to produce useful partial verification problems,
with a resulting decrease in average time until a counterexample
is produced. If no counterexample is found, partial verification
results can also be useful in practice.

I. INTRODUCTION

Model checking [5] is a technique for formal verification,
which inspects all reachable states of a system for violations
of a property. If a violation found, a model checker returns a
counterexample—a trace that exhibits the property violation.
Providing a counterexample is one of the most important fea-
tures of model checking, crucial for debugging both systems
and properties [3].

In programs with very large or infinite state spaces, the
explicit enumeration of all of reachable states is impractical.
Alternative techniques, such as symbolic model checking [11],
model checking with abstraction [4], and bounded model
checking (BMC) [2], avoid the need for explicit enumeration
by representing multiple states at once via logical constructs.
In bounded model checking, in particular, there is an additional
emphasis on the discovery of counterexamples, and verifica-
tion is only with respect to some upper bound on the length
of allowed counterexample traces1.

Even with the power of symbolic techniques, the state-
space explosion is a fundamental problem for model checking:
real-world systems have very large state spaces, and effective
abstractions and symbolic representations are challenging to
discover. With the growing prevalence of multi-core proces-
sors, effective methods for parallelizing model checking have
become an increasingly important part of the effort to combat
the state-space explosion. Swarm verification [9] is an explicit-
state approach in which, rather than allocating all computa-
tional resources to a single model checking search strategy
(e.g., a bitstate search with a very large hash table), a “swarm”

1In practice, the bound can sometimes be shown to be at equal to or greater
than that of the maximum length for the shortest counterexample to the system,
in which case BMC verification implies system correctness.

of model checking runs with limited memory and time, and
different search strategies (primarily transition orderings) are
performed. These runs are completely independent, with no
communication between processes; the cost of communication
can outweigh the gains of avoiding duplicated work. The
diversification of search strategies leads to exploration of
different parts of the state space, however, decreasing the time
required to find a counterexample if one exists, and increasing
code and state-space coverage even if a counterexample is
not found. For very large models, including an experimental
network architecture, a real-time operating system kernel, and
flash file systems for space missions, swarm verification has
proven essential to finding subtle system flaws.

Swarm testing [8] generalizes the search diversification of
swarm verification beyond the choice of a depth-first search
strategy to the selection of test features. A test feature is a
predicate over test cases, controlled by the test generation
process. Features may be API calls or more general predicates;
for example, in testing a file system a test feature might
be whether the test case includes calls to close, and in
C compiler testing a feature might be whether a test case
includes pointer operations. Building off the discovery that
disabling certain API calls (e.g., directory operations) in an
explicit-state model checking harness for a flash file system
could greatly increase path coverage for other operations (e.g.,
file read/write operations), swarm testing relies on randomly
omitting certain features from test cases. In the context of
random testing, this means that, rather than using the entire
test computation budget to generate and execute test cases
drawn from a single distribution in which every test feature is
represented, we generate a fixed swarm of test configurations,
each of which only includes a subset of all possible test
features. The swarm configurations each receive an equal share
of the computational budget. The feature omission diversity
provided by swarm testing results in much better fault de-
tection and code coverage than the conventional approach
of a single, all-encompassing, default configuration. Even
though swarm testing, unlike swarm verification, provides no
additional parallelism, diversity is valuable due to the fact
that some features can suppress system behaviors. E.g., when
looking for a stack overflow bug, pop operations make it hard
to reach error states, and when testing a file system, close
operations prevent complex file access behaviors.

Swarm testing is clearly applicable in explicit-state model

checking of very large state spaces (in fact, the inspiration
for swarm comes from such “testing via model checking”).
A more interesting question, however, is whether feature
omission diversity can be useful in symbolic approaches. In
this paper, we propose the application of swarm configuration
techniques to constraint-based bounded model checking.

Rather than simply using an ad hoc approach of removing
certain choices from a model checking harness that defines
system behaviors, we base swarm bounded model checking
(swarm BMC) on a trace-based approach to bounded model
checking [7]. This approach provides a generalized basis for
feature omission in constraint-based approaches, and swarm
provides the trace-based technique with a source of traces.
We show very preliminary results on small systems, indicating
that 1) feature omission diversity can speed up the discovery
of counterexamples in BMC when multiple cores are available
and 2) it is possible to use the results from swarm runs to aid
verification, even if no counterexamples exist.

II. RELATED WORK

This work builds on the ideas of search diversity explored in
the work of Holzmann et al. [9] and Dwyer et al. [6], and con-
tinued in swarm testing [8]. Feature diversity is implemented
by equating features to log elements in a program trace, based
on the approach to trace-based BMC reduction introduced
by Groce and Joshi [7]. Arguably, swarm’s model checking
via feature omission, where model checking results indicate
correctness (or a counterexample) for a subset of program
behaviors is a dual of conditional model checking, proposed
by Beyer et al. [1], where conventional model checking can
return partial results.

III. BOUNDED MODEL CHECKING WITH FEATURE
OMISSION

Bounded model checking (BMC) reduces the problem of
model checking to a satisfiability problem [2]. For a system
C and a property p, BMC unrolls the control structure of
the system for k steps and derives a propositional formula f
such that f is satisfiable if and only if there is a violation of
p in computations of length (≤) k of C. The solution to f
defines a counterexample for the property p over C. A SAT
solver (or SMT solver) is used to solve the satisfiability of
f . If a sufficiently large k is selected and the SAT solver can
handle the resulting constraints, BMC is highly effective for
finding faults in both hardware and complex software systems,
including operating system kernel code.

Groce and Joshi [7] proposed an extension to BMC in
which the only counterexamples considered are those that
would produce a given log tracing system behavior. Consider a
program containing log(s) statements that append a string s
to a log that partially indicates program behavior. Such logs are
ubiquitous; “printf” debugging is applied at some point to
almost all software systems. An obvious variation of bounded
model checking is to consider only counterexamples that
produce a given log of system behavior (perhaps hypothesized
as impossible by a systems engineer, or perhaps derived from

a failed test case). Restricting the executions considered in
a static analysis or symbolic execution by a trace can be
very expensive, if the restriction requires additional “history”
variables to record the log produced by an execution. In order
to avoid this overhead, the trace-restriction algorithm, after
adding the desired log state as a post-condition at program
termination, propagates the final assumption to arrive at a new
program annotated with assumptions that force the desired
log output, and slices the constraint problem according to
these assumptions. Experimental results show that restricting
behavior to a trace can greatly reduce the size of SAT
constraints and the time required to produce a counterexample.

We exploit this approach as a basis for feature omission
diversity. In particular, we define features, in our swarm BMC
approach, as logging events. To omit a feature, therefore,
means to consider only execution traces that do not contain a
given log event. This definition of features is quite general: be-
cause logging statements can be guarded with conditionals in
a program, features can include not only particular functions,
statements, or input values, but also any variable valuations
at particular program locations. Given a program containing
log statements and a set of features to be omitted (the swarm
configuration), performing BMC under the configuration is
simple: 1) First, all logging statements that do not involve
the omitted features are removed from the program. 2) The
assumption that the program log is empty at termination is
added as a post-condition. Restriction of execution to an empty
log is most elegantly achieved by simply replacing all calls to
log with the statement assume(false). These assumes
can be propagated via the techniques described by Groce and
Joshi, or by any slicing technique implemented in a bounded
model checker.

Algorithm 1 illustrates the feature diversity omission ap-
proach. Given a program and a set of features, some features of
the program are randomly selected (Line 3). These features are
omitted from the program by adding new assumptions to the
program (Lines 4 and 5) to derive a set of new programs with
the same behavior as the original program, except that none
of the omitted features will be allowed in counterexamples.
We run BMC in parallel on the set of new programs (Line 6).

What is the value of this “parallel” BMC? Obviously, there
is no traditional compositional verification in this case: if
no sp has a counterexample, it does not follow that the
program p has no counterexample (unless one Fi is the null
set). However, if any sp has a counterexample, it is also a
counterexample for the original program p. If the time to
produce a counterexample for any sp is shorter than the time
required to produce a counterexample for p then we have
obtained a counterexample more quickly than what is possible
with the traditional approach. Moreover, it may be the case that
BMC for reasonable k on p itself produces a SAT instance
that is too complex, and the SAT solver exhausts memory or
time available for verification. It many such cases, at least one
sp will produce a counterexample, due to its smaller (due to
slicing) or at least more constrained SAT problem. In these
cases, swarm BMC makes effective BMC possible when it

was previously not feasible.

Algorithm 1 Algorithm For Swarm Bounded Model Checking
Input: program p, set F of features

1: while budget allows do
2: for all processors available do
3: Pick a random set Fi ⊆ F
4: Build sp by replacing log statements in p for Fi

with assume(false) and removing other log
statements from p

5: Propagate assumptions and slice sp
6: Perform BMC on sp
7: end for
8: end while

We illustrate the potential value of the swarm approach with
a simple example, a stack overflow bug. Figure 1 depicts an
implementation of a simple stack API where push adds an
integer to the top of stack, pop removes an item from top
of stack and top returns the value of the top of the stack.
The stack library is flawed in that 1) top actually returns the
value one above the top of the stack and 2) the push function
does not check for stack overflow. The lack of a specification
prevents us from detecting the first fault, but the second fault
will produce an array bounds violation when a push call is
made on a stack already containing 64 items. The API calls
are the natural features of this system.

The effectiveness of swarm testing and swarm BMC relies
on the insight that, whether features are API calls or predicates
over inputs, most faults can be exhibited by counterexamples
that only exhibit a small portion of program’s behavior. For
example, in our stack example, only push operations are
required to produce a stack overflow — pop operations
actually delay failure, and top operations are irrelevant.

i n t t o p () {
CPROVER assume (f a l s e) ;

re turn s t a c k [s] ;
}
void push (i n t i) {

s t a c k [s ++] = i ;
}
void pop () {

i f (s > 0) {
s−−;

}
}

Fig. 2. Snippet of input to CBMC to omit top function calls.

We ran the C bounded model checker CBMC [10] on this
program and on three variations, each of which omitted one
feature (Figure 2 shows the version where top is omitted).
Figure 3 summarizes the results.

The results show that swarm BMC can returns a counterex-
ample up to 71% more quickly than BMC on the program
with all features enabled. Omitting top provides little benefit,
but omitting pop allows us to produce a counterexample very

d e f i n e SIZE 64
d e f i n e TLEN 100
i n t s = 0 ;
i n t s t a c k [SIZE] ;
i n t t o p () {

l o g (” t o p ”) ;
re turn s t a c k [s] ;

}
void push (i n t i) {

l o g (” push ”) ;
s t a c k [s ++] = i ;

}
void pop () {

l o g (” pop ”) ;
i f (s > 0) {

s−−;
}

}

i n t main () {
i n t v , a c t i o n ;
f o r (i n t i = 0 ; i < TLEN ; i ++) {

a c t i o n = n o n d e t i n t () ;
CPROVER assume ((a c t i o n >= 0) && (a c t i o n <= 2)) ;

sw i t ch (a c t i o n) {
case 0 :

v = t o p () ;
break ;

case 1 :
v = n o n d e t i n t () ;
push (v) ;
break ;

case 2 :
pop () ;
break ;

}
}

}

Fig. 1. Stack code.

quickly. If all BMC runs are performed in parallel on a multi-
core machine with sufficient memory for each run, or in a
cloud computing setting, the time-to-first counterexample is
greatly reduced. Moreover, we argue that counterexamples
from swarm BMC are likely to be much more useful for
debugging systems, as they will contain fewer features that are
not relevant to the fault. In this trivial case, a counterexample
consisting exclusively of push operations is clearly ideal.

What if we correct the program by fixing top and push?
The swarm verifications are still (slightly) quicker than the full
verification, but do not provide a conclusive proof of correct-
ness for the program. However, we can theorize some benefit
even in the case of correct systems for swarm verification:
verifying the original program takes three seconds longer than
verifying a version of p which requires that every trace include
at least one call to each of top, pop, and push.

IV. EXPERIMENTAL RESULT

In this section we present preliminary results for swarm
BMC. We have experimented with feature omission diversity
on a number of data structures in C. In these experiments,
we used only the basic CBMC slicer, rather than any more
sophisticated reduction approach.

Omitted Feature Time without Slicing (Seconds) Time with Slicing (Seconds) Verification Status
none 325 49 Counterexample
push 40 4 Verified
pop 101 14 Counterexample
top 291 48 Counterexample

Fig. 3. Swarm BMC for a simple stack.

We used Weiss’s [12] algorithms text source 2 as a source for
simple examples. We modified the source code for programs
to introduce array bounds and null pointer dereference faults.

We chose two data structures of this set: Array-Queue and
Stack List. The main program for each experiments invokes
the functions of the libraries in a harness similar to the main
function in Figure 1.

We used CBMC version 4.0 [10] for bounded model
checking on a four-processor Intel 2.8GHz system with 8 GB
RAM. Depth of bounded model checking in the following
experiments is the maximum number of steps allowed in a
trace. In each experiment, we tried CBMC with and without
slicing, to show that simply adding additional constraints based
on feature omission is valuable, even if no slicing is performed
to reduce the SAT problem size.

A. Array-Queue

Array-Queue is an implementation of a queue in C using ar-
rays. Array-Queue includes Enqueue, isEmpty, Dequeue,
Front and DisposeQueue functions. We introduced two
bugs into the program: (1) violation of array boundary caused
by Enqueue-ing more data than the size of the queue, and
(2) null pointer dereferencing when calling an operation on a
disposed queue.

Figure 4 shows the results of bounded model checking for
Array-Queue. It shows the results for five different depths:
1000, 2000, 3000, 4000, and 5000. In all experimental results,
the fastest time to produce a failure is shown in bold. In every
case, with or without slicing, all swarm configurations help
CBMC find a counterexample faster than with the default
configuration. Additionally, if the swarm configurations can be
executed in parallel (not unlikely; none of these runs required
more than about 1GB of RAM), swarm will produce two
counterexamples showing different faults before the default
configuration can produce a single counterexample.

B. Stack List

Stack List is a stack with dynamic memory allocation. It im-
plements Push, Top, Pop, and DisposeStack functions.
We added a null pointer dereferencing bug to the program.
Again, swarm BMC outperforms standard BMC, whether we
choose a configuration at random and run on a single processor
or we perform runs in parallel.

2Available at http://users.cis.fiu.edu/∼weiss/
dsaa_c2e/files.html

V. DISCUSSION

In this paper, we proposed that feature omission diversity,
known to be useful in software testing, may also be valuable in
bounded model checking. By omitting features in a program’s
execution, we can produce smaller and more easily checked
SAT instances, while often preserving at least one counterex-
ample trace. This allows us to introduce parallelism into BMC
without a parallel decision procedure for constraints. The
counterexamples produced, moreover, are potentially simpler
to understand and debug than typical BMC counterexamples.

As future work, we plan to apply swarm BMC to larger,
more realistic examples that challenge the abilities of current
software BMC. Further investigation of the ability of special-
ized slicing to improve runtime and the practicality of swarm
parallel BMC are also needed. Finally, we speculate that
even when no counterexamples exist, performing a number
of swarm runs and then using the verified configurations to
restrict traces to consider in a run on the full program may
let us model check programs too large for verification without
additional constraints.

REFERENCES

[1] BEYER, D., HENZINGER, T. A., KEREMOGLU, M. E., AND WENDLER,
P. Conditional model checking. In Technical Report MIP-1107,
University of Passau, Germany (2011).

[2] BIERE, A., CIMATTI, A., CLARKE, E., FUJITA, M., AND ZHU, Y.
Symbolic model checking using sat procedures instead of bdds. In
Design Automation Conference, 1999. Proceedings. 36th (1999), pp. 317
–320.

[3] CLARKE, E., GRUMBERG, O., MCMILLAN, K., AND ZHAO, X. Effi-
cient generation of counterexamples and witnesses in symbolic model
checking. In Design Automation Conference (1995), pp. 427–432.

[4] CLARKE, E. M., GRUMBERG, O., AND LONG, D. E. Model checking
and abstraction. ACM Trans. Program. Lang. Syst. 16 (September 1994),
1512–1542.

[5] CLARKE, E. M., GRUMBERG, O., AND PELED, D. Model Checking.
MIT Press, 2000.

[6] DWYER, M. B., ELBAUM, S. G., PERSON, S., AND PURANDARE, R.
Parallel randomized state-space search. In International Conference on
Software Engineering (2007), pp. 3–12.

[7] GROCE, A., AND JOSHI, R. Exploiting traces in static program analysis:
better model checking through printf’s. STTT 10, 2 (2008), 131–144.

[8] GROCE, A., ZHANG, C., EIDE, E., CHEN, Y., AND REGEHR, J. Swarm
testing, 2011. (In submission).

[9] HOLZMANN, G., JOSHI, R., AND GROCE, A. Swarm verification
techniques. IEEE Transactions on Software Engineering 99, PrePrints
(2010).

[10] KROENING, D., CLARKE, E. M., AND LERDA, F. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Construction and
Analysis of Systems (2004), pp. 168–176.

[11] MCMILLAN, K. L. Symbolic model checking; An approach to the
state explosion problem. PhD thesis, Department of Computer Science,
Carnegie Mellon University, 1992.

[12] WEISS, M. A. Data Structures and Algorithm Analysis in C. Addison
Wesley, 1996.

Omitted feature Depth Time(S)

1000 22.979
Enqueue() 1000 14.019
IsEmpty 1000 17.930
Dequeue 1000 12.791

Front 1000 20.739

2000 38.030
Enqueue() 2000 24.125
IsEmpty 2000 25.260
Dequeue 2000 26.165

Front 2000 24.425

3000 38.067
Enqueue() 3000 23.875

IsEmpty 3000 25.470
Dequeue 3000 26.245

Front 3000 24.316

4000 38.023
Enqueue() 4000 23.765

IsEmpty 4000 25.298
Dequeue 4000 26.373

Front 4000 24.282

5000 36.966
Enqueue() 5000 23.382

IsEmpty 5000 24.918
Dequeue 5000 26.193

Front 5000 24.414
(a) Without Slicing

Omitted feature Depth Time(S)
1000 17.530

Enqueue() 1000 13.352
IsEmpty 1000 12.639
Dequeue 1000 13.928

Front 1000 13.048

2000 27.292
Enqueue() 2000 25.549
IsEmpty 2000 25.120
Dequeue 2000 23.170

Front 2000 27.826

3000 27.342
Enqueue() 3000 25.616
IsEmpty 3000 25.526
Dequeue 3000 22.594

Front 3000 27.733

4000 27.196
Enqueue() 4000 25.821
IsEmpty 4000 25.252
Dequeue 4000 22.428

Front 4000 27.433

5000 26.615
Enqueue() 5000 24.591
IsEmpty 5000 24.735
Dequeue 5000 21.678

Front 5000 27.157
(b) With Slicing

Fig. 4. Swarm BMC for Array Queue.

Omitted Feature Depth Time (S)

100 0.291
Push 100 0.283
Top 100 0.281
Pop 100 0.283

DisposeStack 100 0.282

200 1.592
Push 200 1.462
Top 200 1.498
Pop 200 1.465

DisposeStack 200 1.469

300 7.151
Push 300 6.068
Top 300 6.472
Pop 300 6.281

DisposeStack 300 6.189

400 28.509
Push 400 25.646
Top 400 26.468
Pop 400 19.392

DisposeStack 400 20.178

500 69.376
Push 500 70.351
Top 500 50.165
Pop 500 64.351

DisposeStack 500 57.508
(a) Without Slicing

Omitted Feature Depth Time (S)

100 0.297
Push 100 0.288
Top 100 0.289
Pop 100 0.285

DisposeStack 100 0.287

200 1.798
Push 200 1.575
Top 200 1.593
Pop 200 1.595

DisposeStack 200 1.659

300 7.312
Push 300 7.278
Top 300 6.829
Pop 300 6.441

DisposeStack 300 6.825

400 27.276
Push 400 20.937
Top 400 20.092
Pop 400 21.188

DisposeStack 400 20.484

500 74.217
Push 500 61.661
Top 500 59.349
Pop 500 60.722

DisposeStack 500 56.211
(b) With Slicing

Fig. 5. Swarm BMC for Stack List.

