
Putting Flight Software Through the Paces with

Testing, Model Checking, and

Constraint-Solving

Alex Groce1, Gerard Holzmann1, Rajeev Joshi1, and Ru-Gang Xu2

1 Laboratory for Reliable Software, Jet Propulsion Laboratory
California Institute of Technology

2 Department of Computer Science, University of California, Los Angeles

The research described in this publication was carried out at the Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics and Space Ad-

ministration. Funding was also provided by NASA ESAS 6G.

Abstract. In this paper we discuss the application of a range of tech-
niques to the verification of mission critical flight software for a JPL
mission. It is clear that for this type of application we want to achieve a
higher level of confidence than can be achieved through standard software
testing. Unfortunately, given the current state of the art, especially if one
has to comply with the tight deadlines and resource limitations of a flight
project, it is not feasible to produce a rigorous formal proof of correct-
ness of a flight file system. This means that we must look for a practical
alternative in the gray area between traditional testing and proof, trying
to optimize rigor and coverage as much as possible. The approach that
we describe here is based on a combination of random testing, model
checking, and static source code analysis. The results we have obtained
are encouraging, and suggest that for more complex properties of pro-
grams with complex data structures, it is possibly more beneficial to use
constraint solvers to guide execution (i.e., testing, even if performed by a
model checking tool) than to translate the program and property into a
set of constraints, as in abstraction-based and bounded model checkers.

1 Introduction

1.1 Background: Spacecraft File Systems

In January of 2004, the Jet Propulsion Laboratory, NASA, and the world cel-
ebrated the landing of the first of two Mars Exploration Rovers. The science
that followed the celebration of an engineering triumph was interrupted 18 Mar-
tian days later (on “Sol 18”) when Spirit abruptly stopped communications with
Earth [33]. Over the next few days, Spirit occasionally resumed contact with JPL,
but these brief sessions were often mysteriously cut short. JPL’s software and
fault protection team used the pattern of communication attempts and limited
telemetry to trace the problems to a cycle of reboots. Spirit was encountering
“fatal” errors either during or just after initialization. On Sol 21, the JPL team

commanded the craft (now running low on battery power, after failing to prop-
erly shut down for each Martian night) to go into “crippled” mode, operating
without access to the flash file system.

The reboots were due to an unexpected interaction between the flash file
system and the core flight software: the file system allocated memory at boot
time based on the number of files on the flash storage, including deleted files. Files
left over from landing and new science and engineering data generated during
the 18 sols of normal operations required more memory than was available on
the rover, a “fatal” fault resulting in a reboot. After recovering as much data
as possible, the JPL team re-formatted the flash device, and Spirit returned to
its scientific mission. The full story, presented in detail in an IEEE Aerospace
paper by Reeves and Neilson [33] is a classic example of software detective work,
high-stakes debugging of a system over 55 million kilometers away.

The Spirit anomaly was not, strictly speaking, due to a bug in either the flight
software or the file system. However, the Spirit experience and other (less public)
incidents with other file systems convinced JPL’s flight software engineers that
commercial flash file systems were not ideal for mission critical use. In recent
missions, JPL has increasingly relied on flash memory devices [35] to store critical
data, as flash uses little power or mass and has a high information density —
making it ideal for space mission use. For convenience and flexibility, most of
this data has been stored in hierarchical file systems. The data stored is often
irreplaceable (e.g., landing telemetry or images of impact with a comet), so it is
essential that flash file systems provide high reliability for space missions.

A NAND flash device consists of a set of pages, divided into larger units
called blocks. The basic operations on a NAND device are: write a page, read

a page, and erase a block. Once a page has been written, it may be read any
number of times. In general it is impossible or unwise to write to a page once it
has been written to, until it has been erased, but pages must be erased at the
block granularity. Flash file systems must therefore manage invalid and outdated
pages and perform garbage collection, rather than relying on overwriting old
data. The combined requirements of managing pages, ensuring reasonable wear-
leveling of page writes (each page has a limited life cycle), preserving atomic
operation across hardware resets, and responding to hardware failures requires
a fairly complex implementation. Verifying that an implementation meets these
requirements is highly non-trivial.

The Laboratory for Reliable Software (LaRS) [1] took on the task of building
an in-house flash file system with static memory allocation and rigorously tested
reliability across system resets and flash hardware failures. LaRS has also pro-
posed a verified (flash) file system as a mini-challenge [25] in response to Hoare’s
grand challenge of a verifying compiler [20].

1.2 Proof, Analysis, and Testing

Proof In an ideal world, we would have first proved our design correct and then
proved that our implementation faithfully instantiated that design in C code.
In practice, a full refinement-based proof from the ground up proved impossible

given our resource limitations, time constraints, and shifting requirements and
hardware behavior. Our efforts to use ACL2 to prove an initial design correct
[12] influenced later designs but never amounted to a basis for confidence in the
system — and connecting the proof artifacts to the flight software implementa-
tion would have been a challenge even given a good design-level proof. Ongoing
research projects at various laboratories aim at making user-aided proof a more
realistic possibility in development situations such as ours.

Analysis As readers would expect, we routinely apply the usual array of static
analysis tools to our code, including Coverity [2], Klocwork [3], Code Sonar
[4], Uno [21], and some hand-made checkers implemented in the CIL framework
[30]. The properties checked by traditional static analysis are unfortunately quite
limited — establishing reliable data storage across system resets requires much
more than the absence of null pointer dereferences. We also attempted to use a
bounded model checker and model checkers that abstract a model from source
code on portions of the source code, as described below. In our experience, these
tools, while theoretically capable of providing automated verification of richer
properties, did not scale to either our code or our properties.

Testing The realities of flight software development did not prevent us from
aggressively applying other state-of-the-art verification technologies, including
random testing, model checking, and constraint-based testing and model check-
ing. None of these technologies, at least as we are using them, are capable of fully
verifying the file system’s correctness, even in a bounded sense. Our goal, instead,
is to concentrate on decreasing risk and increasing confidence in reliability of the
system, with respect to full functional correctness. Rather than limit analysis to
simple properties for which more complete and automated methods might apply,
we have concentrated on aggressive testing of file system operation: this paper
describes a bug hunt, using the best technologies we know of for this purpose.
This paper concentrates on the dynamic aspects of our efforts to find errors in
the file system — in a sense, the title of this paper is misleading: we use both
model checking and constraint solving not as exhaustive heavyweight alterna-
tives to testing, but as aids to effective testing by program execution. Complete
verification of the file system’s correctness does not seem to be possible, without
effort beyond our means, using current technology. Automated testing (in some
cases via model checking), however, has revealed hundreds of errors, including
very subtle faults that would certainly have escaped code inspection or tradi-
tional testing. Proof-of-correctness remains beyond our power, given resource
and time limitations, at this point, but our experience shows that automated
methods for finding errors in programs (including static analysis tools, though
these are not the focus of this paper) have finally attained a promising maturity.

In previous papers [14–16,6, 23] we have described the more technical aspects
of our approach to file system testing and the research results inspired by this
effort. In this paper, we present an overview from a more practical point of
view: why did we select these test approaches, and how well did the various

Method

Module Proof Static Random BLAST MAGIC CBMC SPIN Splat

NVFS1(MSAP) P/F S S F F F - -
NVFS2(MSAP) P/F S S F F F P -
NVDS(MSAP) P/F S S F F F S P/S
RAMFS(MSAP) - S S F F P S -
XFS - - S - - - - -
NVFS(MSL) P/F S S - - - S -
NVDS(MSL) P/F S S - - - S P/S
RAMFS(MSL) - S S - - - S -
RAMFS2 - - - - - - S -

- = Did not attempt to apply
S = Successful application (bugs discovered or properties proved)
F = Attempted application, failed to scale or caused tool to crash
P = Partial success — very limited results or application to small fragment of code

NVFS is the name for all JPL POSIX-like flash file systems. NVFS1 and NVFS2 are two
independently coded versions for a multi-mission software platform (MSAP). RAMFS
is the name for all JPL RAM file systems. NVDS is the name for all JPL low-level flash
storage modules (not providing a hierarchical POSIX-like file system). MSL denotes
module versions to be included in the Mars Science Laboratory flight software. XFS
is a contractor-developed flash file system (with a non-POSIX interface) used in a
planetary mission managed by JPL. Proof and static analysis were not applicable to
“XFS” as we did not have access to design, requirements, or source code. RAMFS2 is
a JPL-developed reference file system, not implemented for flight use.

Table 1. Methods, modules, and results

approaches work? What factors seemed most important to test effectiveness,
and what future directions seem most promising for increasing our confidence in
file system reliability?

What we describe here is an on-going effort: we are now testing our file sys-
tems for the Mars Science Laboratory mission, scheduled to launch in September
or October of 2009 [5]. This paper discusses that effort, and those that preceded
it. We have tested three different implementations of a POSIX flash file system
with hierarchical directory structure, one non-POSIX flash file system with hier-
archical directory structure, three POSIX RAM file systems, and two low-level
flash storage systems (essentially implementing an array with desirable atomic-
write properties and bad-block management on flash storage). Table 1 shows a
summary of the methods applied, file storage systems tested, and the experi-
enced utility of the method in each case. Of course, these results may not be
typical: we describe our experience, with one particular set of modules, with
these approaches. The fine details of both the code and the application of the
tools or methods are specific to our circumstances, and may not apply in other
cases. Our research interests, our expectations, and our initial experiences also

influenced the effort given to each approach: in some cases, success may have
been a product of greater effort, and in other cases limited success or failure may
have partly been due to limited resource allocation. Every software testing effort
is a resource-use optimization problem with limited information as to costs and
rewards.

2 Random Testing

Compare
error codes

Compare
file systems

Check
invariants

tested system
Apply to

reference
Apply to

Choose POSIX
operation

[Inject a fault]

Compare
return values

Fig. 1. Differential testing inner loop

Once we had a minimal running version of a flash file system, we developed
a random testing [17] system, using a differential comparison [29] with a Linux
file system as a test oracle [14]. Figure 1 shows the core of the differential test
approach we used, which remains (with minor alterations) the heart of our test
process (for both random testing and model checking) to this day. We chose
random testing over model checking initially because we assumed (correctly,
at the time) that the difficulties of engineering a model checking harness and
backtracking the state of our file system and the reference file system would
significantly delay the start of testing. As we discuss below, some of these en-
gineering difficulties have been addressed by automatic code instrumentation,
leaving random testing preferable (for our applications) only when backtracking
the reference system is particularly difficult or when testing must be performed
on a system with very limited memory. Hamlet argues that there are cases where
“only random testing will do,” but we believe that when applicable, model-driven
verification (see below) is likely to be at least as effective — Hamlet notes that
whether “only random testing will do” when compared with bounded exhaustive
testing is essentially unknown [18].

We expected random testing to quickly expose many shallow bugs, especially
POSIX error code conformance problems. We also expected that detecting most

of the more subtle errors in the design would require more “intelligent” ap-
proaches, such as model checking. Random testing proved surprisingly effective
for both purposes, exposing dozens of subtle errors arising only in low probability
states.

Keys to Successful Random Testing We attribute this surprising (to us)
success to several factors. First, we avoided the primary difficulty of random
testing and other automated testing approaches, the test oracle problem. Differ-
ential testing, when possible, makes it easy to concentrate most effort on choosing
executions to run, rather than determining if those executions are correct.

Second, we used feedback [14, 31] to reduce the number of redundant and ir-
relevant operations randomly generated. An example of using feedback is to limit
pathname choices to the set of pathnames provided as arguments to successful
mkdir or creat operations (a set that would initially contain only the root path
/), with the possibility of adding one additional random pathname component.
E.g., if the history set of created paths was {/, /a, /b}, path choices would
include the members of the set plus /c, /d, /a/a, /a/b, and so forth (any of
which might result in another successful mkdir or creat), but not /a/b/c or
/c/a (where a prefix of the path did not exist). The restriction is based on
the observation that if the file system is correct, no POSIX operation can ever
succeed on a path that is not of this form. We would not remove paths from
the history when they are deleted from the file system, as the “resurrection” of
dead files is a common fault. Of course, we cannot assume that our system is
correct, but feedback biases the testing towards errors that seem plausible —
informally, we can argue that a bug that causes the file system to incorrectly
allow an operation on a pathname with a completely invalid prefix would require
very peculiar pathname processing code.

Finally, all of our testing and model checking relies on an early emphasis
on design for testability [32, 14]. Testing code with many invariants and asser-
tions and the ability to operate on unrealistically small configurations (making
corner cases the common cases) is much easier than testing code without such
observability and flexibility.

Lessons Learned in Random Testing Because random testing was only in-
tended to be a stopgap measure, the first version of the test framework was
hastily implemented and lacked a coherent architecture. We re-designed and im-
plemented the system as part of a black box acceptance testing effort (at mission
request) for a file system developed by an outside contractor. The improvement
in adaptability and ease of debugging test code suggested that the cost of a slight
delay in initial testing would have been wise to accept in order to improve the
rest of the testing experience. It is, of course, conventional wisdom that “build-
ing one to throw away” [9] is often a wise idea, as it is difficult to know how best
to build a system without experience with a prototype, but the temptation to
dive into test code without any effort to make it maintainable is a serious threat
to effective testing.

In particular, we found that making the language in which test cases were
stored human-readable made it much easier to debug the system and the test
harness. It was also very helpful to be able to automatically generate stand-alone
C test cases to pass to the (non-JPL) developer of the file system.

We also discovered that the length of each random test is a significant factor
in the effectiveness of the testing [6], with a change in maximum test length in
many cases resulting in a one or two order-of-magnitude change in the number of
failing test cases produced per test operation. Our experiences also confirmed the
importance of minimizing [37] randomly produced test cases before debugging
[28]. Minimization became much less important when we switched to model
checking as our primary test method, as test cases were generally much shorter
and irrelevant operations were often obvious to cursory inspection.

3 Model Checking

3.1 Bounded and Abstraction-Based Model Checking

We hoped to use model checking to fully verify certain critical components of
the file system. We have considerable experience with bounded model checking
and abstraction-based model checking, including the contributions to the imple-
mentation of some better-known tools for checking C code [27, 11]. We selected
a small (50 line) function with no dependence on the larger code base as a case
study. The function in question, given a string, canonizes the string as a path-
name — removing extraneous “/” and “.” characters and returning an error code
if any illegal characters appear in the string or if it exceeds the maximum path
length. To our surprise, the abstraction-based tools, including BLAST [19] and
MAGIC either failed to extract a model from the code or failed to find a proof
or a counterexample. Perhaps with assistance from the tool authors we might
have been able to handle this small function, but the turnaround for such a pro-
cess is often impractical, especially for flight code where export-control concerns
are also a factor. The bounded model checker CBMC [27] was able to verify the
properties of interest up to a maximum path length of 6 characters, but the SAT
solver timed out for larger bounds. We made limited efforts to apply BLAST
and CBMC to other code fragments, but in general found that the tools did
not scale to verifying interesting properties of file system code, and that slicing
the code to push it through the tools was an unrewarding effort. The success of
various groups in applying similar tools to low-level device driver software [7]
suggests that our problems with more complete model checking may arise from
the heavy use of more complex data structures in the file system: even involved
manipulation of strings seems to pose a challenge for the abstraction-based tools.

3.2 Model Checking via Program Execution: Model-Driven

Verification with SPIN

In a sense, most of our “model checking” efforts are closer to aggressive system-
atic testing with backtracking than to traditional model checking. We actually

execute implementation code, rather than building a model or abstracting a
model from source code, and we do not expect to explore the entire state space
of the system. This model-driven verification approach [22] is based on two obser-
vations: 1) for critical applications, it is essential to test actual implementation
code and not just design models and 2) as noted above, for most real programs,
complete verification of rich properties is not possible with current “complete”
model checking technologies.

Model-driven verification with SPIN [24] relies on the fact that SPIN is a
model-checker generator. Given a model written in the PROMELA language,
the SPIN tool generates a customized explicit-state model checker written in C.
In model-driven verification, PROMELA is extended to allow embedded frag-
ments of pure C code, which are executed during transitions of the model. The
PROMELA model (now essentially a test harness for a C program) includes in-
formation on the memory locations of the state of the C program, enabling SPIN
to backtrack the running C program. The model checker runs the C program,
providing inputs and choosing function calls as dictated by the nondeterminism
expressed in the PROMELA test harness. When the model checker reaches a
state that has been previously visited, it backtracks both the harness and the C
program.

We used model-driven verification to check the pathname canonizer discussed
above. After introducing a relatively obvious abstraction (limiting characters in
the strings to the set of special characters plus one valid component character),
we were able to verify the properties of interest for a much larger depth than
with the bounded model checker CBMC.

We next applied SPIN to a low-level flash storage module we were developing
for flight use in storing critical engineering parameters. We expected this to be
easier than using SPIN for a full POSIX file system — writing a backtrackable
C reference was a trivial exercise, and all parameters were small integers, rather
than complex pathnames. To our surprise, model checking revealed only one
interesting error that had not been detected by random testing.

In order to apply model checking to the full flash file system, we developed a
suite of engineering tools for debugging test harness backtracking and checking
properties inside C code [15]. This tool set improved the ease of model-driven
verification to the point that we found it more convenient to work only with
model checking, rather than building both a model checker and a random tester
[16]. For the MSL project, all our file system testing has been based on model-
driven verification with SPIN. This has forced us to abandon the use of a Linux
file system as a reference, due to the difficulty of backtracking such a system.
We instead compare the POSIX flash file system (NVFS) to both the RAM
file system (RAMFS) and an independently developed RAM file system. In the
first case, an advantage is that both systems are required to present identical
interfaces, including error codes, making any divergence an important error. The
second case serves as a semi-independent confirmation that we are not missing
errors common to both NVFS and RAMFS. Of course, a more thoroughly tested
and widely-used file system would serve as a better differential basis, but the

alterations we have made to POSIX in order to suit spacecraft usage forced
our original random tester to complicate test code in order to translate errors
and call parameters into standard POSIX terms. We believe the power of model
checking, in addition to the convenience and improvement in the simplicity of
the test framework outweigh even the known problems of what is (arguably) a
case of N-Version programming [8].

Model checking has been quite effective at finding subtle flaws in the file
system, as expected. Complete verification, even for very small flash configura-
tions, has proven impossible: week long runs on a 32GB machine have confirmed
that even after unsound abstraction, there are trillions of reachable states in the
system. The size of the state space has forced us to implement feedback [14]
in the model checking parameter selection and to rely on a number of unsound
abstractions [15] to further reduce the state space. We have also come to rely
on a diversified search approach, rather than monolithic model checking runs.
While a SPIN run using bitstate hashing and a large memory array may run
for many hours before detecting an error, we find that a series of independent
runs with different orderings for nondeterministic choices and different search
strategies will often reveal the same error in a matter of seconds [23].

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180

C
ov

er
ag

e
(o

ut
 o

f
10

0%
)

Minutes

 RT, nvds_box
 MC, nvds_box
 RT, nvfs_pub
 MC, nvfs_pub
 RT, abs cover
 MC abs cover

Fig. 2. Coverage for model checking and random testing compared

Model Checking and Random Testing in One Framework In our most
recent versions of the test harness, we have integrated model checking and ran-

dom testing [16]. We use a macro call for all nondeterminism in the SPIN model
checking harness, and compile the model for either model checking or true ran-
dom testing (a series of random walks through the state space). Our experiments
so far confirm our suspicion that random testing is generally less effective at cov-
ering both source code and file system states than model checking, if more than
an hour of compute time is available for testing. Figure 2 shows a comparison
of random testing and model checking, using the same framework and proba-
bilities for choices (recall that the model checking is incomplete) [16]. Two of
the measures indicate source code coverage over modules of the flash file system,
while the third shows coverage of an abstraction of the flash device state (the
file system types of pages stored on the flash device). The graph shows how cov-
erage increases as time for testing increases. Clearly, more time for exploration
produces better coverage. In one source-cover coverage case, random testing and
model checking both attain maximum coverage quickly. Coverage of a lower-level
(and more state-based) module is initially better for random testing, but model
checking begins to improve on those results at around the 50 minute mark and
thereafter remains superior. The effectiveness of model checking for coverage is
best shown, however, by the abstract state coverage: model checking covers 100
percent of the states that we know to be reachable (we cannot guarantee that
this is true exhaustive coverage, as we are unable to complete model checking
for this system), while random testing never visits more than 65 percent of those
states, even after three hours of performing random walks.

4 Directed Testing via Constraint Solving

A fundamental criticism of random testing is that it is difficult to find “needles in
the haystack” – when a branch is guarded by specific input values, the chances
of randomly selecting those values (and thus exploring the branch) are often
very low. Hand-tuning the ranges of random choice can address this problem
in some cases, but reduces test automation and scales poorly. Moreover, when
the guard depends on other inputs, or when various guards obligate different
random bias functions, hand-tuning may be essentially impossible. One solution
is to use symbolic execution and a constraint solver to produce inputs that
satisfy guards [26]. Unfortunately, this approach is limited to the rare cases in
which all expressions in guards are suitable for constraint solving. In particular,
pointer dereferences, operating-system calls, hash value computations, and other
“difficult” expressions tend to defeat the constraint solver and thus the symbolic
execution engine.

Directed random testing combines random testing with symbolic execution
to avoid this problem [13]. Expressions that cannot be handled symbolically are
reduced to concrete values (taken from a particular execution) before calling a
constraint solver. The “static” symbolic evaluation is assisted by the results of
dynamic execution.

Recent work in directed testing has shown that path enumeration with a
fixed sized input is effective in uncovering bugs and exploring branches that

are extremely unlikely to be found with pure random testing [13, 34, 10]. Each
element of the fixed sized input is represented by a symbolic value. The input
is symbolically executed as the program is run. At each branch, the predicate
representing whether the branch has been or not taken is noted. The conjunc-
tion of these predicates over the symbolic input (called the the path constraint)
represents an unique path within the program. To generate a new unique path,
one predicate in the path constraint is negated. The solution to the modified
path constraint, generated by a constraint solver, yields a new input that will
follow a different path. Repeating this procedure over all possible branch points
results in enumeration of all paths.

We applied the directed testing tool Splat [36] to the pathname canonizer, and
observed much better scalability than with the bounded model checker CBMC.
Of course, the results are not directly comparable: CBMC explores all possible
executions (including data values) up to a bounded depth of loop unrollings,
while Splat explores all control flow paths (with the limit defined by the size of
symbolic inputs). In the case of the canonizer, we hypothesize that complete path
coverage without error essentially guarantees correctness of the code. For the
CBMC limits, Splat requires only 2 seconds to generate 137 paths. Increasing the
maximum path size (equivalent to the loop bound in this case) to 12 characters
Splat needs a little over an hour to generate 36,857 paths.

We also applied Splat to NVDS, the low-level storage module of the file sys-
tem. Initially, influenced by the successful experiments performed with EXE on
Linux file-systems [10], we defined the input as an 504 byte buffer that rep-
resented the smallest formattable flash memory: 3 blocks of 3 pages per block
with 56 bytes per page. This 504 byte buffer was used to enumerate paths in the
mount function followed by a write operation. Splat generated 79,548 “flash vol-
umes” over a period of 13 days (on a 2.8 GHz P4 with 1 GB of RAM). However,
none of these disks were mountable: although many paths leading to a failure
in the mount function were explored, the write operation was never called. We
were facing a problem analogous to the state space explosion problem in model
checking: a path explosion problem. The number of ways to fail to mount a flash
volume effectively hid the few paths leading to a successful mount and the pos-
sibility of a write. Of course, any path might reveal an unknown error — but,
practically speaking, we were not finding new bugs or improving on the coverage
results for model checking or pure random testing. We investigated a number of
approaches to path abstraction or pruning, but the various algorithms proposed
resulted in the loss of many of the benefits of aiming at complete path coverage.
At this point, we reconsidered our definition of the test input.

Our second attempt to apply directed testing was much more successful, and
revealed previously undetected arithmetic overflow bugs in the read and write

operations. The 32 byte input buffer represented parameters to three write

operations and a read operation that followed a mount of a freshly formatted

volume. Splat quickly generated an input that caused a buffer overrun due to
an arithmetic overflow in bounds checking. After these arithmetic overflow bugs
were fixed, all paths were generated within an hour. The overflow bugs were not

detected by model checking or random testing. In both cases, we had limited
the range of inputs to “reasonable” choices, based on the maximum file size for
the flash volume. Simply adding an additional choice, rather than enlarging the
range, would not have sufficed to find the error: the buffer overrun required the
values to overflow into a specific range. Obviously extending the range of inputs
to the full 32 bit values would result in very low probability of performing any
interesting operations (or finding the overflow) for random testing, and create a
prohibitive number of successors states for SPIN to explore in model checking.

Unfortunately, after revealing this difficult-to-find error (since discovered in
various other systems, after we knew the pattern of parameter-checking to look
for), directed testing with a small operation set revealed no new errors not de-
tected by model checking or random testing. Increasing the number of operations
rapidly increased the time before completion without an equivalent increase in
code or abstract state coverage.

5 Work in Progress: Using a Constraint Solver to Select

an Initial State

We are now experimenting with an alternative use for constraint solvers in test-
ing: using a constraint solver to find an initial state for the system, and then
starting model checking (or random testing) from that initial state. Rather than
relying on path coverage to produce a large set of starting flash volumes (with
the attendant difficulties noted above), we intend to rely on developer/tester
definition of interesting starting states, i.e, “states in which the flash volume
is almost full” or “states in which there are two bad blocks with valid data.”
The key motivation is to begin model checking from deep states that may not
be easily reached during the depth-first search, even with search diversification.
Ideally, constraints define system states that are both hard to reach and likely
to be near (as measured in the number of operations that must be applied) to
states exposing a fault in the file system.

The novelty of the approach is that our constraints are defined by executable
C code, including a rep ok function to determine if a volume embeds a valid
file system and a series of abstraction functions that take a concrete volume and
produce an abstraction. We use CBMC [27] (and a SAT solver, called by CBMC)
as our “constraint solving” engine. The advantage of this approach is that a
developer can write invariant-checking functions and abstract coverage functions,
then use these functions to guide model checking. The approach allows us to stage
generation of concrete states — we can use CBMC to find an abstract state
matching a specification, then use faster, more scalable hand-coded generators
to produce random concretizations of the abstract state. For example, CBMC
may only determine the type of each flash page, and a second tool may populate
pages with random bytes. In general, for smaller flash configurations this staging
is not required, but checking for resource-limit based errors may require larger
flash volumes than CBMC can directly handle.

Our current implementation of this constraint-based approach works within
a SPIN test harness for the file system: the harness calls CBMC to generate an
initial flash configuration, embedding a specified structure of files and directories
(we have modified CBMC to produce counterexamples as executable C code
fragments that assign values to variables).

Unfortunately, evaluating the utility of this method is difficulty, as it is not
a fully automated approach. The value of the initial states lies in the skill of the
developer or tester in finding deep corner cases that are not easily generated by
model checking or random testing.

6 Conclusions

At this time fully automated verification methods, whether based on constraint
solving or other approaches, do not, in our experience, easily scale to verification
of rich properties of complex software systems such as flash file systems. Veri-
fication approaches more akin to aggressive testing, with more guidance by the
tester or developer than push-button model-checking, have served as the basis
for checking functional correctness of our software modules, with more heavy-
weight model checking (and static analysis) reserved either for simpler properties
or small modules of the system. For the more complex properties of programs
with complex data structures (that is, programs and properties relying on more
than control structure and simple integer relationships), we believe it may be, at
present, more practical to use constraint solvers to guide execution than to trans-
late the program and property into a set of constraints. Given more resources
and time (and better tools), user-assisted proof would be the ideal approach for
ensuring correctness, but did not prove feasible in our circumstances.

References

1. http://eis.jpl.nasa.gov/lars.
2. http://www.coverity.com.
3. http://klocwork.com.
4. http://http://www.grammatech.com/products/codesonar.
5. http://mars.jpl.nasa.gov/msl.
6. James H. Andrews, Alex Groce, Melissa Weston, and Ru-Gang Xu. Random test

run length and effectiveness. In Automated Software Engineering, 2008.
7. Thomas Ball and Sriram Rajamani. Automatically validating temporal safety

properties of interfaces. In SPIN Workshop on Model Checking of Software, pages
103–122, 2001.

8. Susan Brilliant, John Knight, and Nancy Leveson. The consistent comparison
problem in n-version software. IEEE Transactions on Software Engineering,
15(11):1481–1485, 1987.

9. Frederick Brooks. The Mythical Man-Month: Essays on Software Engineering, 20th

Anniversary Edition. Addison-Wesley Professional, 1995.
10. Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.

EXE: automatically generating inputs of death. In Conference on Computer and

Communications Security, pages 322–335, 2006.

11. Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith.
Modular verification of software components in C. In International Conference on

Software Engineering, pages 385–395, 2003.

12. John Erickson and Rajeev Joshi. Proving correctness of a Flash filesystem in ACL2.
Unpublished manuscript in preparation, 2006.

13. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In Programming Language Design and Implementation, pages
213–223, 2005.

14. Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized differential test-
ing as a prelude to formal verification. In International Conference on Software

Engineering, pages 621–631, 2007.

15. Alex Groce and Rajeev Joshi. Extending model checking with dynamic analy-
sis. In International Conference on Verification, Model Checking, and Abstract

Interpretation, pages 142–156, 2008.

16. Alex Groce and Rajeev Joshi. Random testing and model checking: Building a
common framework for nondeterministic exploration. In Workshop on Dynamic

Analysis, 2008.

17. Richard Hamlet. Random testing. In Encyclopedia of Software Engineering, pages
970–978. Wiley, 1994.

18. Richard Hamlet. When only random testing will do. In International Workshop

on Random Testing, pages 1–9, 2006.

19. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy
abstraction. In Principles of Programming Languages, pages 58–70, 2002.

20. Tony Hoare. The verifying compiler: A grand challenge for computing research.
Journal of the ACM, 50(1):63–69, 2003.

21. Gerard Holzmann. Static source code checking for user-defined properties. In
Conference on Integrated Design and Process Technology, 2002.

22. Gerard Holzmann and Rajeev Joshi. Model-driven software verification. In SPIN

Workshop on Model Checking of Software, pages 76–91, 2004.

23. Gerard Holzmann, Rajeev Joshi, and Alex Groce. Tackling large verification prob-
lems with the swarm tool. In SPIN Workshop on Model Checking of Software,
2008.

24. Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

25. Rajeev Joshi and Gerard Holzmann. A mini-challenge: Build a verifiable filesystem.
In The Conference on Verified Software: Theories, Tools, Experiments, 2005.

26. James C. King. Symbolic execution and program testing. Communications of the

ACM, 19(7):385–394, 1976.

27. Daniel Kroening, Edmund M. Clarke, and Flavio Lerda. A tool for checking ANSI-
C programs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 168–176, 2004.

28. Yong Lei and James H. Andrews. Minimization of randomized unit test cases.
In International Symposium on Software Reliability Engineering, pages 267–276,
2005.

29. William McKeeman. Differential testing for software. Digital Technical Journal of

Digital Equipment Corporation, 10(1):100–107, 1998.

30. George Necula, Scott McPeak, Shree Rahul, and Westley Weimer. CIL: Inter-
mediate language and tools for analysis and transformation of C programs. In
International Conference on Compiler Construction, pages 213–228, 2002.

31. Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In International Conference on Soft-

ware Engineering, pages 75–84, 2007.
32. Brett Pettichord. Design for testability. In Pacific Northwest Software Quality

Conference, October 2002.
33. Glenn Reeves and Tracy Neilson. The Mars Rover Spirit Flash anomaly. In IEEE

Aerospace Conference, 2005.
34. Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine

for C. In Foundations of Software Engineering, pages 262–272, 2005.
35. Various. A collection of NAND Flash application notes, whitepapers and articles.

Available at http://www.data-io.com/NAND /NANDApplicationNotes.asp.
36. Ru-Gang Xu, Rupak Majumdar, and Patrice Godefroid. Testing for buffer over-

flows with length abstraction. In International Symposium on Software Testing

and Analysis, 2008.
37. Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing

input. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

