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Abstract. The counterexamples produced by model checkers are often
lengthy and difficult to understand. In practical verification, showing the
existence of a (potential) bug is not enough: the error must be under-
stood, determined to not be a result of faulty specification or assump-
tions, and, finally, located and corrected. The explain tool uses distance
metrics on program executions to provide automated assistance in under-
standing and localizing errors in ANSI-C programs. explain is integrated
with CBMC, a bounded model checker for the C language, and features
a GUI front-end that presents error explanations to the user.

1 Introduction

In an ideal world, given a detailed error trace, a programmer would always be
able to quickly identify and correct the faulty portion of the code or specification.
Practical experience, however, indicates that this is not the case. Understanding
a counterexample often requires as much effort as preparing a program for model
checking. As software model checking has become more concerned with practical
applicability, the need for automated assistance in understanding counterexam-
ples has been recognized [2, 6]. The explain tool provides users with assistance
in focusing on the relevant portions of source code and in understanding the
causal dependencies involved in an error.

CBMC [7] is a tool for verifying ANSI-C programs. CBMC is a bounded
model checker (BMC) [3]: it produces from a C program a Boolean formula
satisfiable by executions of the program that violate its specification (counterex-
amples). The model checker supports pointer constructs, dynamic memory allo-
cation, recursion, and the float and double data types. CBMC also features a
graphical user interface designed to resemble an IDE (Integrated Development
Environment) that allows users to interactively step through counterexample
traces.

explain uses the same bounded model checking engine to further analyze
counterexample traces produced by CBMC. In particular, explain uses distance
metrics on program executions [5], in a manner inspired by the counterfactual
theory of causality [8], to provide a number of automatic analyses:

– Given a counterexample execution, explain can automatically produce an
execution that is as similar as possible to the failing run but does not violate
the specification.



– explain can also automatically produce a new counterexample that is as
different as possible from the original counterexample.

– Finally, explain can determine causal dependencies between predicates in
an execution.

explain is used through the same GUI as CBMC. The interface allows users
to step through explanatory traces as they would in a debugger (with the ability
to step forwards and backwards). Portions of the code that explain suggests
may be faulty are highlighted for the user.

2 Using explain

Using explain is an interactive process. The tool assists the user in understand-
ing counterexamples, but knowledge of the program (and the specification) is
necessary to guide the tool. As an example, we will use explain to narrow in
on an error in a small but non-trivial C program.

2.1 Debugging TCAS

TCAS (Traffic Alert and Collision Avoidance System) is an aircraft conflict de-
tection and resolution system used by all US commercial aircraft. The Georgia
Tech version of the Siemens suite [9] includes 41 buggy versions of ANSI-C code
for the Resolution Advisory (RA) component of the TCAS system. A specifica-
tion for this code (in the form of assertions) is available from another study [4].

The first step in using explain to understand an error is to produce a coun-
terexample. We load tcas.c into the GUI and run the CBMC model checker.
After a few seconds, the GUI reports that the assertion on line 257 has been
violated.

The counterexample execution passes through 112 states. Single-stepping
through the trace looking for a bug is not an appealing prospect, so we turn to
explain for assistance in understanding what is wrong with our code. We run
explain on the counterexample to find a successful execution that is as similar
as possible to the failing run. explain uses the PBS [1] pseudo-Boolean solver to
produce this trace, and lists the changes made to the original counterexample.
The GUI highlights the lines that are involved in the changes1.

Unfortunately, the explanation is less than useful. The failed assertion in the
counterexample is an implication:
P3 BCond = ((Input Up Separation >= Layer Positive RA Alt Thresh)&&

(Input Down Separation >= Layer Positive RA Alt Thresh)&&
(Input Own Tracked Alt < Input Other Tracked Alt));

assert(!(P3 BCond && PrB)); // P3 BCond -> ! PrB
The successful execution most similar to the counterexample changes the value of
Input Down Separation such that it is now < Layer Positive RA Alt Thresh,
and no other values. We are really interested in finding out why, given that
1 explain uses a causal slicing algorithm [5] to remove changes unrelated to the error.



Fig. 1. Correctly locating the error in tcas.c.

P3 BCond holds, PrB also holds. In other words, we want to know the cause for
the value of the consequent, not the antecedent, of the implication. Request-
ing the more precise explanation is a simple matter of adding the constraint
assume(P1 BCond) and then rerunning explain.

The new explanation is more interesting (Figure 1). Input Down Separation
is, again, altered. This time the value has increased, maintaining the original
value of P3 BCond. Stepping through the source code we notice the first high-
lighted line in the run:
result = !(Own Below Threat()) || ((Own Below Threat()) &&

(!(Down Separation > ALIM())));

Most of the values in the expression are unchanged from the erroneous run.
Only Down Separation has changed, causing result to be FALSE instead of
TRUE. In the original run, Down Separation was 500, and now it is 1792. A
quick examination of the other 4 highlighted lines shows that they simply prop-
agate the value of result computed. If the comparison of Down Separation
and ALIM() had resulted in TRUE in the original run, the assertion would have
held. Looking at the code, we notice that the ALIM function returns Posi-
tive RA Alt Thresh[Alt Layer Value]. The variable watches window reveals
that ALIM() has the value 500 in both runs.

Suspiciously, the value of Down Separation in the counterexample was also
500, and the error did not appear when that value changed. It seems likely that
the value of this expression is the source of the problem. In order to make the



expression’s value in the faulty run match the value in the successful run, we
need to change the > into a >= comparison.

We modify the source code to reflect our hypothesis about the source of the
error and rerun CBMC. This time, the model checker reports that verification
is successful: the program satisfies its specification.

In other experiments, explain produced a 1 line (correct) localization of a
127 state locking-protocol counterexample for a 2991 line fragment of a real-time
OS microkernel.

3 Conclusions and Future Work

explain is a tool that uses a model checker to assist users in debugging programs
(or specifications). The tool is fully integrated with a model checker that precisely
handles a rich variety of the features of the ANSI-C language, and provides a
graphical front-end for user interactions. Case studies have demonstrated that
explain can successfully localize errors in a number of programs.

In the future, we hope to improve both the graphical interface to explain
and the underlying explanation algorithms, based on experience with more case
studies and user feedback.
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