
Efficient Model Checking Via Büchi Tableau Automata
�

Girish S. Bhat
�

, Rance Cleaveland
�

, and Alex Groce
�

�

Cosine Communications, Inc. girish23@hotmail.com
�

Department of Computer Science, SUNY at Stony Brook, rance@cs.sunysb.edu
�

School of Computer Science, Carnegie-Mellon University, agroce+@cs.cmu.edu

Abstract. This paper describes an approach to engineering efficient model
checkers that are generic with respect to the temporal logic in which system prop-
erties are given. The methodology is based on the “compilation” of temporal for-
mulas into variants of alternating tree automata called alternating Büchi tableau
automata (ABTAs). The paper gives an efficient on-the-fly model-checking pro-
cedure for ABTAs and illustrates how translations of temporal logics into AB-
TAs may be concisely specified using inference rules, which may be thus seen as
high-level definitions of “model checkers” for the logic given. Heuristics for sim-
plifying ABTAs are also given, as are experimental results in the CWB-NC ver-
ification tool suggesting that, despite the generic ABTA basis, our approach can
perform better than model checkers targeted for specific logics. The ABTA-based
approach we advocate simplifies the retargeting of model checkers to different
logics, and it also allows the use of “compile-time” simplifications on ABTAs
that improves model-checker performance.

1 Introduction

Temporal-logic model-checking algorithms determine whether or not a given system’s
behavior conforms to requirements formulated as properties in an appropriate temporal
logic. Numerous algorithms for different logics and system modeling formalisms have
been developed and implemented [2, 6, 8, 9, 14, 20, 24, 25, 27], and case studies have
demonstrated the utility of the technology (see [10] for a survey).

Traditional model checkers work for one logic and one class of system models. For
example, the algorithm in [9] checks whether systems given as Kripke structures obey
properties expressed in CTL, while the automaton-based approach of [29] works on
Kripke structures and properties given in linear-time temporal logic. Other algorithms
have been developed in the context of labeled transition systems and the modal mu-
calculus [14], Modecharts and real-time logics [32], and so on. This paradigm for model
checking has yielded great research insights, but it has the disadvantage that changes to
the modeling formalism (e.g. by changing the interpretation of state and transition la-
bels) or the logic (e.g. by introducing domain-specific operators) necessitate a redesign
and reimplementation of the relevant model-checking algorithm. The amount of work
needed to “retarget” a model checker can be an important factor hampering the uptake
of the technology.

The goal of this paper is to demonstrate the utility of an alternative view of model
checking that relies on translating temporal formulas into intermediate structures, alter-
nating Büchi tableau automata (ABTA) [6], that a model checker then works on. AB-
TAs are variants of alternating tree automata [23] that support efficient model checking
while enabling various “compile-time” optimizations to be performed. They also sup-
port the abstract definition, via “proof rules,” of translation procedures for different

�

Research supported by US Air Force Office of Scientific Research grant F49620-95-1-0508;
US Army Research Office grants P-38682-MA, DAAD190110003,and DAAD190110019; and
US National Science Foundation grants CCR-9257963, CCR-9505562, CCR-9996086, and
CCR-9988489.

temporal logics. By factoring out the formulation of model-checking questions from
the routines that answer them, our framework simplifies retargeting model checkers to
different system formalisms and temporal logics.

The remainder of this paper develops as follows. The next section presents the sys-
tem models considered in this paper and defines ABTAs. Section 3 then develops an
efficient on-the-fly model-checking algorithm for a large class of ABTAs, and the sec-
tion following describes simplifications that may be performed on ABTAs. A method
for translating temporal logics into ABTAs is given via an extended example in Sec-
tion 5, and the section following describes an implementation and experimental results.
Section 7 discusses related work, while the final section contains our conclusions and
future work. An appendix contains full pseudo-code for the model-checking algorithm.

2 Transition Systems and Tableau Automata

This section defines our system models and introduces alternating Büchi tableau au-
tomata. In what follows we fix disjoint sets

�������������
�
�
	�	
	�����

and
�������
�����

�
�
	
	�	������������

of atomic state and action propositions, respectively.

2.1 Transition Systems

Transition systems encode the operational behavior of systems.

Definition 1 A transition system (TS) is a tuple ��� � �!��"$#���"&%'�)(+*,��-).$/
where � is a set

of states;
�

is a set of actions;
"�#10 � (2*43�5

is the state labeling function;
")%60�7(8*35:9�;=<

is the action labeling function;
(>*@? �6A � AB� is the transition relation; and- .

is the start state.

Intuitively, � contains the states a system may enter and
�

the atomic actions a system
may perform. The labeling functions

" #
and

" %
indicate which atomic propositions hold

of a given state or action, while
(8*

encodes the execution steps the system may engage
in and

-).
the initial state of the system. We write

-DC(8*4-)�
in lieu of � -E��FG��-)�=/G�:(8*

.

Definition 2 Let HJIK�L� ���M��"�#N��"&%O�&(8*P��-)./
be a TS.

1. A transition sequence from
-$QR� � is a sequence SBI -
QTC+U(2*V-

�
C�W(2*YX
X
X�C�Z(2*V-&[

,
where \^]J_`]Ja . We define the length of S , b S:b , to be _ . If b S:b+ITa we call S
infinite; otherwise, it is finite.

2. An execution from
- Q

is a maximal transition sequence from
- Q

, that is, a sequence
S with the property that either b S:bIPa , or b S:bdcea and

-Ef g�f�h C(8*4-)�
for any

F`�i�
and

-&�N� � .

If
-j� � then we use k�l ��-
�

to denote the set of executions in H from
-
.

2.2 Alternating Büchi Tableau Automata

In this paper we use alternating Büchi tableau automata (ABTAs) as an intermediate
representation for system properties. ABTAs are alternating tree automata, although
they differ in subtle and noteworthy ways from the automata introduced in [23]; Sec-
tion 7 gives details. To define ABTAs formally we first introduce the following syntactic
sets. Let m be a distinguished negation symbol; we define noI �oprq m � b �6�6�ts
to be the set of state literals and n � ��� I � ����� puq m � b �u�v� ����� s

to be the set of
action literals. We also use w � w �x�
	�	
	

to range over subsets of n �����
. ABTAs may now

be defined as follows.

Definition 3 An alternating Büchi tableau automaton (ABTA) is a tuple ��� ��"E�&(8*���).E����/
, where � is a finite set of states;

" 0 � * n p`q m ���O���O�
	 w�� � �Lw /�s
is the state

labeling;
(8*@? � � A� �

, the transition relation, satisfies the condition below for all�j� � ;
�). � � is the start state; and

� ?63 #
is the acceptance condition. The additional

condition
*

must satisfy is:

b q�� � b � *�� � s b
� I,\ if

"E����O� n���
if

"E����O�`q��O���Gs
I �

if
"E����O�`q m � �Lw /&�
	 w�� s

As ABTAs are special node-labeled graphs we use typical graph-theoretic notions, in-
cluding cycle, path, strongly-connected component, etc. We also write

� *����
�
if there

exists a path from
�

to
�$�

in ABTA � . We say that an ABTA is well-formed if, whenever"E���� Itm , then
�

does not appear on a cycle of
*

edges. We only consider well-formed
ABTAs in what follows.

Besides alternating tree automata, ABTAs may be viewed as abstract syntax for a
fragment of the mu-calculus [6]. They may also be seen as defining system properties
in terms of how the property in question is to be “proved”, and we develop this intuition
in presenting their semantics. More specifically, an ABTA defines a property of transi-
tion systems by encoding a “proof schema” for establishing that the property holds for
a transition system. The states in the ABTA can be seen as goals, with the labels in the
states defining the relationship that must hold between a state and its “subgoals”. So if
one wishes to show that a transition-system state

-
“satisfies” a state

�
in an ABTA, and

the label of
�

is
�

, then one must show that
-

satisfies each of
�
’s children. The

	 w�� and�Lw /
labels correspond to single-step modalities; for a transition-system state

-
to satisfy

an ABTA state
�

whose label is
	 w�� , one must show that for each

-
�
such that

- C(8*D-)�
for some

F
“satisfying” w ,

-O�
must satisfy the (unique) successor of

�
. Finally, the ac-

ceptance sets enable “proofs” to be infinite: an “infinite positive” proof is deemed valid
if every “path” in the proof “touches” each set in � infinitely often, while an infinite
“negative proof” is valid if it fails to “touch” at least one set in � infinitely often. (The
first clause is the same as the generalized Büchi acceptance condition defined in [15].
It should also be noted that the second clause indicates that ABTAs have a “co-Büchi”
component to their acceptance condition.) These intuitions may be formalized in terms
of “runs” of an ABTA. To define these we first introduce the following terminology.

Definition 4 Let HJIK�L� ���M��"�#N��"&%O�&(8*P��-)./
be a TS with

- � � .

1. Let
�u�u�

. Then
- b I l �

if and only if
�6�u"�#N��-
�

, and
- b I l m �

if and only if�rh�^")#N��-
�
.

2. Let
�!�i� � ���

. Then
F b I l �

if and only if
� �i")% ��F��

, and
F b I l m �

if and only if�^h� " % ��F��
.

3. Let w ? n �����
. Then

F b I l w if and only if
F b I �

for every
�`� w . We write-��(>* -)�

if and only if
- C(8*Y-)�

for some
F6� �

such that
F b I l w and

-1h��(>*
if

there is no
- �

such that
- �(8*4- �

.

Definition 5 A run of an ABTA � I � � ��"E��*"!���� . �#� /
on a TS H I�L� ���M��"�#���"&% ��* l ��-).$/

is a maximal tree in which the nodes are classified as positive or
negative and are labeled by elements of � A � as follows.

– The root of the tree is a positive node and is labeled with � �$. ��-&./ .

– If S is a positive (negative) node with label � ����-
/ such that
"E���� I,m and

� * ! �
�
,

then S has one negative (positive) child labeled � �����-�/ .
– Otherwise, for a positive node S labeled with � ����-�/ :

� If
"E����G� n then S is a leaf.

� If
"E���� I �

and
q��
� b �i* ! �
�Es I q��

�
��	=	��

�
s
, then S has positive childrenS �

�
	 	=� S � , with S�� labeled by � � � ��-
/ .
� If

"E���� I �
then S has one positive child, S �

, and S �
is labeled with � �$����-
/ for

some
�
� � q��
� b �j* ! �
�ds

.
� If

"E���� I 	 w�� ,
�r* �
�

, and
q�-)� b - �(8* l -)�Es I q$-

�
��	=	=��-

�
s

then S has
positive children S �

��	=	=� S � , with S � is labeled by � �
����- � / .
� If

"E���� IK�Lw /
and

� *��$�
then S has one positive child S �

, and S �
is labeled by

� �
����-&�x/ for some
-)�

such that
- �(8* l -&�

.
– Otherwise, for a negative node S labeled with � ����-
/ :

� If
"E����G� n then S is a leaf.

� If
"E���� I �

then S has one negative child labeled with � �����-�/ for some
�$�O�q��
� b � * ! �
��s

.
� If

"E���� I �
and

q �
� b � * ! �
�Es I q��
�
�
	 	��

�
s
, then S has negative childrenS �

�
	 	=� S � , with S � labeled by � � � ��-
/ .
� If

"E���� I 	 w�� and
�j* ! �
�

then S has one negative child S �
labeled by � �$����-)� /

for some
-)�

such that
- �(8* l -)�

.
� If

"����� I ��w /
,
�1* ! �
�

, and
q�-)� b - �(8* l -&�ds I q$-

�
��	=	=��-

�
s

then S has
negative children S �

�
	 	=� S � , with S � is labeled by � �$�L��- � / .
In a well-formed ABTA, every infinite path has a suffix that contains either positive or
negative nodes, but not both. Such a path is referred to as positive in the former case
and negative in the latter. We now define the notion of success of a run.

Definition 6 Let
�

be a run of ABTA � I � � ��"���*"!>��� . �#� /
on a TS H I�L� ���M��" # ��" % ��* l ��- . /

.

1. A positive leaf labeled � ����-
/ is successful if and only if
- b Ijl "E����

or
"����� I 	 w��

and
- h��(>* l .

2. A negative leaf is successful if and only if
- hb I l "E����

or
"E���� I7��w /

and
- h �(8* l .

3. A positive path is successful if and only if for each � � �
some

�`� � occurs
infinitely often.

4. A negative path is successful if and only if for some � � �
there is no

�R� � that
occurs infinitely often.

Run
�

is successful if and only if every leaf and every infinite path in
�

is successful.
TS H satisfies � (H b I �) if and only if there exists a successful run of � on H .

It is straightforward to establish the following, where if � is an ABTA with state
�

then� 	�� � is the ABTA � with the start state changed to
�
.

Lemma 1. Let H be a TS, let �,I ��� ��"E�&(+* ! ���).E�#� /
be an ABTA, and let

�����$��� �
be such that

� (2* ! �
�
and

"E���� I,m . Then H b I � 	�� � if and only if H hb I�� 	��$� � .
Next we define the subset of and-restricted ABTAs.

Definition 7 ABTA ��� ��"E��*v���).�#� /
is and-restricted if and only if every

�R� � satis-
fies:

1. if
"E���� I �

then there is at most one
�$�

such that
�j*��$�

and
�$�8* � �

; and
2. if

"E���� I 	 w�� and
�j*��$�

then
�
�:h* � �

.

And-restriction plays an important role in our model-checking procedure, and we com-
ment more on it here. In an and-restricted ABTA the strongly-connected component of
a state labeled by

�
can contain at most one of the state’s children; a state labeled by

	 w��
on the other hand is guaranteed to belong to a different strongly-connected component
that its child. And-restrictedness differs from the notion of hesitation introduced in [23];
an ABTA would be hesitant if, roughly speaking, every strongly-connected component
of a node labeled by

�
or

	 w�� would contain only nodes labeled by
�

or w . Neverthe-
less, and-restrictedness plays the same role in our theory that hesitation does in [23]:
automata obeying these conditions give rise to more efficient model-checking routines
while still providing sufficient expressiveness to encode logics such as CTL

�
.

3 ABTAs and Model Checking

Checking whether or not H b I � for TS H and ABTA � reduces to searching for the
existence of a successful run of � on H . This section presents an efficient on-the-fly
algorithm for this check in the setting of and-restricted ABTAs.

3.1 TSs, ABTAs and Product Graphs

Our ABTA model-checking algorithm works by exploring the “product graph” of an
ABTA and a TS. In what follows, fix ABTA � I@��� ��"E�&(+* ! ���).E����/

and TS HDI�L� ���M��" # ��" % �)(8* l ��- . /
, and assume that

� I q � Q �
	
	�	 ����� �
s
. The product graph of� and H has vertex set

� I �vA �BA q \ �
	�	
	 ���j(� s
and edges � ? � A �

defined by� � ����-d�	��/&� � � � ��- � ��� � /��G� � if and only if:

– there exist nodes S and S �
in some run of � on H labeled � ����-
/ and � �$����-)� / respec-

tively and such that S * S �
; and

– either
�^h� � � and

� � I �
, or

�R� � � and
�x� I �
��� � �

mod
�

.

�� ? � consists of those edges
� � ����-d����/)� � �$����-&���	� �x/ � such that

�
and

�$�
are in different

strongly-connected components in � , while ���rI�� (�� . We sometimes refer to ��
as the nonrecursive relation and to � � as the recursive relation. A vertex � ����-E����/ in the
product graph is said to be ������� ���	����� if and only if

� � � Q
and

� I,\ .

3.2 Searching the Product Graph

We now present an algorithm for determining if the product graph mentioned above
contains a successful run in the case that the ABTA � is and-restricted. The routine is
based on the memory-efficient on-the-fly algorithm for emptiness-checking of Büchi
word automata in [15]; as is the case in that algorithm our goal is to eliminate the
storage penalty associated with the “strongly-connected component” algorithms [23].
The alterations are necessitated by the fact that ABTAs contain conjunctive as well as
disjunctive states and are intended to accept TSs (i.e. trees) rather than words.

Like the algorithm in [15] ours employs two depth-first searches, DFS1 and DFS2,
that attempt to mark nodes as either true or false. The purpose of the former is to search
for true and false leaves in the product graph, and to “restart” the latter whenever an
accepting node is found. The latter determines whether or not the node given to it is
reachable from itself via nodes not previously traversed by DFS2. The success of DFS2

has implications for the existence of runs with successful paths. Pseudo-code for the
these procedures may be found in the appendix.

When exploring � IK� ����-d�	��/ , DFS1 uses the label of
�

in � and the transitions from-
in H to guide its search. The non-recursive successors of � are processed first via

recursive calls to DFS1; if the results do not immediately imply the truth or falsity of � ,
then DFS1 is called recursively on � ’s recursive children. (Note that this simplifies the
treatment of negation: no explicit treatment of “infinite negative paths” is necessary in
the algorithm. Also note that since ABTAs are and-restricted, all but one of the children
of a node labeled by

�
can have their truth values determined by recursive calls to

DFS1. This latter fact is crucial to the correctness of our algorithm.) If these results are
inconclusive, and � is accepting, then DFS2 is called to determine if � is reachable from
itself. If this is the case, then � is labeled as true. (DFS2 cycles involving FALSE states
are, of course, not allowed).

A subtlety arises in our setting when a recursive child �
�

of � has been visited
previously by DFS1 and �

�
has not been marked true or false. The node �

�
cannot

necessarily be assumed to be false, as is implicitly done in [15], because there may be a
successful cycle in the same strongly-connected component as it that was not detected
until after DFS1(�

�
) terminated. To avoid needless recomputation in this case, we

maintain a dependency set for each node; these sets contain nodes that should become
true if the indicated node is found to be true. In the example above we would insert �
into the dependency set of �

�
; if �

�
is later marked as true, then � would be as well.

Theorem 8. DFS1(� � . ��- . � \ /) returns “true” if and only if H b I"� .

Theorem 9. Let �oI � � ��"E�)(* ! ���).E����/
be an ABTA and H I ��� � �!��"
#���"&%O�&(+* l��-).�/

be a TS. Then DFS1(
�).E��-&.�� \) runs in time linear in the size of the product graph

of � and H , whose vertex set is bounded in size by b �^b X b �Ob X b � b , where b � b is the number
of component sets in

�
.

4 Reducing ABTAs

The previous theorem indicates that the time needed to check whether or not H b I� depends intimately on the number of states in � . Consequently, any preprocessing
that reduces the number of states in � can have a significant impact on model-checker
performance. In this section we present several heuristics that may be used to eliminate
states in ABTAs.

Büchi State Set Minimalization The ABTA acceptance condition specifies that an in-
finite (positive) path in a run is successful if and only if that path contains an infinite
number of states from each of the sets of accepting states. This can only occur when a
cycle in the ABTA contains at least one state from each set of accepting states. More-
over, a state not part of any such cycle can safely be removed from all member sets in�

, since no infinite path going through that state can satisfy the Büchi condition.
To check for such states we perform a depth-first search for cycles that contain at

least one member of each set of accepting states. If for a particular state such a cycle
does not exist, that state is removed from all accepting sets that contain it. While not
reducing the size of the ABTA directly, this transformation is important for two reasons.

1. It improves the performance of other reductions. Some of the other reductions may
only be applied to states that are members of the same accepting sets. Eliminating
states from accepting sets improves their performance.

2. The size of the product automaton is reduced. Each state in the product graph con-
tains an index reflecting the member set of

�
“currently” being searched for. This

search procedure is unnecessary for states not having the kind of cycle just de-
scribed; by removing these states from acceptance sets, unnecessary vertices asso-
ciated with this search can be avoided.

Constant Propagation Some atomic state propositions are uniformly true or false of all
TS states, and these values can be propagated upwards as far as possible.

Associative Joining Because
�

and
�

are associative we can also apply another re-
duction: for any

�
(
�

)-labeled state
�

with a transition to another
�

(
�

)-labeled state
���

,
where

�
and

�
�
are in the same sets of accepting states, remove the transition from

�
to�
�

and add outgoing transitions from
�

to every state to which
���

had a transition. This
is applied recursively (if

�$�
has a transition to another

�
(
�

)-labeled state
�� �

we also add
its outgoing transitions to

�
, and so forth). This has two benefits: (1) the state

� �
may

become unreachable and hence removable, thereby reducing ABTA size and (2) model
checking avoids passing through

��
(and

�
� �
, etc.) in the depth-first searches starting

from
�
. Because

�
and

�$�
must be in the same sets of accepting states, this simplifica-

tion is much more effective performed after accepting-state set minimalization.

Quotienting via Bisimulation The final simplification involves merging states with the
same “structure.” We do this using bisimulation [26]. Specifically, we alter the tradi-
tional definition of bisimulation to take account of state labels and acceptance set infor-
mation, and we then quotient � by this equivalence. To ensure maximum reduction this
should always be the last simplification applied.

5 Translating Temporal Formulas into ABTAs

A virtue of ABTA-based model checking is that translation procedures for temporal
logics into ABTAs may be defined abstractly via “proof rules.” This section illustrates
this idea via an example, by giving the rules needed to translate a variant of CTL

�
into ABTAs. The logic, which we call Generalized CTL

�
(GCTL

�
), extends CTL

�
by

allowing formulas to constrain actions as well as states. While the logic itself is not
very novel, it does contain “deviations” from CTL

�
that typically require alterations

to a CTL
�

model checker. Our intention is to show that proof-rule-based translations,
coupled with generic ABTA technology, can make it easier to define such “alterations”.

The syntax for our logic is given below, where
�^� �

and
� �^� � ���

.
� 0=0 I � bjm � b � � � b � � � b A� b E�
� 0=0 I � bjm � b � b�� � � b�� � � b���� b������ b��	�
�

The formulas generated by
�

are state formulas, while those generated by � are path
formulas. The state formulas constitute the formulas of GCTL

�
. In what follows we use� � � ��� �

�
�
	�	
	

to range over state formulas and � � � ��� � �
��	
	�	

to range over path formulas.
Semantically, the logic departs from traditional CTL

�
in two respects. Firstly, the

paths that path formulas are interpreted over have the form
-Q7C U(8*4-

�
C�W(2* X�X
X

and thus
contain actions as well as states. Secondly, as TSs may contain deadlocked states some
provision must be made for finite maximal paths as models. The GCTL

�
semantics

follows a standard convention in temporal logic by allowing the last state in a finite
maximal path to “loop” to itself; the action component of these implicit transitions is
assumed to violate all atomic action propositions

�R�^� �����
.

Mathematically, a state satisfies A � (E �) if every execution (some execution) ema-
nating from the state satisfies � . An execution satisfies a state formula if the initial state
in the execution does, and it satisfies

�
if the execution contains at least one transition

and the label of the first transition on the path satisfies
�
. A path satisfies m �

if either
the first transition on the path is labeled by an action not satisfying

�
or the path has

no transitions. � represents the “next-time operator” and has the usual semantics when
the path is not deadlocked. A deadlocked path of form

-
satisfies �� if

-
satisfies .

� � ��� � holds of a path if � � remains true until � � becomes true. The constructor � may
be thought of as a “release operator”; a path satisfies � � ��� � if � � remains true until � �

��������� �
� � �� � � �

�
	����� �
� � �� � � �

������ E � ���� ������� � �� ������� A ��� �
E � neg � �

������ E ����� ���
E ��� � E � � � ��!���� E �����#" �

� " � �
E �����$" � �#" � � ��%���� E �����#" �

� " � �
E �����#" � � E �����&" � �

��'���� E �����(" �*) " � �
E �����(" � �+" � � E �����$" � �#,���" �) " � �#� ���.-��� E �����$" �0/ " � �

E �����#" � � E �����#" � �$,���" � / " � �#�
���1��2�3
4 � E � 3 �#,�" � �65.5.5.�$, "87 �

E ��" � �05.5.5.�#"87 � �9�:	;2#2(<�4#4=� E � < �#,�" � �.5.5.50�#, "87 �
E ��" � �.505.5.�#"87 �

3
is a positive set of action literals, while

<
is a negative set.

Fig. 1. Tableau rules for GCTL >

“releases” the path from the obligation. This operator is the dual of the until operator.
The details of the semantics are standard and omitted.

In GCTL
� � is self-dual. Thus, while the application of negation is restricted in this

logic we nevertheless have the following.

Lemma 2. Let
�

be a state formula in GCTL
�
. Then there exists a formula neg

� � �
such that any state in any TS satisfies neg

� � �
if and only if it does not satisfy

�
.

Our approach to generating ABTAs from GCTL
�

formulas uses goal-directed rules
to construct tableaux from formulas. These rules operate on “formulas” of the form �
and

� , where is a set of path formulas. Intuitively, these terms are short-hand for
E
�(?A@CBED � � and A

�&FA@CBED � � , respectively. We also call a set w of action literals positive
if it contains some

�R�^� �����
. Otherwise it is referred to as negative. We use G � G �

��	
	�	�	=	=	
and H � H �

�
	
	�	
to denote positive sets and negative sets respectively.

To construct an ABTA for state formula
�

one first generates the states and transi-
tions. Intuitively states will correspond to state formulas, with the initial state being

�
itself. To generate new states from an existing state

� �
, one applies the rules in Figure 1

to
� �

in the order specified. That is, one determines which of R1–12 is applicable to
� �

,
beginning with R1, by comparing the form of

� �
to the formula appearing in the “goal

position” of each rule. The label of the rule then becomes the label of the state, and the
subgoals of the rule are then added as states (if necessary), and transitions from

� �
to

these states added. Leaves are labeled by the state literals they contain. This procedure
is repeated until no new states are added; it is guaranteed to terminate [6].

For notational simplicity we have introduced a new label in Rule R12. Intuitively, if
an ABTA state is labeled � �$H /�/

then it behaves like �$H /
for nondeadlocked TS states.

For deadlocked states, the state is required to satisfy the single descendant. This opera-
tor can be encoded using the other ABTA constructs.

To define the acceptance condition
�

, suppose ��I � � � � �
� �

and let � @ I q��
�>�
� b � � h�"�
� � �KJ�L � h� �
�x�NMEO � �

� �
�s
. Then

� I q � @ b ��I � � � � � � �KJ�P �i�
� 	 � � � s

. We now have the following [6].

Theorem 10. Let
�

be a GCTL
�

formula and let �RQ be the BTA obtained by the trans-
lation procedure described above. Then the following hold.

1. S�Q is and-restricted.
2. Let HTI7��� ��*v�.UO��-�Q)/

be a TS. Then
-
Q b I l �

if and only if H is accepted by �WV .

In general S Q will be exponential in the size of
�

. However, if
�

falls within the GCTL
fragment of GCTL

�
, then S Q is linear in the size of

�
.

We close this section with some comments on and-restrictedness. Our model-
checking routine only works on and-restricted ABTAs, which means that the rule-based
approach described above for producing model checkers only works if the rules gener-
ate and-restricted ABTAs. In practice this means that in rules labeled by

�
, at most one

subgoal can be “recursive”, i.e. can include the formula identified in the goal. For tem-
poral logics based on CTL

�
this restriction is not problematic, since the recursive char-

acterizations of standard modalities only involve one “recursive call”. For logics such
as the mu-calculus in which arbitrary recursive properties may be specified the relevant
rules would not satisfy this restriction, and the approach advocated in this paper would
not be applicable. (It should be noted, however, that sublogics of the mu-calculus, such
as the L2 fragment identified in [17], do fit into our framework.)

6 Implementation and Empirical Assessment

To assess our ideas in practice we implemented ABTAs in the CWB-NC verification
tool [12]. The procedures we coded (in Standard ML) included: basic ABTA manipu-
lation routines (819 lines); the ABTA model-checking routine given in Section 3 (631
lines); and ABTA simplification routines described in Section 4 (654 lines). The rou-
tines made heavy use of existing CWB-NC data structures for manipulating automata.
This code is “generic” in the sense that it would be used by any ABTA-based model
checker implemented in the CWB-NC.

We also implemented a front-end for GCTL
�

using the Process Algebra Compiler
(PAC) [13], a parser- and semantic-routine generator for the CWB-NC. We used sets
of actions as atomic action propositions and included only “true” and “false” as atomic
state propositions, with with obvious interpretations. The code for the front-end in-
cluded 214 lines of yacc and 605 lines of auxiliary code, with most of the latter be-
ing devoted to the calculation of acceptance-set information and the implementation of
Rule 5 in Figure 1. It should be noted that of this code, approximately 15% is GCTL

�
specific; the rest could also be used defining e.g. a CTL

�
model checker.

To study the performance of our implementation we used two existing case studies
included in the current distribution of the CWB-NC to compare our generic ABTA-
based model checker for GCTL

�
with the model checker for the L2 fragment of the mu-

calculus that is included in the CWB-NC release. The systems studied included a ren-
dering of the SCSI-2 Bus Protocol [7] and a description of the Slow-Scan fault-tolerant
communications protocol [11]. In both applications mu-calculus formulas encode key
properties of the systems in question. We used the existing models but translated the
formulas in question into GCTL

�
; we then ran our ABTA-based model checker for

GCTL
�

in order to compare its efficiency with the CWB-NC’s mu-calculus checker.
We also performed a deadlock-freedom check in both logics as well.

The properties included several involving fairness constraints. Emblematic of these
is Property 2 in [7], which asserts that any phase in the SCSI-2 protocol eventually
ends, provided the initiator in the protocol does not repeatedly issue an ATN signal.
This property may be encoded in GCTL

�
as follows

AG
��q
@begin Phase

s�� �
F
q
@end Phase

s��
GF

q
@obs setATN,@obsplace

s� �
This formula asserts that along all paths, whenever the action @begin Phase oc-
curs, then either the action @end Phase is performed or at least one of the actions
@obs setATN and @obsplace occurs infinitely often. (The @obspace action is
needed for reasons relating to the modeling.) The corresponding mu-calculus used in
the case study is given below.

m ���KLB	 � @begin Phase
/)�����G	 �	� 	 � @begin Phase

/
tt

� � @end Phase
/#L �

� (jq
@obsplace,@obs setATN,@end Phase

s/
���
� q @obsplace,@obs setATN

s$/��M� � � (q
@begin Phase

s$/ LB�

Table 1. SCSI-2 performance data for ABTA model checker. All times are in seconds.

Reference Unsimplified Simplified ABTA Mu-calculus
in [7] ABTA size ABTA size Time Time
1 42 24 2739.670 3423.990
2 54 8 533.400 1022.430
3 12 8 676.220 542.180
4 12 8 401.300 483.470
5 42 20 410.540 943.560
6 57 8 509.420 984.600
NoDeadlock 7 5 593.240 704.850

Tables 1 and 2 give our experimental results. For each of the formulas we record:
the size of the ABTA before and after simplication, and the running times of the ABTA-
based GCTL

�
model checker and the CWB-NC model checker on the equivalent mu-

calculus formula. Timing information was collected on a Sun Enterprise E450 with two
336 MHz processors and 2 GB of main memory. Some comments are in order.

– Some ABTA state-space reduction is due to our encoding of the constructs F and G
in terms of � and � . These encodings use constants tt (“true”) and ff (“false”),
which constant-propagation then eliminates. Introducing explicit rules for these
constructs would yield smaller initial ABTAs at the expense of a larger set of rules.

– The papers [7] and [11] describes several different models. In each case we used
the largest: 62,000, and 12,000 states, respectively.

– The mu-calculus model-checker implements the on-the-fly algorithm given in [5,
17], which runs in �

� b � b X b �:b X � J � � � � , where b � b is the size of the system, b �:b the
size of the formula, and � J � � � the alternation depth of � .

– In the SCSI-2 example, Formulas 2, 5 and 6 involve fairness constraints, with 2 and
6 having the same shape. Formulas 1, 3 and 4 are safety properties, with 3 and 4
having the same shape. Thus, the minimized automata for 2 and 6 have the same
number of states, as do 3 and 4. That 2 and 3 have the same size is a coincidence.

– In the Slow-Scan example, only Formulas 1, 2, 8 and 9 involve fairness.
– Because the translation procedure in Figure 1 treats A by dualizing it (i.e. convert-

ing it into m E m), the ABTA for deadlock-freedom has more states than usual.

Based on the figures in the tables, we can draw the following conclusions.

1. The ABTA checker dramatically outperforms the mu-calculus checker on formulas
involving fairness. The factor by which the time required by the latter exceeded
that needed by the former ranged from 1.9 (SCSI-2 Property 6) to 5.3 (Slow-Scan
Property 9), with the average being 3.1. This behavior is a result of the fact that due
to the fairness constraints, the mu-calculus formulas all have alternation-depth 2,
and the time-complexity of the mu-calculus routine is affected by alternation depth.

2. The ABTA model checker also outperforms the mu-calculus checker for safety prop-
erties. In all but two cases the ABTA routine outperforms the mu-calculus routine,
with the over-all average improvement factor being 1.6.

7 Related Work

Alternating tree automata are studied extensively as a basis for branching-time model
checking in [23]. However, ABTAs differ from the automata in [23] in ways that we
believe ease their use in practice; we summarize these below.

Transition relation: In [23] the authors embed propositional constructs inside the tran-
sition relation. In ABTAs propositional constructs are used to label states. This
offers advantages when ABTAs are simplified; for example, we may use the tradi-
tional notion of bisimulation equivalence to minimize ABTAs.

Table 2. Slow-Scan performance data for ABTA model checker. All times are in seconds.
Reference Unsimplified Simplified ABTA Mu-calculus

Name # in [11] ABTA size ABTA size Time Time
failures-responded 1 52 13 2.890 13.600
failures-responded-again 2 59 16 144.720 471.780
can-tick 3 12 8 205.580 328.430
failures-possible 4 5 4 0.020 0.080
failures-possible-again 5 14 9 118.790 189.380
no-false-alarms 6 7 5 1.670 2.760
no-false-alarms-again 7 14 8 139.210 221.540
eventually-silent 8 92 14 159.710 409.190
react-on-repair 9 26 10 137.630 729.550
no-deadlock - 7 5 205.930 200.220

Negation: The automata in [23] do not use negation in the definition of transitions;
ABTAs do allow the use of a negation operator to label states. This allows the
acceptance component of an ABTA to be simpler (“Büchi-like”) than the Rabin
condition in [23] and also simplifies the model-checking algorithm.

Algorithm: Because of our Büchi-like condition and our consideration of and-
restricted ABTAs, we are able to adapt the memory-efficient on-the-fly algorithm
of [15], which is also time-efficient. The time-efficient algorithm of [23] relies on
the construction of strongly-connected components, which our algorithm avoids.

We reiterate that and-restricted alternating automata differ markedly from hesitant al-
ternating automata as introduced in [23]. In particular, and-restricted ABTAs require no
definition of “levels of weakness” or classification of states as existential/universal. The
price we must pay is that “recursion through

�
” is limited.

Another alternating-tree-automaton-based approach to model checking may be
found in [30]. The algorithm relies on the use of games to avoid the construction of the
strongly-connected components used in [23]. An implementation is described in [31].

Methods for simplifying Büchi word automata have been given in [19, 28]. The
papers both present simulation-based techniques for reducing the number of states in
such automata, and [28] shows how acceptance sets for generalized Büchi automata
may be reduced. Neither paper considers alternating or tree automata.

The mu-calculus [22] has also been proposed as an intermediate language for
translation-based model checking [3, 6, 16, 18]. Tool support for this translational-
scheme remains problematic, however, owing in part to the complexity of the trans-
lation procedures for logics like CTL

�
. Our performance figures also suggest that the

alternation-depth factor in mu-calculus model-checking algorithms has practical im-
pacts: our ABTA model-checker significantly outperforms the mu-calculus checker on
formulas with nontrivial alternation-depth.

8 Conclusions and Directions for Future Research

This paper presents a generic approach to building model-checkers that relies on the use
of intermediate structures called alternating Büchi tableau automata. These automata
support efficient model checking and simplification routines, and they also admit the
definition of abstract proof-rule-based translation procedures for temporal formulas into
ABTAs. This eases the task of retargeting a model-checker, since one need only specify
the translation into ABTAs of the logic in question. We demonstrated the utility of our
ideas by developing a translation-based model checker for a variant of CTL

�
.

As future work we would like to develop automated support for the generation of
ABTA translators from proof rules and high-level specifications of acceptance con-
ditions. We are also interested in an efficient model-checking algorithm for all AB-
TAs, and we would like to investigate compositional techniques for ABTAs based on
the partial-model-checking ideas of [4]. Finally, it would be interesting to adapt the
simulation-based automaton simplifications presented in [19, 28] to ABTAs.

References

1. LICS ’86, Cambridge, Massachusetts, June 1986. IEEE Computer Society Press.
2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In LICS ’90,

pages 414–425, Philadelphia, Jun. 1990. IEEE Computer Society Press.
3. H.R. Andersen. Model checking and boolean graphs. TCS, 126(1):3–30, Apr. 1994.
4. H.R. Andersen. Partial model checking. In LICS ’95, pages 398–407, San Diego, Jul. 1995.

IEEE Computer Society Press.
5. G. Bhat and R. Cleaveland. Efficient local model checking for fragments of the modal � -

calculus. In T. Margaria and B. Steffen, eds., TACAS ’96, LNCS 1055:107–126, Passau, Mar.
1996. Springer-Verlag.

6. G. Bhat and R. Cleaveland. Efficient model checking via the equational � -calculus. In LICS
’96, pages 304–312, New Brunswick, Jul. 1996. IEEE Computer Society Press.

7. G. Bhat, R. Cleaveland, and G. Luettgen. A practical approach to implementing real-time
semantics. Annals of Software Engineering, 7:127–155, Oct. 1999.

8. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-
ing:

�.- ���
states and beyond. Information and Computation, 98(2):142–170, Jun. 1992.

9. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM TOPLAS, 8(2):244–263, Apr. 1986.

10. E.M. Clarke and J.M. Wing. Formal methods: state of the art and future directions. ACM
Computing Surveys, 28(4):626–643, Dec. 1996.

11. R. Cleaveland, G. Luettgen, V. Natarajan, and S. Sims. Modeling and verifying distributed
systems using priorities: A case study. Software Concepts and Tools, 17(2):50–62, 1996.

12. R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In R. Alur and T. Hen-
zinger, eds., CAV ’96, LNCS 1102:394–397, New Brunswick, Jul. 1996. Springer-Verlag.

13. R. Cleaveland and S. Sims. Generic tools for verifying concurrent systems. Science of
Computer Programming, to appear.

14. R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the alternation-
free modal mu-calculus. Formal Methods in System Design, 2:121–147, 1993.

15. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms
for verification of temporal properties. Formal Methods in System Design, 1:275–288, 1992.

16. M. Dam. CTL > and ECTL > as fragments of the modal mu-calculus. TCS, 126(1):77–96,
Apr. 1994.

17. E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments of � -calculus. In
C. Courcoubetis, ed., CAV ’93, LNCS 697:385–396, Elounda, Jul. 1993. Springer-Verlag.

18. E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional
mu-calculus. In [1], pages 267–278.

19. K. Etessami and G. Holzmann. Optimizing buechi automata. In C. Palamidessi, ed., CON-
CUR 2000, LNCS 1877:153–169, State College, Aug. 2000. Springer-Verlag.

20. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In PSTV ’95, pages 3–18, Warsaw, Jun. 1995. Chapman and Hall.

21. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.
22. D. Kozen. Results on the propositional � -calculus. TCS, 27(3):333–354, Dec. 1983.
23. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-

time model checking. JACM, 47(2):312–360, Mar. 2000.
24. K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Software Tools for Technology

Transfer, 1(1+2):134–152, Oct. 1997.
25. R. Mateescu and H. Garavel. XTL: A meta-language and tool for temporal logic model-

checking. In T. Margaria and B. Steffen, eds., STTT’98, Aalborg, Jul. 1998.
26. R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.
27. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR.

In M. Dezani-Ciancaglini and U. Montanari, eds., Proc. Int. Symp. in Programming, LNCS
137: 337–351, Turin, Apr. 1982. Springer-Verlag.

28. F. Somenzi and R. Bloem. Efficient B üchi automata from LTL formulae. In E.A. Emerson
and A.P. Sistla, eds., CAV 2000, LNCS 1855:247–263, Chicago, Jul. 2000. Springer-Verlag.

29. M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In [1], pages 332–344.

30. W. Visser and H. Barringer. Practical CTL > model checking - should SPIN be extended?
Software Tools for Technology Transfer, 2(4):350–365, Apr. 2000.

31. W. Visser, H. Barringer, D. Fellows, G. Gough, and A. Williams. Efficient CTL > model
checking for analysis of rainbow designs. In H. Li and D. Probst, eds., CHARME’97, pages
128–145, Montréal, Oct. 1997. IFIP WG 10.5, Chapman and Hall.

32. J. Yang, A. Mok, and Farn Wang. Symbolic model checking for event-driven real-time
systems. ACM TOPLAS 19(2):386–412, Mar. 1997.

A Pseudo-code for ABTA Model Checking

DFS2(� I7� ����-d����/ , �
� IK� �
����-&���	� �x/) : bool =

mark � visited by DFS2.���
:=

q
�
� � � b � � �

�
�

�
� ��s

.
if �

� � � �
then return TRUE.

foreach �
� � � � -d	 ��	

�
�
not marked FALSE do

if �
�
not marked visited by DFS2 then

if DFS2(�
�
, �

�
) then return TRUE.

return FALSE.

markAndPropagate (� = � ����-d����/ , val : bool) : bool =
if not val then return FALSE.
mark � TRUE.
foreach �

� � � � � � �KJ8�
�
�
do

remove �
�
from

� � � � �KJ � �
�
;

markAndPropagate (�
�
, TRUE).

return TRUE.

DFS1 (� = � ����-d�	��/) : bool =
if � marked TRUE then return TRUE.
mark � visited by DFS1.
��� :=

q
�
� � � b �� �

�
�

�
� ��s
.

� � :=
q

�
� � � b ��� �

�
�

�
����s
.

case (
"E����

):� � �
:

return (markAndPropagate (� ,
- � "
#���� �

))).m :
foreach � � � ��� do

return (markAndPropagate (� , not DFS1(� �))).	 w�� � �
:

foreach � � � ��� do
if not DFS1(� �) then return FALSE.

if � � I � then
return (markAndPropagate (� , TRUE)).

for the �
� � � � do

if �
�
marked visited by DFS1 then

insert � in
� � � � �KJ � �

� �
.

else
if DFS1(�

�
) then

return (markAndPropagate (� , TRUE)).
if (accepting(�)) then

return (markAndPropagate (� , DFS2(�
�

�))).
return FALSE.�O� ��w /

:
foreach � � � � � do

if DFS1(� �) then
return (markAndPropagate (� , TRUE)).

foreach �
� � � � do

if �
�
marked visited by DFS1 then

insert � in
� � � � �KJ � �

� �
.

else
if DFS1(�

�
) then

return (markAndPropagate (� , TRUE))
if (accepting(�)) then

return (markAndPropagate (� , DFS2(�
�

�))).
return FALSE.

