
BMC 2004 Preliminary Version

Making the Most of BMC Counterexamples

Alex Groce 1,2 Daniel Kroening 1,3

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

The value of model checking counterexamples for debugging programs (and speci-
fications) is widely recognized. Unfortunately, bounded model checkers often pro-
duce counterexamples that are difficult to understand due to the values chosen by
a SAT solver. This paper presents two approaches to making better use of BMC
counterexamples. The first contribution is a new notion of counterexample min-
imization that minimizes values with respect to the type system of the language
being model checked, rather than at the level of SAT variables. Greedy and op-
timal approaches to the minimization problem are presented and compared. The
second contribution extends a BMC-based error explanation approach to automat-
ically hypothesize causes for the error in a counterexample. These hypotheses (in
terms of relationships between variables) can be automatically checked to deter-
mine if a causal dependence exists. Experimental results show that causes can be
automatically determined for errors in interesting ANSI C programs.

Key words: model checking, counterexamples, error explanation

1 Introduction

The value of counterexamples [9] in model checking [10] is indisputable: Boun-
ded Model Checking (BMC) [4] can even be seen as a recognition of the central-
ity of the search for a counterexample to a property. For practical purposes,

1 This research was sponsored by the Gigascale Systems Research Center (GSRC) un-
der contract no. 9278-1-1010315, the National Science Foundation (NSF) under grant no.
CCR-9803774, the Office of Naval Research (ONR), the Naval Research Laboratory (NRL)
under contract no. N00014-01-1-0796, the Army Research Office (ARO) under contract no.
DAAD19-01-1-0485, and the General Motors Collaborative Research Lab at CMU. The
views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of GSRC,
NSF, ONR, NRL, ARO, GM, or the U.S. government.
2 Email: agroce@cs.cmu.edu
3 Email: kroening@cs.cmu.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Groce

1 void f (int a, int b, int c)

2 {
3 int temp;

4 if (a > b) {
5 temp = a;

6 a = b;

7 b = temp;

8 }
9 if (b > c) {
10 temp = b;

11 b = c;

12 c = temp;

13 }
14 if (a < b) {
15 temp = a;

16 a = b;

17 b = temp;

18 }
19 assert ((a <= b) && (b <= c));

20 }

Fig. 1. sort.c

the diagnostic uses of counterexamples in understanding and correcting errors
in a system or its specification are obvious.

A model checking counterexample is intended to be read by a person and
used for debugging. Ideally, such a counterexample would be the most succinct
and easily comprehensible witness to the existence of an error. The utility of
small (in various senses, including length) counterexamples is widely recog-
nized. Minimization of counterexamples, both in bounded [23] and explicit-
state [14] model checking is a topic of ongoing research.

Previous work on minimization of counterexamples has concentrated either
on producing counterexamples of minimal length or on removing irrelevant in-
formation from a counterexample. This paper presents a technique that can
be used to minimize counterexample length, but focuses on a semantic min-
imization, with respect to the type system of the language (ANSI C, in this
case). In particular, this approach minimizes the values of variables in the
counterexample. As an example, consider the program in Figure 1. Without
minimization, the Bounded Model Checker CBMC [19] produces the coun-
terexample shown in Figure 2.

CBMC and similar tools are likely to produce counterexamples with un-
usually high (or low) values for variables. Bounded model checkers unwind
a transition system to produce a propositional formula that is satisfiable if
a counterexample of a certain length exists. The SAT solvers used to check
these formulas for satisfiability typically return the first satisfying assignment
produced. The counterexample values, therefore, are highly dependent on the
decision heuristics used by the SAT solver. That these choices may result in
needlessly large values for the actual program variables is independent of the
issue of unnecessarily complete assignments addressed by other minimization
work [23]. The issue is an artifact of the bit-level translation; however, using
an integer-based technique such as UCLID [5] would not preserve the proper
bit operation and overflow semantics of ANSI C.

2

Groce

Counterexample:

Initial State

--

State 1

--

a=-8193 (11111111111111111101111111111111)

State 2

--

b=-402 (11111111111111111111111001101110)

State 3

--

c=-2080380800 (10000011111111111110100010000000)

State 4

--

temp=0 (00000000000000000000000000000000)

State 10 file sort.c line 10 function c::f

--

temp=-402 (11111111111111111111111001101110)

State 11 file sort.c line 11 function c::f

--

b=-2080380800 (10000011111111111110100010000000)

State 12 file sort.c line 12 function c::f

--

c=-402 (11111111111111111111111001101110)

Failed assertion: assertion file sort.c line 19 function c::f

Fig. 2. Counterexample for sort.c

Counterexample:

Initial State

--

temp=-1 (11111111111111111111111111111111)

a=0 (00000000000000000000000000000000)

b=0 (00000000000000000000000000000000)

c=-1 (11111111111111111111111111111111)

State 6 file sort.c line 10 function c::f

--

temp=0 (00000000000000000000000000000000)

State 7 file sort.c line 11 function c::f

--

b=-1 (11111111111111111111111111111111)

State 8 file sort.c line 12 function c::f

--

c=0 (00000000000000000000000000000000)

Failed assertion: assertion file sort.c line 19 function c::f

Fig. 3. Minimized counterexample for sort.c

In this case, the decision heuristics used by ZChaff [22] assign 1 to a large
number of bits. This results in large values for the program variables, making
it difficult to follow what is happening. This problem, already evident in a
small example program, is greatly exacerbated when many variable values are
involved.

Using the optimization approach to value minimization presented in Sec-
tion 4.2, we produce a new counterexample with minimal values for the pro-
gram variables, making it much easier to follow the behavior of the program
(Figure 3). Note that both counterexamples are of the same length and con-
tain the same amount of program state.

This paper presents two approaches to value minimization. The first is
a greedy approach that makes use of incremental SAT (Section 4.1), while

3

Groce

the second solves an optimization problem in order to guarantee true min-
imality (Section 4.2). Both approaches are used for counterexample length
minimization, as well.

The second issue addressed in this work is that of making better use of
counterexamples. Minimization directly improves the usability of counterex-
amples. Error explanation [15] provides information about the causality of
errors beyond that contained in the counterexample alone. The explain

tool [16] automatically generates explanations for CBMC counterexamples,
based on the counterfactual theory of causality proposed by David Lewis [21].
Previous work [15] presented a notion of causal dependence, and noted that
explain could check whether an error was causally dependent on a predi-
cate. This feature was of limited utility, however, as the user was required to
supply a possible cause to be checked. Section 6 presents a new method for
automatically hypothesizing possible causes for an error.

2 Related Work

Minimization of counterexample length has been addressed in various contexts,
including heuristic approaches [9,14,13]. Other kinds of minimization, based
on game-semantics or minimal SAT assignments [18,23] have also appeared.
The approach presented here for minimizing counterexample values can also
be used to minimize counterexample lengths.

More generally, maximizing the utility of counterexamples has been ad-
dressed by the ideas of proof-like and evidence-based counterexamples [8,26].

The automatic causal dependence hypothesis-generation and checking pre-
sented in Section 6 is a natural extension of BMC-based error explanation
[15,16]. Error explanation facilities have been described for MSR’s SLAM
model checker [3] and NASA’s JPF model checker [17]. The game-based min-
imization approach of Jin, Ravi, and Somenzi [18] also provides an error ex-
planation. The distance metric based approach used in Section 6 is related to
Zeller’s delta-debugging techniques [28,27] and the fault localization approach
taken by Renieris and Reiss [24].

3 Bounded Model Checking for C Programs

CBMC reduces the model checking problem to determining the validity of
a bit-vector equation; full details are presented elsewhere [11]. In a process
analogous to that used for Bounded Model Checking of Kripke structures, the
transition system is unwound by duplicating the loop bodies in the case of
for and while loops, duplicating code in the case of loops build by means
of backward goto statements, and function inlining in the case of recursive
functions. Unwinding assertions ensure that sufficient unwinding has been
performed – i.e. that it is not possible that a counterexample can be found
by allowing more loop iterations.

4

Groce

x=x+y;

if(x!=1)

x=2;

else

x++;

assert(x<=3);

→

x1=x0+y0;

if(x1!=1)

x2=2;

else

x3=x1+1;

x4=(x1!=1)?x2:x3;

assert(x4<=3);

→

C := x1=x0+y0 ∧

x2=2 ∧

x3=x1+1 ∧

x4=(x1!=1)?x2:x3

P := x4 ≤3

Fig. 4. Transformation into SSA

The program, after unwinding, is composed of only if statements and
assignments. This program is then transformed into static single assignment
(SSA) form [2], which requires a pointer analysis. We omit the full details
of this process. For programs in SSA form, each variable is assigned at most
once (Figure 4). The SSA form is then transformed into an equation C by
replacing the assignments by equalities. The property is denoted by P . In
order to check the property, CBMC converts C ∧ ¬P into CNF by adding
intermediate variables and passes the CNF to a SAT solver such as Chaff [22].
If the equation is satisfiable, the solution to C represents a counterexample
for P . If it is unsatisfiable, P holds.

The conversion of most operators into CNF is straight-forward and re-
sembles the generation of appropriate arithmetic circuits. The tool can also
output the bit-vector equation before it is flattened to CNF, for the benefit of
circuit-level SAT solvers.

4 Counterexample Value Minimization

4.1 Greedy Minimization

The first method for value minimization is a greedy heuristic approach based
on incremental SAT. The first step of the algorithm is to attempt to minimize
the length of the counterexample. CBMC generates a Boolean guard variable
for each basic block. The variable is 1 if and only if the block is executed in
the trace. In hardware BMC, length minimization is not generally an issue if
BMC is performed in an incremental fashion. The unwinding used by CBMC,
however, includes program statements that may or may not be executed –
the unwinding length is not the number of execution steps – it is the potential
number of execution steps, if all guards are satisfied, which typically is not the
case. Different counterexamples with the same unwinding depth may execute
varying numbers of program statements.

The length minimization algorithm sorts the list of guard variables by the
number of instructions each guard affects. Starting with the guard that affects
the most instructions, the heuristic proceeds as follows: first, a clause is added
to the clause data base with the negation of the guard variable as the only

5

Groce

literal (forcing the guard to be false). The algorithm then proceeds depending
on the value of the variable in the current satisfying assignment:

• If the value of the variable in the current satisfying assignment is 0, the
old satisfying assignment is also a satisfying assignment for the new set of
clauses.

• If the value is 1, the SAT solver is restarted. If the new instance is also sat-
isfiable, the new clause remains in the clause database. If it is unsatisfiable,
the attempt failed and the new clause is removed.

The algorithm continues with the next guard from the sorted list until
all guards have been used. The heuristic approach only then attempts to
minimize the variables that are used in the counterexample trace. Because
the guard values are now fixed, the only values minimized are those that will
appear in the counterexample: assignments guarded by false conditions are
not taken into account. Alternatively, one could attempt to minimize first
values and then execution steps.

The heuristic begins with the most significant bits of all variables, and
then continues towards the least significant bit. In case of unsigned variables,
the heuristic attempts to make all the bits zero. Signed variables are encoded
as two’s complement, and the goal is to minimize the absolute value. Fur-
thermore, positive values are preferred over negative values. Thus, in case of
signed variables, the algorithm first tries to set the sign bit to 0. The fol-
lowing bits are then minimized to 0 or 1, depending on the outcome of the
SAT instance for the corresponding sign bit. If the sign bit is 1, the heuristic
attempts to make the following bits 1 as well, and vice versa.

4.2 Optimal Minimization

The greedy approach to minimization does not always work well. A very
unfortunate choice for the initial value to minimize for the program in Figure
1 produces a counterexample (Figure 5) that is not only almost unminimized,
but is longer than the original counterexample. 4

True minimization of counterexample values can be considered as a 0-1 ILP
problem. PBS [1] is a pseudo-Boolean constraint solver which, given a SAT
instance in CNF and a set of integer coefficients for SAT variables, will solve
optimization problems over the constraints. The length of the counterexample
is minimized before values are minimized. Each guard bit is given a weight
equal to the number of program statements guarded by that condition. The
psuedo-Boolean optimization problem is to minimize the weighted sum, i.e.,
the number of executed program statements. As with the greedy algorithm,
counterexample length minimization is completed and guard values are locked
before value minimization begins.

4 The length increase actually results from the attempt to greedily minimize counterexam-
ple length, rather than values.

6

Groce

Counterexample:

Initial State

--

State 1

--

a=2114977792 (01111110000100000000000000000000)

State 2

--

b=-33554433 (11111101111111111111111111111111)

State 3

--

c=2138989455 (01111111011111100110001110001111)

State 4

--

temp=0 (00000000000000000000000000000000)

State 6 file sort.c line 5 function c::f

--

temp=2114977792 (01111110000100000000000000000000)

State 7 file sort.c line 6 function c::f

--

a=-33554433 (11111101111111111111111111111111)

State 8 file sort.c line 7 function c::f

--

b=2114977792 (01111110000100000000000000000000)

State 14 file sort.c line 15 function c::f

--

temp=-33554433 (11111101111111111111111111111111)

State 15 file sort.c line 16 function c::f

--

a=2114977792 (01111110000100000000000000000000)

State 16 file sort.c line 17 function c::f

--

b=-33554433 (11111101111111111111111111111111)

Failed assertion: assertion file sort.c line 19 function c::f

Fig. 5. Greedily minimized counterexample for sort.c

The notion of value minimality used here is to minimize the sum of the
absolute values of all variables (appearing in the counterexample), with respect
to the type system of the language. Again, consider the program in Figure 1.
At first glance, it would appear that the goal is to minimize the sum: |a| +

|b| + |c| + |temp|. However, each of these variables may take on different
values during execution of the program. Therefore, the sum that is minimized
is over all program variables after loop unrolling and static single assignment
[2], in this case |a#0| + |a#1| + |a#2| + |a#3| + |a#4| + |b#0| + ...

+ |b#6| + |c#0| + |c#1| + |c#2| + |temp#0| + ... + |temp#6|.

For unsigned bit-vectors, the pseudo-Boolean constraints produced simply
use values proportional to the place values, i.e., the least significant bit receives
a weight of 1, the next least significant receives a weight of 2, up to a weight
of 2n−1 for the most significant bit of an n-bit vector. Let a0 denote the least
significant bit of the bit-vector a, and an−1 the most significant bit. We denote
the integer value of an unsigned bit-vector a by 〈a〉:

〈a〉 :=
n−1∑
i=0

ai · 2i(1)

For signed bit-vectors, such as those in sort.c, a different approach is
required. CBMC encodes signed bit-vectors using two’s complement. Note

7

Groce

that the ANSI C standard also permits other encodings.

The integer value represented by a is in the range from −2n−1 to 2n−1 − 1
and is denoted by [a]:

[a] :=−2n−1 · an−1 + 〈an−2 . . . a0〉(2)

The bit an−1 is called the sign bit. We denote it by sign(a).

We aim at minimizing the absolute value of a. If a is positive, i.e., if an−1

is 0, then the absolute value of a is equal to a. If the sign bit is 1, the negation
of a is

−[a] = 〈a〉+ 1(3)

where a denotes the bit-wise negation of a.

We implement this computation as follows: For each variable x of a signed
bit-vector type, we introduce a new variable x′ which is the bit-wise xor of x
with its own sign bit:

x′i :=xi ⊕ sign(x)(4)

If x is positive, then x′ = x and it is obvious that x′ it is equal to the
absolute value of x, i.e.,

|[x]| = 〈x′〉
If x is negative, then x′ = x, and obviously

|[x]| = −[x] = 〈x′〉+ 1

Combining both cases results in

|[x]| = 〈x′〉+ xn−1

As x′n−1 is always zero, we get

|[x]| = 〈x′n−2 . . . x
′
0〉+ xn−1

The pseudo-Boolean constraints are then assigned almost exactly as in
the unsigned case, with the following exceptions: (i) the constraints for every
place value, not including the sign bit are based on x′ rather than x and (ii)
the weight of the sign bit is 1, rather than 2n−1. Thus, we minimize

xn−1 +
n−2∑
i=0

2i · x′i(5)

5 Experimental Results

Table 1 shows results for minimization of counterexamples for several pro-
grams. The first column shows which program is being model checked. The
remaining columns give results for the non-minimized counterexample, the
greedily minimized counterexample, and the optimally minimized counterex-
ample, in groups of three. In each group, the first column gives the time
taken to generate a counterexample (time(s)). The second column (Σ[x]) in
each group gives the sum of the absolute values of the variables and the third

8

Groce

normal greedy optimal

Program time(s) Σ[x] l time(s) Σ[x] l time(s) Σ[x] l

sort.c 0.70 4.161× 109 7 1.11 1.073× 1010 10 995.72 2 7

TCAS #1 1.30 111,905 73 5.22 111,905 73 13.35 9,734 73

TCAS #11 1.20 747,623 65 4.44 747,623 65 14.55 9,524 65

TCAS #31 1.64 488,241 68 4.05 488,241 68 12.23 8,932 68

TCAS #40 0.87 640,307 63 3.83 640,307 63 5.32 9,526 63

TCAS #41 1.69 937,749 72 4.00 937,749 72 6.05 9,528 72

adpcm coder 4.42 814 106 39.52 73 91 107.30 391 91

adpcm decoder 2.47 578 83 41.20 517 78 9.49 574 73

epic quantize 1.06 18 28 7.58 14 28 3.65 14 28

g721 decode 8.10 1.075× 109 289 168.63 855,224 298 18.45 855,106 289

gsm decode 367.60 5257 250 3667.68 3,166 374 2436.08 180,041 225

mpeg2dec 3.82 6.334× 109 61 141.41 9 60 55.36 9 60

Table 1
Time and minimization results for greedy and optimal strategies.

column (l) gives the length in steps of the counterexample. Sums over 1 billion
are given in scientific notation. The benchmarks are taken from the example
program sort.c, the TCAS suite [25], and the MediaBench benchmarks [20].

For the sort example and TCAS benchmarks, greedy optimization resulted
in no improvements in the original counterexamples but in all cases took less
time than true optimization.

For the MediaBench benchmarks, the results are mixed. The greedy heuris-
tic is typically slower than the true optimization, but results in smaller values
in some cases (the values are a secondary goal, and larger values in the optimal
algorithm can be caused by different control flow traces computed in the first
stage). On two benchmarks, hardly any minimization is achieved by either
algorithm. These benchmarks make heavy use of large lookup-arrays, which
are computed at run-time.

6 Hypothesizing and Checking Causal Dependence

Previous work [15] using CBMC to explain errors in programs presented a
notion of causal dependence derived from David Lewis’ counterfactual theory
of causality [21]:

Definition 6.1 [causal dependence] A predicate e is causally dependent on a
predicate c in an execution a iff:

(i) c and e are both true for a (we abbreviate this as c(a) ∧ e(a))

(ii) ∃ an execution b . ¬c(b)∧¬e(b)∧(∀b′ . (¬c(b′)∧e(b′))⇒ (d(a, b) < d(a, b′)))

where d is a distance metric for program executions. In other words, e is
causally dependent on c in an execution a iff executions in which the removal

9

Groce

of the cause also removes the effect are more like a than executions in which
the effect is present without the cause.

The previous work did not focus on checking causal dependence, as de-
termining if e depends on c is only useful after arriving at likely candidate
causes. This would be putting the cart before the horse, as the chief goal of
error explanation is to help the user move from awareness of the existence of
an error to a small set of candidate causes. The distance metric that allows
causal dependence checking was instead used to discover a successful execu-
tion that was as similar as possible to a given counterexample. The distance
metric used by CBMC is based on the total number of atomic changes (∆s)
in variable and guard values between two executions [15]. These differences
are presented to the user as causes for the error.

However, differences in actual variable values are often too specific. The
relevant information is often a change in relationships between variables: i.e.,
not that x was 100 and must be changed to 200 to avoid violating an assertion,
but that in the failing run x < y and in the successful run, x > y. The
basic explanation approach may, unfortunately, completely omit y from an
explanation if only the value of x is altered in the successful execution. Because
the distance metric minimizes the number of changes, such omissions are very
likely to occur. A more general notion of ∆s would report to the user all
predicates whose values are different for the counterexample and the successful
execution. As the set of changed predicates is potentially infinite (comparisons
of variables with constant values, etc.), only a subset of the potential ∆s can
be considered. Our implementation only checks basic ordering and equality
relations between program variables, e.g. x == y, x < y, x > y, x <= y, etc.

Directly presenting the set of changed ∆s is not particularly useful: changes
in important variables are likely to introduce many accidental and unimpor-
tant changes, hiding the relevant differences in a large set of uninteresting
results. However, the set of changes can be used a set of candidate causes
for checking causal dependence. Only the ∆s on which the error is causally
dependent are presented to the user.

The set of predicate ∆s that need to be checked is minimized by requiring
that one of the variables being compared has changed its value in the successful
execution. If neither variable has changed value, the predicate value must be
unchanged. Given a possible cause c, the counterexample execution a, and an
error (or effect) e, checking causal dependence requires two steps:

(i) Find an execution b such that (1) c does not hold and (2) the distance
d(a, b) is minimal. b is an execution that is as similar as possible to the
counterexample a, except that the potential cause c is present in a but
not in b. If the error e is present in b, it is not causally dependent on c.

(ii) Perform bounded model checking over all executions such that (1) c does
not hold and (2) the distance to a is equal to d(a, b). If all such executions
are error free (e does not hold), then e is causally dependent on c.

10

Groce

Error is causally dependent on these predicates:

c#0 < a#0

c#0 < b#0

Fig. 6. Causes for sort.c

Error is causally dependent on these predicates:

Input Down Separation#0 == Layer Positive RA Alt Thresh#1

Input Down Separation#0 <= Layer Positive RA Alt Thresh#1

Down Separation#1 == Layer Positive RA Alt Thresh#1

Down Separation#1 <= Layer Positive RA Alt Thresh#1

Fig. 7. Causes for TCAS error #1

100c100

// (correct version)

< result = !(Own Below Threat()) || ((Own Below Threat()) &&

(!(Down Separation >= ALIM())));

// (faulty version #1)

> result = !(Own Below Threat()) || ((Own Below Threat()) &&

(!(Down Separation > ALIM())));

Fig. 8. diff of correct TCAS code and variation #1

Figure 6 shows a subset of the causes discovered for the counterexample
shown in Figure 3. In this case, the only causes shown are those which relate
two input values. The algorithm actually detects 63 additional causes, relating
inputs to intermediate values, or intermediate values to each other. For this
reason, an option is provided to only check for relationships between input
variables. The high degree of causal dependence in this case derives from
the nature of the code: for a faulty sorting routine, ordering relations will
obviously be crucial to the occurrence of the error, unless the sorting routine
is invariably incorrect. The relationships between intermediate values are
somewhat uninteresting in this case, as the set of input values is equivalent to
the set of all values computed by the program.

For variation # 1 of the TCAS case study [25,12] examined in earlier work
[15,16], however, a much smaller set of causes (Figure 7) is produced without
restriction to input values. Figure 8 shows the error in the TCAS code as
a diff between correct and incorrect versions. The automatically generated
explanation, as described in the earlier work, focuses attention on line 100.
The function call to ALIM() on this line always returns a value that is equal to
Layer Positive RA Alt Thresh#1. Any user familiar with the specification
of the TCAS code will be aware of this equivalence. Knowing (i) that the
fault can be localized to line 100 and (ii) that the error is causally dependent
on the predicate Down Separation#1 == Layer Positive RA Alt Thresh#1,
a user should be able to quickly conclude that the > comparison on line 100
should be a >= comparison.

6.1 Alternative Approaches for Hypothesis Selection

The particular choice of predicates for which to check causal dependence in-
volves a number of tradeoffs: using too many predicates will increase com-

11

Groce

putation time and may result in redundant results; using too few may miss
causal dependencies. An obvious alternative method is to use predicates taken
from guards and Boolean assignments in the program source. Such compar-
isons should be generalized: if x > y appears in a guard, checking x <= y, x
== y, and so forth is necessary to catch cases where the choice of comparison
operations is incorrect. The primary difference between this generalization
and the method implemented in CBMC is that no causality checking is done
for (1) comparisons with constants and (2) comparisons with temporary re-
sults that are never stored in a variable (i.e. x > (y + 50)) are not checked
for causality. On the other hand, comparisons between values that do not
appear in guards together are checked. Causal dependencies that are directly
present in a guard in the source code are generally not as difficult to detect
as indirect dependencies: a change in guard value is likely to appear in the
explanation. For this reason, it seems at least reasonable to expect that the
current tradeoff is often the correct choice. More extensive evaluation will be
needed to determine if a source code-mining approach is preferable.

Another alternative approach is to leverage predicate abstraction. The
predicate abstraction based model checker MAGIC [6] now supports distance
metric based explanation over abstract executions [7]. The predicates used in
the abstract model could be tested for causal dependence. Checking causal
dependence is less important in this case, however, as the explanations are
presented in terms of changes in relationships between variables in the first
place, and irrelevant ∆s are suppressed by the metric and the abstract model.

7 Conclusions and Future Work

This paper presents a new kind of counterexample minimization: in contrast
to previous work, the simplification is with respect to the semantic values of
program variables. Small values are particularly beneficial for understanding
traces of sequential programs, such as ANSI C programs. Conventional BMC
implementations suffer from the fact that SAT solvers choose values according
to built-in heuristics which do not favor readable counterexamples.

Two approaches are described: a greedy minimization heuristic using in-
cremental SAT, and an algorithm that computes an exact solution using a
pseudo-Boolean solver. The experimental results show that the optimal ap-
proach not only produces better results in a great many cases, but that it can
be faster than the greedy approach. However, both algorithms are consider-
ably slower than plain BMC without minimization.

More sophisticated heuristic approaches taken from the optimization com-
munity should outperform the naive greedy implementation. In future work,
we plan to investigate SAT solvers with decision heuristics that are aware
of a metric for counterexample simplicity: the idea being to make favoring
simple counterexamples a part of the search algorithm, as opposed to a post-
processing step.

12

Groce

The paper also presents a new use of BMC counterexamples, an extension
of previous work on error explanation. This algorithm allows a model checker
to identify predicates on which an error is causally dependent, in addition to
providing a counterexample and fault localization. In future work, we hope to
extend the range of predicates considered and consider subsumption or other
methods for reducing the number of causes presented to the user.

References

[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search
pseudo Boolean solver. In Symposium on the theory and applications of
satisfiability testing (SAT), pages 346–353, 2002.

[2] B. Alpern, M. Wegman, and F. Zadeck. Detecting equality of variables in
programs. In Principles of Programming Languages, pages 1–11, 1988.

[3] T. Ball, M. Naik, and S. Rajamani. From symptom to cause: Localizing errors
in counterexample traces. In Principles of Programming Languages, pages 97–
105, 2003.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 193–207, 1999.

[5] R. Bryant, S. Lahiri, and S. Seshia. Modeling and verifying systems using a logic
of counter arithmetic with lambda expressions and uninterpreted functions. In
Computer-Aided Verification, pages 78–92, 2002.

[6] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification
of software components in C. IEEE Transactions on Software Engineering,
30(6):388–402, 2004.

[7] S. Chaki, A. Groce, and O. Strichman. Explaining abstract counterexamples.
In SIGSOFT/Foundations of Software Engineering, 2004. To appear.

[8] M. Chechik and A. Gurfinkel. Proof-like counter-examples. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 160–175, 2003.

[9] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation
of counterexamples and witnesses in symbolic model checking. In Design
Automation Conference, pages 427–432, 1995.

[10] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[11] E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C and Verilog
programs using Bounded Model Checking. Technical Report CMU-CS-03-126,
Carnegie Mellon University, School of Computer Science, 2003.

[12] A Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using symbolic execution
for verifying safety-critical systems. In European Software Engineering
Conference/Foundations of Software Engineering, pages 142–151, 2001.

13

Groce

[13] S. Edelkamp, A. L. Lafuente, and S. Leue. Trail-directed model checking. In
Workshop of Software Model Checking (SoftMC), 2001.

[14] P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in spin.
In SPIN Workshop on Model Checking of Software, pages 92–108, 2004.

[15] A. Groce. Error explanation with distance metrics. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 108–122, 2004.

[16] A. Groce, D. Kroening, and F. Lerda. Understanding counterexamples with
explain. In Computer-Aided Verification, 2004. To appear.

[17] A. Groce and W. Visser. What went wrong: Explaining counterexamples. In
SPIN Workshop on Model Checking of Software, pages 121–135, 2003.

[18] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 445–458,
2002.

[19] D. Kroening, E. Clarke, and F. Lerda. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems, pages
168–176, 2004.

[20] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing multimedia and
communicatons systems. In International Symposium on Microarchitecture,
pages 330–335, 1997.

[21] D. Lewis. Causation. Journal of Philosophy, 70:556–567, 1973.

[22] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), pages 530–535, 2001.

[23] K. Ravi and F. Somenzi. Minimal assignments for bounded model checking.
In Tools and Algorithms for the Construction and Analysis of Systems, pages
31–45, 2004.

[24] M. Renieris and S. Reiss. Fault localization with nearest neighbor queries. In
Automated Software Engineering, 2003.

[25] G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test
selection technique. Software Engineering, 24(6):401–419, 1999.

[26] L. Tan and R. Cleaveland. Evidence-based model checking. In Computer-Aided
Verification, pages 455–470, 2002.

[27] A. Zeller. Isolating cause-effect chains from computer programs. In Foundations
of Software Engineering, pages 1–10, 2002.

[28] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

14

	Introduction
	Related Work
	Bounded Model Checking for C Programs
	Counterexample Value Minimization
	Greedy Minimization
	Optimal Minimization

	Experimental Results
	Hypothesizing and Checking Causal Dependence
	Alternative Approaches for Hypothesis Selection

	Conclusions and Future Work
	References

