
DeepState: Symbolic Unit Testing for C and C++
Peter Goodman
Trail of Bits, Inc.

peter@trailofbits.com

Alex Groce
School of Informatics, Computing & Cyber Systems

Northern Arizona University
alex.groce@nau.edu

Abstract—Unit testing is a popular software development
methodology that can help developers detect functional regres-
sions, explore boundary conditions, and document expected be-
havior. However, writing comprehensive unit tests is challenging
and time-consuming, and developers seldom explore the obscure
(and bug-hiding) corners of software behavior without assistance.

DeepState is a tool that provides a Google Test-like API to give
C and C++ developers push-button access to symbolic execution
engines, such as Manticore and angr, and fuzzers, such as Dr.
Fuzz. Rather than learning multiple complex tools, users learn
one interface for defining a test harness, and can use various
methods to automatically generate tests for software. In addition
to providing a familiar interface to binary analysis and fuzzing
for parameterized unit testing, DeepState also provides constructs
that aid in the construction of API-sequence tests, where the
tool chooses the functions or methods to call, allowing for even
more diverse and powerful tests. By serving as a front-end to
multiple tools, DeepState additionally provides a way to apply
(novel) high-level strategies to test generation, and to compare
effectiveness and efficiency of testing back-ends, including binary
analysis tools.

I. INTRODUCTION

A key limitation in the advancement of binary analysis and
other approaches to improving software security and reliability
is that there is very little overlap between security experts
familiar with tools such as angr [34], [35], [33], Manticore
[27], or S2E [9], and the developers who produce most code
that needs to be secure or highly reliable.

Developers, as a class, do not know how to use binary
analysis tools; developers, as a class, seldom even know how
to use less challenging tools such as fuzzers, even relatively
push-button ones such as AFL [41]. Even those developers
whose primary code focus is critical security infrastructure
such as OpenSSL are often not users, much less expert users,
of such tools.

Developers do, however, often know how to use unit testing
frameworks, such as JUnit [12] or Google Test [1]. DeepState
aims to bring some of the power (in particular, high quality
automated test generation) of binary analysis frameworks to a

larger audience of developers. DeepState makes it possible
to write parameterized unit tests [38] in a Google Test-
like framework, and automatically produce tests using angr,
Manticore, or Dr. Memory’s fuzzer, Dr. Fuzz [2].

DeepState also targets the same space as property-based
testing tools such as QuickCheck [10], ScalaCheck [28],
Hypothesis [26], and TSTL [17], [20], but DeepState’s test
harnesses look like C/C++ unit tests. The major difference
from previous tools is that DeepState aims to provide a
front-end that can make use of a growing variety of back-
end methods for test generation, including (already) multiple
binary analysis engines and a non-symbolic fuzzer. Developers
who write tests using DeepState can expect that DeepState
will let them, without rewriting their tests, make use of new
binary analysis or fuzzing advances. The harness/test definition
remains the same, but the method(s) used to generate tests
may change over time. In contrast, most property-based tools
only provide random testing, and symbolic execution based
approaches such as Pex [37], [39] or KLEE [8], while similar
on the surface in some ways, always have a single back-end for
test generation. Even a system such as TSTL, which aims to
provide a common interface [14] to different testing methods
assumes that all of those methods will be written using the
TSTL API and (concrete) notion of state.

In addition to letting developers find the best tool for
testing their system (or find different bugs with different
tools), the ability to shift back-ends effortlessly addresses a
core problem of practical automated test generation. Most of
the tools in wide use are research prototypes with numerous
bugs. In fact, in our own early efforts to test a file system
using DeepState, we discovered a show-stopping fault in
angr [3]. Without DeepState, encountering such a bug means
stopping testing efforts until the bug can be fixed (which
can be difficult, especially if reporting a bug arising from
sensitive code is at issue), or re-writing your tests (possibly
after learning a new tool). With DeepState, one simply types
deepstate-manticore instead of deepstate-angr to
switch from angr to Manticore.

Moreover, sharing a single notion of test harness makes
it possible to implement high-level test generation strategies
once and thus avoid the effort of re-implementing such ap-
proaches for every tool (or, worse yet, every individual testing
effort, as happens with many strategies).

In this paper we describe the design and implementation of
DeepState (Section II) and show how DeepState’s approach
enables API-call sequence testing of a simple user mode

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23xxx
www.ndss-symposium.org

#include <DeepState

TEST(Unit, Name1) {
 symbolic_int x;
 ASSUME(x > 0);
 ...
}

TEST(Unit,

Tests.cpp

Unit_Name1_Test:
 call
DeepState_Int
 cmp eax, 0
 jg .L0
 call DeepState_..
.L0:
 ...

Tests.o

#define TEST(...
#define TEST_F(...
#define ASSUME(...
#define EXPECT(...
#define ASSERT(...
#define LOG(...

DeepState.hpp

DeepState_Assume:
 ...
DeepState_Pass:
 ...
DeepState_SoftFail:
 ...
DeepState_

libdeepstate.a

0101010
1010101
0010101
0110101
0100101
0101010
1010101
0101010
1010101
0101010

Tests

Fig. 1. The DeepState workflow mirrors that of Google Test. The developer
includes the DeepState API header file (DeepState.hpp) into their testing
code (Tests.cpp), and uses the various macros, such as TEST, to organize
the code to be tested. The compiled tests (Tests.o) are linked against the
DeepState runtime (libdeepstate.a), producing a test suite binary (Tests). This
binary can be run independently, or under the control of programs like
deepstate-angr.

filesystem (Section III). Finally, we show how the DeepState
approach enables novel solutions to scalability challenges in
symbolic execution (Section IV).

II. IMPLEMENTATION

A. Architecture

DeepState is made of two components: i) a static library
linked into every test suite (Figure 1), and ii) the executor,
which is a lightweight orchestrator around symbolic execution
engines like Manticore and angr, or fuzzing engines like
Dr. Fuzz. Adding new back-ends involves producing a new
executor, but does not require changes to the static library.

1) Library: The DeepState library is approximately 1200
lines of C, with an additional 600 lines of C++ which wrap
the core C APIs and provide the conveniences of a Google
Test-like system. The majority of the DeepState library code is
unrelated to the core task of testing. In fact, a lot of complexity
in DeepState relates to ensuring that the common practice of
printf-like logging inside of unit tests does not degrade
performance.

2) Executor: The orchestration engine is approximately
350 lines of Python, with an additional 250 lines each for
enabling Manticore and angr support. DeepState uses APIs
already provided by angr and Manticore to locate and hook
key APIs and find all test cases to run. In the case of
Dr. Fuzz, a special test case harness function is defined,
DrMemFuzzFunc, which is Dr. Fuzz’s standard “entry-point”
into a code-base and the source of mutated input bytes.
Eventually we plan to integrate libFuzzer [32] (and perhaps
other fuzzers) in a similar way.

This section describes the implementation of DeepState,
using a primality test as a running example (Figure 2). The
test asserts that Euler’s famous prime-generating polynomial
[31] , x2 + x+ 41, only generates prime numbers.

A DeepState-based test suite is an ordinary C or C++
program that uses C preprocessor macros and APIs provided

1 bool IsPrime(const unsigned p) {
2 for (unsigned i = 2; i <= (p/2); ++i) {
3 if (!(p % i)) {
4 return false;
5 }
6 }
7 return true;
8 }
9

10 TEST(PrimePolynomial, OnlyGeneratesPrimes) {
11 symbolic_unsigned x, y, z;
12 ASSUME_GT(x, 0);
13 unsigned poly = (x * x) + x + 41;
14 ASSUME_GT(y, 1);
15 ASSUME_GT(z, 1);
16 ASSUME_LT(y, poly);
17 ASSUME_LT(z, poly);
18 ASSERT_NE(poly, y * z)
19 << x << "ˆ2 + " << x << " + 41 is not prime";
20 ASSERT(IsPrime(Pump(poly)))
21 << x << "ˆ2 + " << x << " + 41 is not prime";
22 }
23
24 int main(int argc, char *argv[]) {
25 DeepState_InitOptions(argc, argv);
26 return DeepState_Run();
27 }

Fig. 2. A simple test case that asserts that every number generated by the
polynomial x2 + x+ 41 is prime. The Pump function (described in Section
IV-A) “pre-forks” the executor on possible assignments to poly, thereby
enabling many state forks to simultaneously execute IsPrime at native
speeds on many different concrete assignments to poly.

by the DeepState library to define and run tests. The key
elements of a DeepState-based test suite are the definition of
tests and test fixtures, the sources of symbolic values, and the
pre- and post-conditions that constrain the properties to be
tested. Figure 2 shows how these basic components combine
into a unit test.

B. Tests

Unit tests are functions that are defined using
the special TEST macro. This macro denotes the
unit name (PrimePolynomial) and the test name
(OnlyGeneratesPrimes) accordingly. Contained within
the typical body of a TEST-defined function is code that sets
up the environment, executes the functions to be tested, and
asserts any pre- or post-conditions that must hold.

The TEST macro wraps the test code in a function that calls
the DeepState_Pass function as its last action. The macro
also ensures that the wrapped function is registered at runtime
into a global linked list of all test cases. At runtime, the
executor simulates the program’s normal execution (including
test registration) up until the call to DeepState_Run. At
this point, the executor takes control, and forks execution for
each registered test. The executor will exhaustively explore
the state space of each test case, up until the execution
of one of the DeepState_Pass, DeepState_Fail, or
DeepState_Abandon functions is called.

1) Test Fixtures: Groups of unit tests that share complex
state initialization requirements can be organized into test
fixtures, which are C++ classes that package together shared
state and functionality. Fixtures provide the developer with the
ability to perform common setup and tear-down of the shared

2

state around each unit test. Unit tests based on fixtures are
defined with the TEST_F macro.

C. Symbols
Symbolic variables are defined using type names that

mirror their C counterparts, such as symbolic_int and
symbolic_char. These types are convenient names that are
implemented using the more generic Symbolic class tem-
plate. With this template, test cases can create more involved
data structures, such as symbolic strings and sequences.

Under the hood, symbolic types are syntactic sugar wrap-
ping DeepState’s core C API. For example, the declarations of
x, y, and z in Figure 2 are equivalent to the following code:

1 // symbolic_unsigned x, y, z;
2 unsigned x = DeepState_UInt();
3 unsigned y = DeepState_UInt();
4 unsigned z = DeepState_UInt();

When run using angr or Manticore, each call to
DeepState_UInt returns a fresh unsigned integer symbol.
This is implemented by building up an integer from a global
array of bytes (shown below). The executor initializes these
bytes with unconstrained symbol when the DeepState_Run
is executed. Deferring the overwriting of the bytes ensures that
the test suite startup is deterministic and that no state forking
happens before the call to DeepState_Run.

1 unsigned DeepState_UInt(void) {
2 unsigned index = DeepState_InputIndex;
3 unsigned byte0 = DeepState_Input[index++];
4 unsigned byte1 = DeepState_Input[index++];
5 unsigned byte2 = DeepState_Input[index++];
6 unsigned byte3 = DeepState_Input[index++];
7 DeepState_InputIndex = index;
8 return (byte0 << 0) | (byte1 << 8) |
9 (byte2 << 16) | (byte3 << 24)

10 }

D. Preconditions
Developers assert preconditions using the ASSUME family

of macros. For example, in Figure 2, ASSUME_GT(x, 0)
tells the execution engine that the condition x > 0 must hold
for the remainder of the execution. This macro is implemented
as a thin wrapper around a regular if statement, similar to
the code shown below. This formulation relies on the symbolic
execution engine to fork and explore both branches of the if
statement.

1 // ASSUME_GT(x, 0);
2 if (!(x > 0)) {
3 DeepState_Abandon("Failed assumption x > 0");
4 // Never reached.
5 }
6
7 // Assumption holds during rest of execution.

If the assumption does not hold, then the
DeepState_Abandon function will be executed. This
function is hooked by the executor and terminates symbolic
exploration of the state. When the test suite is run natively or
with Dr. Fuzz, this function executes a longjmp to exit the
current test.

E. Postconditions

Developers assert postconditions using either the ASSERT
or CHECK family of macros. ASSERT and CHECK are
implemented in a similar way to ASSUME; however,
internally they make use of the DeepState_Fail
and DeepState_SoftFail functions, respectively.
DeepState_Fail stops execution of the state and marks
the test as having failed. DeepState_SoftFail marks
the test as failing but does not stop the execution.

1 // ASSERT_GT(x, 0);
2 if (!(x > 0)) {
3 DeepState_Fail();
4 // Never reached.
5 }
6
7 // CHECK_GT(x, 0);
8 if (!(x > 0)) {
9 DeepState_SoftFail();

10 // Execution continues, but test will fail.
11 }

F. Logging

Log messages are essential to being able to quickly diagnose
the results of a failed test. To that end, DeepState supports
C++-style log streams as an extension of the macro families
like ASSUME, ASSERT, and CHECK, as well as via LOG
macros which permit the categorization of log messages into
levels (e.g. LOG(INFO), LOG(WARNING), etc.).

A key challenge is that logging, including printf-based
logging, can introduce “unintentional” forking of symbolic
states. For example, logging a symbolic integer x with
printf("%d", x) or LOG(INFO) << x; can result in
the executor forking to explore paths for each decimal digit
and sign (e.g. 0, 1, -1, 10, -10, 100, etc.).

DeepState solves this challenge by implementing its C++-
style logging and reimplementing standard library functions
like printf in terms of special streaming APIs. The fol-
lowing example shows the sequence streaming API functions
invoked internally by the DeepState library during a call to
printf or LOG(INFO):

1 // printf("Name: %s, Age: %d", name, age);
2 DeepState_StreamString("%s", "Name: ");
3 DeepState_StreamString("%s", name);
4 DeepState_StreamString("%s", ", Age: ");
5 DeepState_StreamInt("%d", "<I", &age);
6 DeepState_LogStream(DeepState_LogInfo);
7
8 // LOG(INFO) << "Hello " << name;
9 DeepState_StreamString("%s", "Hello ");

10 DeepState_StreamString("%s", name);
11 DeepState_LogStream(DeepState_LogInfo);

The executor hooks the streaming APIs and buffers the
streamed outputs, deferring actual concretization and format-
ting of logged symbolic values until the test case ends. This
results in “logical” logging: logging only happens when a
program state reaches the point where a unit test passes or
fails, and a user monitoring the output of the executor is not
bombarded with out-of-order log output that is subject to the
state scheduling whims of the symbolic executor.

3

III. FILE SYSTEM EXAMPLE

One goal of DeepState is to make it possible to easily use
the same tool to perform both “unit-test” like testing (as above)
and API/library random testing [15], [29], [20], where a test
is a sequence of method/function calls chosen by the tool,
not the developer. To assess the feasibility of using DeepState
in this way, we created API tests for TestFS [36], a user-
level implementation of an ext3-like filesystem. TestFS stores
a complete file system image in a file on disk. This file contains
the file system metadata (e.g. super block, allocation bitmaps,
inode bitmaps), as well as the data itself. For our study, we
augmented TestFS with the capability to operate completely
in-memory. This is similar to how real test suites operate on
“mock objects.” In the case of DeepState, having the TestFS
file system reside in-memory means that we are not limited to
any one engine’s support (or lack thereof) for emulating file
system operations.

Figure 3 shows (part of) a harness for testing TestFS, using
DeepState’s OneOf operator. This construct, built using C++
variadic templates, allows a user to express that one of a set
of code “chunks” should be executed non-deterministically,
behaviorally equivalent to a sequence like:

1 if (DeepState_Bool()) {
2 ... // Chunk 1.
3 } else if (DeepState_Bool() {
4 ... // Chunk 2.
5 } else {
6 ... // Chunk 3.
7 }

Using OneOf lets DeepState automatically transform this
into a switch table construct, so that early options are not
more probable when using a fuzzer rather than a symbolic
execution engine, and the branching structure is appropriately
flat. It also lets us automatically apply swarm testing [19],
where some options in a “do one of these” construction are
omitted to improve testing. That is, instead of running the
engine on a single “version” of the program where all the
options in the OneOf are present, we can generate (either
randomly or exhaustively) subsets of a few options at a time.
For example, we can generate N

2 at a time where N is the
total number of possible choices, so in the file system example
we might give the engine a version of the harness to explore
where only path creation, open, and write are available
(but not close and mkdir). This sacrifices exploring all
combinations, but can make fuzzing more successful (due to
changing probability distributions) and improve scalability of
symbolic execution, since fewer options means less complex
constraints [4]. The tradeoff is often a good one, since many
faults do not require all options in a “one of” construct, or even
need to avoid certain options [19], [18], [5], [4]. Note that
OneOf also handles non-deterministic choices among items
in a string/array properly, a nice alternative to, e.g., creating a
symbolic char and then using ASSUME to control the values,
and also making these choices amenable to swarm testing.

Figure 3 mixes two styles of API-call sequence testing data
generation. Some input parameters, such as the data to write,
are generated in the traditional way, on the fly at each function

1 static void MakeNewPath(char *path) {
2 symbolic_unsigned l;
3 ASSUME_GT(l, 0);
4 ASSUME_LT(l, PATH_LEN+1);
5 int i, max_i = Pump(l);
6 for (i = 0; i < max_i; i++) {
7 path[i] = OneOf("aAbB/.");
8 }
9 path[i] = ’\0’;

10 }
11
12 ...
13
14 TEST(TestFs, FilesDirs) {
15 InitFileOperations();
16 CreateEmptyFileSystem();
17
18 ...
19
20 char paths[NUM_PATHS][PATH_LEN+1] = {};
21 bool used[NUM_PATHS] = {};
22 char data[DATA_LEN+1] = {};
23 int fds[NUM_FDS] = {};
24 int fd, path = -1;
25 for (int i = 0; i < NUM_FDS; i++) {
26 fds[i] = -1;
27 }
28
29 for (int n = 0; n < LENGTH; n++) {
30 OneOf(
31 [n, &path, &paths, &used] {
32 path = GetPath();
33 ASSUME(!used[path]);
34 MakeNewPath(paths[path]);
35 printf("%d: paths[%d] = %s",
36 n, path, paths[path]);
37 used[path] = true;
38 },
39 [n, &path, &paths, &used] {
40 path = GetPath();
41 ASSUME(used[path]);
42 ASSUME_GT(strlen(paths[path]), 0);
43 printf("%d: Mkdir(%s)",
44 n, paths[path]);
45 fs_mkdir(paths[path]);
46 used[path] = false;
47 },
48 [n, &fd, &fds, &path, &paths, &used] {
49 fd = GetFD();
50 path = GetPath();
51 ASSUME(used[path]);
52 ASSUME_EQ(fds[fd], -1);
53 ASSUME_NE(strlen(paths[path]), 0);
54 printf("%d: fds[%d] = open(%s)",
55 n, fd, paths[path]);
56 fds[fd] = fs_open(paths[path],
57 O_CREAT|O_TRUNC);
58 used[path] = false;
59 },
60 [n, &fd, &fds, &data] {
61 MakeNewData(data);
62 fd = GetFD();
63 ASSUME_NE(fds[fd], -1);
64 printf("%d: write(fds[%d],\"%s\")",
65 n, fd, data);
66 fs_write(fds[fd], data, strlen(data));
67 },
68 [n, &fd, &fds] {
69 ASSUME_NE(fds[fd], -1);
70 printf("%d: close(fds[%d])", n, fd);
71 fs_close(fds[fd]);
72 fds[fd] = -1;
73 });
74 }
75 }

Fig. 3. (Part of) the test harness for the file system

4

1 template <typename T>
2 static T Pump(T sym, unsigned max=100) {
3 for (auto i = 0U; i < max - 1; ++i) {
4 T min_val = Minimize(sym);
5 if (sym == min_val) { // Will fork.
6 return min_val;
7 }
8 }
9 return Minimize(sym);

10 }

Fig. 4. Approximate implementation of Pump. Minimize is hooked by the
symbolic engine to return the minimum value that satisfies the constraints of
its input symbol.

call. The set of pathnames, however, is stored in an array, and
there is a “memory” of previously used paths, a style of test
construction known as pool-based [6], [29], [20]. While using
pools can result in generating data that is not used, it makes it
easier for symbolic execution engines and (especially) fuzzers
to re-use a pathname (which is extremely important in most
file system testing [15]).

IV. BEYOND UNIT TESTING: FEATURES TO SUPPORT
SCALING TEST GENERATION

Scaling symbolic execution to operate on “real” programs
is challenging. In some ways, developers are the adversary
of symbolic execution engines: they continually find ways to
write hard-to-analyze code. DeepState changes this dynamic
by providing developers with APIs that help them guide
symbolic execution without expert knowledge.

A. Pumping

Pumping is a novel scaling strategy, available via the Pump
function, introduced by DeepState. The key insight is that
loops that are bounded by a symbolic upper range, or array
accesses that use symbolic indices, can be “pre-forked” to
mitigate the state explosion problem.

In Euler’s prime polynomial unit test (Figure 2), the
IsPrime predicate uses a loop to check if any number
in the closed range [2, poly2] evenly divides poly. Given a
symbolic input number, IsPrime will induce a symbolic
executor fork twice for each iteration of its loop, and twice for
each divisibility check. Ideally, we would like the IsPrime
predicate to execute “natively” and at full speed on concrete
values. To achieve this and avoid state explosion, the test
invokes Pump, which will internally produce multiple state
forks, and in each such fork, return a concrete value that is a
satisfying assignment for the input symbol.

Pumping strikes a good compromise between exhaustive-
ness and scalability. In its current form (Figure 4), Pump is
clearly not exhaustive; it only generates the first max concrete
values for sym. Other strategies can be implemented, e.g.
MaxPump, MinMaxPump, etc. What strategy is appropriate
requires a case-by-case decision by the developer writing the
test. This developer is also likely to be the person best suited
toward making this decision.

1 TEST(Multiplication, IsInvertible) {
2 symbolic_int x, y;
3 ASSUME_NE(y, 0);
4 ASSERT_EQ(x, (x / y) * y);
5 }

Fig. 5. Before and after DeepState’s transformation on equality comparisons.
The integer comparison of ASSERT_EQ is decomposed into byte-wise com-
parisons.

B. Code Coverage

One challenge with applying coverage-guided fuzzers like
Dr. Fuzz to small unit tests can be the lack of branches
available for progress measurement. DeepState resolves this
by incorporating known useful ideas from other tools, and
lifting them to a level where they can be applied whenever
appropriate, even if the back-end lacks native support for the
strategy. For example, Steelix [25] and some other fuzzers [24]
can decompose integer comparisons—which can be hard for
fuzzers to bypass due to the mutators having to “guess” the
correct value—into byte, nibble, or even bitwise comparisons,
in order to produce more visibility for coverage-guided fuzzers
(a kind of coarse-grained branch distance [7]). Figure 5
shows how DeepState automatically applies decomposition to
ASSERT_EQ, ASSERT_NE, CHECK_EQ, and CHECK_NE.

V. RELATED WORK

DeepState is another entry in a relatively new line of tools,
which extend widely used programming languages (here C
and C++) with constructs to support advanced automated test
generation, whether by symbolic execution, model checking,
or random testing. These tools go beyond the approach of
unit testing frameworks such as JUnit [12] and Google Test
[1], in that rather than simply providing language libraries or
extensions to help users write tests, they extend the language
to help users write harnesses that generate tests. Such tools can
be divided into property-based tools and tools more similar (on
the surface at least) to JUnit, which would include DeepState.

The property-based tools, following on QuickCheck [10]
(e.g., PropEr [30], Hypothesis [26] and ScalaCheck [28]), are
usually based on some form of random data generation, with-
out symbolic execution or exhaustive exploration. Property-
based approaches have been most widely adopted in functional
languages.

Among the more “JUnit-like” tools are Pex/IntelliTest [37],
UDITA [13], and, in a sense, all model checkers that use
the language of the software under test to define the test
harness, such as CBMC [23] and Java PathFinder [40]. A
related but “inside-out” approach is taken by SPIN [22] (when
it is used to model check C code [21]) and by TSTL [17],
where the language of the tested system is embedded in a

5

special-purpose language for defining tests and specifications.
All of these tools, and DeepState, share the goal of lowering
the (often considerable) barriers to the use of automated test
generation. More broadly, all of these tools, to varying degrees,
are domain-specific languages (DSLs) [11] for testing, usually
embedded DSLs where the DSL is an extension of an existing
language. DeepState is unique in both back-ends used and
novel testing idioms it introduces, including ones that help
with scaling for the back-end engines, and ones that increase
the scope of kinds of testing easily performed.

DeepState in particular, rather than simply generally aiming
to provide language constructs easing the use of automated test
generation, is primarily targeted towards producing parame-
terized unit tests [38]. The core idea of parameterized unit
tests, proposed by Schulte and Tillman [38] and implemented
by them in the Unit Meister tool [39] is to take the industry
practice of writing “closed” unit tests and “open tests up”
by allowing concrete values to be generated that complete
tests that take input parameters. DeepState differs in that
it is not tied to the .NET framework, in targeting a wider
variety of generation methods (fuzzing and static symbolic
execution in addition to dynamic symbolic execution), and in
the addition of constructs that also support the development of
call-sequence random testers [15], [29], not just unit tests. The
focus on generality (in both kinds of testing supported, not just
unit-like tests, and in back ends) is key to DeepState’s eventual
goal of providing a general framework for working developers
(especially those in security-critical efforts): a universal tool
for automated test generation [14], [16], where the generation
technology is a detail, not the focus.

VI. CONCLUSIONS AND FUTURE WORK

DeepState aims to be a “one-stop shop” for automated
test generation for C and C++ developers, with an approach
designed to be as easy to learn as possible for experienced
users of unit testing frameworks, especially Google Test. In
addition to parameterized unit tests, DeepState also provides
constructs to make it easy to write tests that generate API-call
sequences to stateful test library-like code.

In the long run, the most important future work is to
improve the communication between DeepState and the back-
ends it already supports, and to add new back ends for test
generation, e.g. adding dynamic symbolic analysis tools [8],
and more fuzzers [41], [25]. We also expect that practical
use of DeepState will motivate adding new constructs, both
“syntactic sugar” like OneOf, to increase ease of use, and
“strategies” such as Pump that can help scale test generation.

DeepState, in fact, should be useful to the research commu-
nity, as well as developers, because it provides a convenient
way to implement high-level strategies (e.g., testing methods
that use multiple back-ends or even kinds of back-end, such
as two-stage testing [42], or heuristics that generate concrete
values). Moreover, DeepState should make it easy to compare
the effectiveness of back-ends for solving the same state
exploration problem, without the threat of using multiple,
subtly different, test harnesses.

DeepState is available under an Apache 2.0 license at
https://github.com/trailofbits/deepstate.

REFERENCES

[1] “Google Test,” https://github.com/google/googletest, 2008.
[2] “Dr. Fuzz: Dynamic fuzz testing extension,”

http://drmemory.org/docs/page drfuzz.html, 2015.
[3] “Memory access fault,” https://github.com/angr/angr/issues/798, Decem-

ber 2017.
[4] M. A. Alipour and A. Groce, “Bounded model checking and feature

omission diversity,” in International Workshop on Constraints in Formal
Verification, 2011.

[5] M. A. Alipour, A. Groce, R. Gopinath, and A. Christi, “Generating
focused random tests using directed swarm testing,” in Proceedings of
the 25th International Symposium on Software Testing and Analysis,
ser. ISSTA 2016. New York, NY, USA: ACM, 2016, pp. 70–81.
[Online]. Available: http://doi.acm.org/10.1145/2931037.2931056

[6] J. Andrews, Y. R. Zhang, and A. Groce, “Comparing automated unit
testing strategies,” Department of Computer Science, University of
Western Ontario, Tech. Rep. 736, December 2010.

[7] A. Arcuri, “It really does matter how you normalize the branch distance
in search-based software testing,” Software Testing, Verification and
Reliability, vol. 23, no. 2, pp. 119–147, 2013.

[8] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Operating System Design and Implementation, 2008, pp. 209–224.

[9] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E platform: Design,
implementation, and applications,” ACM Transactions on Computer
Systems (TOCS), vol. 30, no. 1, p. 2, 2012.

[10] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random
testing of Haskell programs,” in ICFP, 2000, pp. 268–279.

[11] M. Fowler, Domain-Specific Languages. Addison-Wesley Professional,
2010.

[12] E. Gamma and K. Beck, “JUnit 5,” http://junit.org/junit5/.
[13] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and

D. Marinov, “Test generation through programming in UDITA,” in
International Conference on Software Engineering, 2010, pp. 225–234.

[14] A. Groce and M. Erwig, “Finding common ground: Choose, assert, and
assume,” in International Workshop on Dynamic Analysis, 2012, pp.
12–17.

[15] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing
as a prelude to formal verification,” in International Conference on
Software Engineering, 2007, pp. 621–631.

[16] A. Groce and R. Joshi, “Random testing and model checking: Building
a common framework for nondeterministic exploration,” in Workshop
on Dynamic Analysis, 2008, pp. 22–28.

[17] A. Groce and J. Pinto, “A little language for testing,” in NASA Formal
Methods Symposium, 2015, pp. 204–218.

[18] A. Groce, C. Zhang, M. A. Alipour, E. Eide, Y. Chen, and J. Regehr,
“Help, help, I’m being suppressed! the significance of suppressors in
software testing,” in IEEE 24th International Symposium on Software
Reliability Engineering, ISSRE 2013, Pasadena, CA, USA, November
4-7, 2013, 2013, pp. 390–399.

[19] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm testing,”
in International Symposium on Software Testing and Analysis, 2012, pp.
78–88.

[20] J. Holmes, A. Groce, J. Pinto, P. Mittal, P. Azimi, K. Kellar, and
J. O’Brien, “TSTL: the template scripting testing language,” Inter-
national Journal on Software Tools for Technology Transfer, 2017,
accepted for publication.

[21] G. Holzmann, R. Joshi, and A. Groce, “Model driven code checking,”
Automated Software Engineering, vol. 15, no. 3–4, pp. 283–297, 2008.

[22] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2003.

[23] D. Kroening, E. M. Clarke, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems, 2004, pp. 168–176.

[24] lafintel, “Circumventing fuzzing roadblocks with compiler transforma-
tions,” August 2016.

[25] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering.
ACM, 2017, pp. 627–637.

6

[26] D. R. MacIver, “Hypothesis: Test faster, fix more,”
http://hypothesis.works/, March 2013.

[27] M. Mossberg, https://blog.trailofbits.com/2017/04/27/manticore-
symbolic-execution-for-humans/, April 2017.

[28] R. Nilsson, S. Auckland, M. Sumner,
and S. Sahayam, “ScalaCheck user guide,”
https://github.com/rickynils/scalacheck/blob/master/doc/UserGuide.md,
September 2016.

[29] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in International Conference on Software Engi-
neering, 2007, pp. 75–84.

[30] M. Papadakis and K. Sagonas, “A PropEr integration of types and
function specifications with property-based testing,” in Proceedings of
the 2011 ACM SIGPLAN Erlang Workshop. New York, NY: ACM
Press, Sep. 2011, pp. 39–50.

[31] P. Ribenboim, “Eulers famous prime generating polynomial and the
class number of imaginary quadratic fields,” My Numbers, My Friends:
Popular Lectures on Number Theory, pp. 91–111, 2000.

[32] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssanitizer,”
in Cybersecurity, Development (SecDev), IEEE. IEEE, 2016, pp. 157–
157.

[33] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” in NDSS, 2015.

[34] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
in IEEE Symposium on Security and Privacy, 2016.

[35] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in NDSS, 2016.

[36] J. Sun, D. Fryer, A. Goel, and A. D. Brown, “Using declarative invariants
for protecting file-system integrity,” in Proceedings of the 6th Workshop
on Programming Languages and Operating Systems. ACM, 2011, p. 6.

[37] N. Tillmann and J. De Halleux, “Pex–white box test generation for
.NET,” in Tests and Proofs, 2008, pp. 134–153.

[38] N. Tillmann and W. Schulte, “Parameterized unit tests,” in Proceedings
of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2005, pp. 253–262.

[39] ——, “Parameterized unit tests with Unit Meister,” in Proceedings of the
10th European Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2005, pp. 241–244.

[40] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking
programs,” Automated Software Engineering, vol. 10, no. 2, pp. 203–
232, Apr. 2003.

[41] M. Zalewski, “american fuzzy lop (2.35b),”
http://lcamtuf.coredump.cx/afl/, November 2014.

[42] C. Zhang, A. Groce, and M. A. Alipour, “Using test case reduction
and prioritization to improve symbolic execution,” in International
Symposium on Software Testing and Analysis, 2014, pp. 160–170.

7

