
Mitigating (and Exploiting) Test Reduction Slippage

Josie Holmes
Department of Geography

Pennsylvania State University

Alex Groce
School of Electrical

Engineering and Computer
Science

Oregon State University

Mohammad Amin Alipour
School of Electrical

Engineering and Computer
Science

Oregon State University

ABSTRACT
Reducing the size of tests, typically by delta debugging or
a related algorithm, is a critical component of effective au-
tomated testing and debugging. Automatically generated
or user-submitted tests are often far longer than required,
full of unnecessary components that make debugging diffi-
cult. Test reduction algorithms automatically remove com-
ponents of such tests, while preserving the property that the
test fails. Unfortunately, reduction can sometimes transform
a failing test that detects a subtle, critical, and previously
unknown fault into a test that detects a trivial-to-find, unim-
portant, and already known fault. When reducing a test de-
tecting fault(s) F produces a test that does not detect the
same F , this is known as slippage. In the case where an
interesting fault slips to an uninteresting fault, slippage is a
problem, and must be avoided. However, slippage can also
be beneficial, when a long test can be reduced to detect a
fault that has not otherwise been detected (including by the
original test). While traditional delta debugging only pro-
duces one reduced test, the concept of slippage suggests an
alternative approach, where the output of reduction is a set
of reduced tests, in order to avoid problematic slippage and
induce beneficial slippage. In this paper, we present pre-
liminary efforts to understand slippage, and compare two
approaches to slippage mitigation.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
delta debugging, slippage, test manipulation and reduction

1. INTRODUCTION
Automated testing often goes hand in hand with test re-

duction or minimization [17, 11, 12, 5, 14]. Such reduction
is now standard practice in industrial testing tools such as

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Mozilla’s jsfunfuzz [15]. Many automated test generation
methods, especially those based on random testing, produce
long tests with many irrelevant components. Such tests are
hard to understand for debugging and slow to execute. Delta
debugging automatically reduces the size of such tests, pro-
ducing a smaller test that still fails.

Unfortunately, the consequences of reducing a test are not
always desirable. In particular, sometimes the reduced test
no longer detects the same faults it originally detected. This
phenomenon is called slippage [3].

Formally, we define slippage as occurring whenever a test
t detects faults F , and the reduction r of t detects a different
set of faults, F ′ 6= F . Informally, most discussion of slippage
is concerned with the case where ∃f.f ∈ F ∧ f 6∈ F ′ — that
is, when slippage causes loss of a fault. Slippage is usually
avoided by using heuristics, such as that tests failing with
the same error message or ending in the same step are due to
the same fault [5]. In some cases, such as system invariant
violations or compiler wrong-code bugs [3], such methods do
not work well. The extent to which slippage is a practically
important problem in real-world testing is unknown.

However, all slippage is not harmful. Even when a fault
is lost, the new fault may be more interesting or harder-to-
find. We suspect this is usually not the case, as slippage
probably tends to favor easy-to-detect faults, but there is
no hard data on the matter. Considering the possibility
of beneficial slippage naturally leads to a new approach to
mitigating slippage. In place of traditional delta debugging,
which, given one failing test, produces one reduced failing
test, we propose to modify delta debugging to produce a set
of reduced failing tests. Ideally, this set exposes more than
one fault, if possible. Throughout the remainder of this
paper, we refer to the original, one-test, delta debugging
algorithm [17] as ddmin.

We propose two novel approaches to slippage mitigation
(and exploitation), both making use of any existing ddmin

implementation, even (we believe) ones that are significantly
different than the version of Hildebrandt and Zeller [17]. The
contributions of this paper are:

1. A formal definition of slippage, and the notion that
slippage may be either harmful or beneficial.

2. A proposal to avoid and make use of slippage by pro-
ducing more than one reduced test per failing test.

3. Two novel approaches to slippage mitigation.

4. Some preliminary experimental results showing the ba-
sic effectiveness of these methods for a very large set

of mutant-simulated faults in a Python AVL tree and
for a set of real-world tests and faults for a complex
JavaScript compiler.

Both of our proposed methods reduce harmful slippage
and result in detection of more faults.

2. SLIPPAGE MITIGATION APPROACHES

2.1 The Combinatorial Blocking Algorithm
The first algorithm uses additional unmodified ddmin runs,

but “blocks” them from producing the same reduced test by
modifying the test input to delta debugging. The algorithm
is called combinatorial because it uses combinations of com-
ponents in t to construct new starting tests, and blocking
because the purpose of these combinations is to ensure that
we do not get the same solution as the first run of ddmin,
in a way that is analogous to the use of blocking clauses to
force new solutions from SAT solvers.

Given test t that reduces to r, we compute all subsets
of components of r, Cr. The set of reduced tests is then
computed by running delta debugging starting with each t−c
that fails, for all c ∈ Cr: c is the blocked components of r.
So long as even one component is blocked, it is impossible to
reproduce the same r. The intuition is that to find a reduced
failing test that exhibits a different fault than r, we want to
run delta debugging in such a way as to produce a test as
different as possible from r; ideally we would like a reduced
test sharing no components with r. However, r will likely
contain components/features [9] that must appear in any
failing test: for example, calls to mount appear in all useful
file system tests, and interesting XML files seldom lack the
< character. Therefore, rather than only trying to block
all components of r, we try delta debugging with different
combinations of components blocked.

In practice, iterating through all subsets may be too ex-
pensive if r is long. We therefore make a simplifying as-
sumption: if t − c1 does not fail, and c1 ⊂ c2, then t − c2
also does not fail. The blocking algorithm begins its search
by blocking all single components of r, then proceeds to all
combinations of 2 components, etc., at each stage only con-
sidering combinations that contain no smaller combination
that did not yield a failing test. With this optimization, the
expense of blocking becomes low enough to also apply the
approach to the new reduced tests found at each stage. To
block all previously discovered reductions, it is necessary to
compute combinations that include at least one component
from each reduced test produced thus far.

Algorithm 1 shows the formal definition of the comb-block
algorithm. This algorithm depends on a function block-all

(T,s), which given a set of tests T and a combination size s,
returns all size s combinations of components of tests t ∈ T
such that each combination has at least one element from
each t ∈ T . We omit the definition of block-all in the inter-
ests of space. Our Python implementation [8] simply filters
invalid combinations, which works well with the typically
small s for reduced tests.

2.2 Randomized Multiple-Run ddmin
Our second mitigation approach simply notes that slip-

page in ddmin is deterministic only because of the fixed order
in which possible reductions of a test are considered. How-
ever, if we randomize the order of checks on smaller tests

Algorithm 1 Combination-blocking algorithm

Require: failing test t, reduced failing test r, search depth
d, max combinations to consider m

1: reductions = {r}; count = 0;
2: handled, notfailed = ∅;
3: while d > 0 do
4: new = ∅
5: for s = 1 to total components in reductions do
6: for c ∈ (block-all(reductions, s)-handled) do
7: count = count + 1
8: if count > m then return reductions
9: end if

10: handled = handled ∪ {c}
11: if ¬∃c′.c′ ∈ c ∧ c′ ∈ notfailed then
12: if fails(t− c) then
13: new = new ∪ {ddmin(t− c)}
14: else
15: notfailed = notfailed ∪ {c}
16: end if
17: end if
18: end for
19: end for
20: d = d− 1
21: reductions = reductions ∪ new
22: end while
23: return reductions

in ddmin, it can produce different reduced tests when exe-
cuted with a different random seed. This means we can try
to avoid slippage by simply running ddmin multiple times
with different seeds. The advantage of this multi-ddmin ap-
proach is that is can work even when no test removing com-
ponents of the original reduction fails. The non-existence of
such tests does not mean there is no alternative reduction,
but that finding it must require a different starting path for
ddmin. This approach lacks comb-block’s directed search for
dissimilar reductions and modifies the internals of ddmin.

3. EXPERIMENTAL RESULTS

3.1 AVL Tree
For basic experiments, we used a simple Python AVL tree

found on the web [16], with 225 lines of code1. We used
MutPy to generate 82 valid, non-equivalent (measured by
applying random testing for one hour, and assuming mu-
tants with no failing tests were equivalent) mutants of the
AVL implementation. The test harness and reduction im-
plementations used the TSTL [8, 7, 6] testing language for
Python. The AVL tree forms a good simple basis for exper-
imentation with slippage. It has a strong oracle, letting us
ignore specification problems, but tests are all very similar,
making the construction of pattern-based slippage avoidance
mechanisms difficult. AVL is also sufficiently complex to al-
low for many different faults, some of which are fairly diffi-
cult to detect without effective automated testing.

Combining two mutants that cover different lines of code
yields a version of AVL tree with two faults that are, we
know, independently detectable (that is, we can find each
fault in isolation). This results in a program to test with
the potential for test slippage. There are 3,274 such com-

1All sizes non-comment, non-blank lines, by cloc [4].

Tests Runtime(s) |f |x (Faults) # Tests

Unreduced tests N/A 1.08 1
ddmin 0.41 1.05 1

comb-block 2.79 1.14 2.9
multi-ddmin 4.24 1.11 1.9

Table 1: Average runtimes, faults detected in isola-
tion, and number of tests for a user to examine for
AVL tree mutant pairs.

binations, which we used to explore slippage and perform a
simple evaluation of our slippage mitigation algorithms.

For the mutant pair (m1,m2), let m1 + m2 be the pro-
gram combining m1 and m2. We randomly sampled mutant
pairs, and performed random testing on m1+m2 for 60 sec-
onds. In all but a very small number of cases, 60 seconds
of random testing produces a failing test, t. Executing t
on both m1 and m2 yields a number, |f |t, between 0 and
2, the number of isolated faults t detects (2 if each fault
can be detected in isolation by t, 1 if only 1 of the mu-
tants is detected in isolation). In a small number of cases,
t only detects the combined fault, and detects neither fault
in isolation. We then applied delta debugging to produce a
reduced test r, and used the same process to produce |f |r,
which could, compared to |f |t, either be smaller (slippage
with fault loss), larger (beneficial slippage), or the same (ei-
ther no slippage or change of fault). Finally, we applied the
comb-block algorithm to produce a set of tests, Tc and the
multi-ddmin algorithm to produce a set of tests, Tm. For
parameters, we chose to run ddmin 10 times in multi-ddmin,
and constrained comb-block to approximately the same run-
time by limiting it to a search depth of 5 and a maximum
of 1,000 attempted combinations. We computed |f |c as the
count of isolated faults detected by any test in Tc; |f |m was
defined in the same way, except using Tm.

We produced 7,500 tests, sampling all 82 mutants numer-
ous times, and sampling 2,959 of the 3,274 mutant pairs.
Table 1 shows the results. All differences between means are
significant by Wilcoxon test with p < 10−12. The ddmin re-
sults show that using only a single run of classic delta debug-
ging results in fewer faults per test than using un-reduced
tests: harmful slippage results in a 2.8% total reduction in
fault detection, even with beneficial slippage taken into ac-
count. Slightly over 8% of test cases had slippage of some
kind when reduced.

Both approaches to slippage reduction produced a signif-
icantly higher average number of faults detected than the
unreduced tests. Using comb-block increased fault detec-
tion by about 5.5%, and using multi-ddmin increased it by
2.7% (the same margin, interestingly, as a single reduction
decreased fault detection). The cost of this improvement
was close to a 6x increase in runtime for comb-block and
over a 9x increase for multi-ddmin.

One concern with slippage mitigation is that avoiding slip-
page may produce a large number of additional tests a de-
veloper must examine to see if they expose different faults
[3]. However, at least for our AVL example, the number of
different tests produced is not particularly larger than the
number of faults discovered on average. In most cases, we
speculate that comb-block and multi-ddmin will not pro-
duce far more different tests than faults.

While only 8% of all tests showed slippage, we also ran
some experiments with 30 runs for every mutant pair (pro-

ducing a total of 98,100 failing tests), but only running comb-

block and multi-ddmin if reduction caused loss-of-fault slip-
page, and checking whether the two approaches managed
to restore the lost fault (without losing the other exposed
fault). These results showed that 8% of mutant pairs had
harmful slippage, and that these pairs had slippage rates
up to 83%, making some faults very hard to detect in isola-
tion without slippage mitigation. The comb-block approach
avoided loss-of-fault slippage for 56% of slipped tests for
each mutant, on average, while multi-ddmin only avoided
it in 33% of slipped tests, on average. The difference was
significant with p < 10−96.

3.2 SpiderMonkey
We also performed limited experiments with the Mozilla

SpiderMonkey JavaScript engine version 1.6 tests produced
by jsfunfuzz, used in the PLDI 2013 paper introducing
the concept of slippage [3]. SpiderMonkey is a large (about
70KLOC), complex, widely used program, and jsfunfuzz

[15] has been used to discover over 1,700 bugs in JavaScript
engines. For 113 randomly sampled tests, using a single
reduction produced slippage only about 2.7% of the time
(in exactly 3 tests). In these experiments we limited comb-

block to a depth of 1, with no “recursive” exploration of
new tests. For multi-ddmin we used 10 reductions, as in
the AVL experiments.

The small number of slippage cases allowed us to ana-
lyze the results in detail. The comb-block approach did not
manage to avoid slippage in any of these three cases. For
two of the three cases, no blocking combination produced a
failing test. In the third case, one combination did produce
a failing test, but it reduced to the same fault as the slipped
ddmin test. The multi-ddmin algorithm fared only slightly
better, restoring the originally detected fault in one of the
three slippage cases.

Interestingly, the overall rate for slippage in the original
paper is estimated as 23%, not under 3%. We attribute this
to the use of a far more aggressive and powerful reduction
algorithm than our line-based ddmin. The PLDI 13 reducer
is a hand-crafted modification of ddmin that performs both
character and line based passes, and applies constant propa-
gation and other specialized techniques for JavaScript. Note
that both of our mitigation techniques in theory could ap-
ply to this method, though comb-block is probably easier to
apply as it does not require modifying the internals of the
more powerful reducer.

Slippage avoidance is not the only goal of our methods.
We also computed the total number of discovered faults for
comb-block and multi-ddmin, as with the AVL tree exper-
iments. One-test ddmin, in this setting, always produced
a single test, detecting one fault. The comb-block algo-
rithm discovered 1.34 different faults on average, and the
multi-ddmin approach discovered 1.09 different faults on
average. These differences are significant by Wilcoxon test
with p < 10−5. Note that the strong results for comb-block
are in spite of nearly 70% of tests not having any failing
blocked versions, and using a search depth of only 1 (no at-
tempt to block based on newly discovered tests). Blocking
seems quite effective in producing tests due to a different
fault, when this is possible. The total set of distinct faults
discovered by each method favored multi-ddmin, which pro-
duced tests revealing 10 distinct faults, while comb-block

discovered 8 distinct faults over all 113 tests. The original

set of unreduced tests contains 8 distinct faults, and simple
ddmin reduced the count to 7 faults.

In part because many tests do not have any combinations
that produce a failing test when removed, the runtimes for
comb-block are generally much lower than for multi-ddmin,
which takes about 10x or more the time for a single-test
ddmin run (the average is higher than 10x because of the
structure of JavaScript tests, where the first attempt in non-
randomized ddmin is very likely to fail).

Given the (surprising to us) extreme differences in run-
times observed for SpiderMonkey tests, and the smaller but
real differences for AVL tree, in future experiments we plan
to exploit the “best effort” nature of both mitigation ap-
proaches, and simply use a fixed timeout for each method.

4. RELATED WORK
Chen et al. introduced the idea of slippage in the course

of describing efforts to automatically detect different faults
in a large set of failing test cases [3]. Hughes et al. [10] pro-
posed a modification of QuickCheck to avoid re-producing
known bugs that (in theory) could mitigate the problem of
slippage, but is not directly comparable to our approach.
The approach of Hughes et al. requires interpretation of
test components (e.g. method calls), and analysis of pat-
terns, while our approaches are purely algorithmic, with no
additional requirements beyond those of delta debugging it-
self [17]. It is not clear how best to apply such an approach
to cases such as jsfunfuzz where each component is not
a method call but essentially an arbitrary string, without
significant user effort to define abstractions of components.

There are also approaches that sidestep slippage by ini-
tially producing short test sequences (e.g. recent work by
Mao et al. [13]). However, for many generation algorithms
longer sequences are essential for good fault detection [1, 2].

5. CONCLUSIONS AND FUTURE WORK
In this paper we describe our first efforts to further inves-

tigate the phenomenon of slippage, where reducing the size
of a failing test also changes the reason that the test fails.
While generally noted as a problem, we show that slippage
can also be considered an opportunity to extract more dis-
tinct faults from a single failing test. We present two ap-
proaches, comb-block and multi-ddmin, that modify tradi-
tional delta debugging to return multiple reduced tests. Pre-
liminary experiments on a Python AVL tree and on Mozilla’s
SpiderMonkey JavaScript engine show that these algorithms
can, at relatively modest cost, significantly improve the num-
ber of distinct faults detected based on a single failing test.

As future work, we plan to determine the degree to which
harmful slippage is a real problem (not solved by simple
heuristics) in real-world testing efforts, and further investi-
gate the causes of such slippage. For example, is slippage
overwhelmingly a matter of hard-to-detect faults reducing
to easy-to-detect faults? We also plan to further refine and
evaluate our slippage mitigation approaches. Most impor-
tantly, we want to investigate whether encouraging slippage
(via multiple delta debugging runs) is an efficient way to
increase fault detection for a testing effort.

Acknowledgements: The authors would like to thank
David R. MacIver and John Regehr for discussions related
to this work. A portion of this work was funded by NSF
grants CCF-1054786 and CCF-1217824.

6. REFERENCES
[1] J. H. Andrews, A. Groce, M. Weston, and R.-G. Xu.

Random test run length and effectiveness. In
Automated Software Engineering, pages 19–28, 2008.

[2] A. Arcuri. Longer is better: On the role of test
sequence length in software testing. In International
Conference on Software Testing, Verification and
Validation, pages 469–478, 2010.

[3] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern,
E. Eide, and J. Regehr. Taming compiler fuzzers. In
Programming Language Design and Implementation,
pages 197–208, 2013.

[4] A. Danial. CLOC. https://github.com/AlDanial/cloc.

[5] A. Groce, G. Holzmann, and R. Joshi. Randomized
differential testing as a prelude to formal verification.
In International Conference on Software Engineering,
pages 621–631, 2007.

[6] A. Groce and J. Pinto. A little language for testing. In
NASA Formal Methods Symposium, pages 204–218,
2015.

[7] A. Groce, J. Pinto, P. Azimi, and P. Mittal. TSTL: a
language and tool for testing (demo). In ACM
International Symposium on Software Testing and
Analysis, pages 414–417, 2015.

[8] A. Groce, J. Pinto, P. Azimi, P. Mittal, J. Holmes,
and K. Kellar. TSTL: the template scripting testing
language. https://github.com/agroce/tstl.

[9] A. Groce, C. Zhang, M. Alipour, E. Eide, Y. Chen,
and J. Regehr. Help, help, I’m being suppressed: the
significance of suppressors in software testing. In
International Symposium on Software Reliability
Engineering (ISSRE), pages 390–399, 2013.

[10] J. Hughes, U. Norell, N. Smallbone, and T. Arts. Find
more bugs with QuickCheck! In Workshop on
Automation of Software Test, pages 71–77, 2016.

[11] Y. Lei and J. H. Andrews. Minimization of randomized
unit test cases. In International Symposium on
Software Reliability Engineering, pages 267–276, 2005.

[12] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and
B. Meyer. Efficient unit test case minimization. In
International Conference on Automated Software
Engineering, pages 417–420, 2007.

[13] K. Mao, M. Harman, and Y. Jia. Sapienz:
Multi-objective automated testing for android
applications. In International Symposium on Software
Testing and Analysis, pages 94–105, 2016.

[14] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang. Test-case reduction for C compiler bugs. In
Programming Language Design and Implementation
(PLDI), pages 335–346, 2012.

[15] J. Ruderman. Introducing jsfunfuzz, 2007.
http://www.squarefree.com/2007/08/02/
introducing-jsfunfuzz/.

[16] user1689822. python AVL tree insertion.
http://stackoverflow.com/questions/12537986/
python-avl-tree-insertion.

[17] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. Software Engineering,
IEEE Transactions on, 28(2):183–200, 2002.

