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ABSTRACT
Given two test cases, one larger and one smaller, the smaller
test case is preferred for many purposes. A smaller test case
usually runs faster, is easier to understand, and is more con-
venient for debugging. However, smaller test cases also tend
to cover less code and detect fewer faults than larger test
cases. Whereas traditional research focused on reducing test
suites while preserving code coverage, recent work has intro-
duced the idea of reducing individual test cases, rather than
test suites, while still preserving code coverage. Other re-
cent work has proposed non-adequately reducing test suites
by not even preserving all the code coverage. This paper
empirically evaluates a new combination of these two ideas,
non-adequate reduction of test cases, which allows for a wide
range of trade-offs between test case size and fault detection.

Our study introduces and evaluates C%-coverage reduc-
tion (where a test case is reduced to retain at least C% of
its original coverage) and N-mutant reduction (where a test
case is reduced to kill at least N of the mutants it originally
killed). We evaluate the reduction trade-offs with varying
values of C% and N for four real-world C projects: Mozilla’s
SpiderMonkey JavaScript engine, the YAFFS2 flash file sys-
tem, Grep, and Gzip. The results show that it is possible to
greatly reduce the size of many test cases while still preserv-
ing much of their fault-detection capability.

CCS Concepts
•Software and its engineering → Software testing
and debugging;
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1. INTRODUCTION
Smaller test cases are, in many ways, preferable to larger

test cases. For example, smaller test cases tend to run faster,
which can improve the efficiency of running test suites [10],

i.e., sets of of individual test cases. Smaller, simpler test
cases are also easier to understand and enable more effec-
tive debugging. This was the initial motivation for delta-
debugging [27]—a technique for reducing the size of fail-
ing test cases. Because of the advantages of smaller test
cases, random test generation is often combined with delta-
debugging, making research on effective reduction techniques
itself an important topic [5,12,16,19]. Test suites with small
test cases (that focus on separate functional properties) also
make it possible for test-case selection [7] and prioritization
to operate more effectively than when applied to test suites
mostly consisting of large, complex test cases.

While smaller test cases have advantages, it is also true
that smaller test cases, all else being equal, detect fewer
faults than larger test cases [3]. The trade-off between size
and effectiveness for individual test cases is similar to the
trade-off between smaller and larger test suites. Researchers
have extensively studied test-suite reduction [13, 14, 20, 22,
26], which removes entire test cases from test suites.

The problem of test-suite reduction is to reduce a given
test suite while preserving most of its fault-detection capa-
bility. Various techniques have been proposed, and many
are summarized in a survey by Yoo and Harman [26]. Test-
suite reduction trades off reduced fault-detection capability
(most often measured by the number of killed mutants) for
reduced test-suite size (typically measured by the number of
test cases). Traditional techniques completely preserve some
property of a test suite, e.g., its code coverage, while remov-
ing test cases that are redundant and do not contribute to
that property. Recently, we evaluated non-adequate test-
suite reduction [22] that only partially preserves the prop-
erty of interest, e.g., preserves 90% of code coverage.

The problem of test-case reduction is to reduce an indi-
vidual test case while preserving most of its fault-detection
capability. Reducing a test case essentially requires “slic-
ing and dicing” the atomic parts that make the test case.
For example, if a test case is a unit test composed of a se-
quence of function calls, reduction usually involves removing
function calls. If a test case is defined by an input file, re-
duction can involve removing characters from the file. Note
that measuring the size of a test case is inherently project-
specific, depending entirely on the semantics of test cases,
whereas the size of test suites can be defined in a project-
agnostic way as the number of test cases in the test suite
(though not perfectly correlated with the time to execute
the tests). While test-suite reduction has been studied in
depth at least since 1993 [14], test-case reduction research is
much more recent.



Zeller and Hildebrandt proposed delta-debugging [27], the
best known test-case reduction technique, usually applied to
reduce a failing test case to a minimal test case that still fails.
Recently, we proposed cause reduction [10, 11] as a general-
ization of delta-debugging, and used it to reduce a (passing
or failing) test case while preserving its original coverage.
Cause reduction completely preserves coverage: the reduced
test case has to cover all the code elements that the original
test case covered (and can potentially cover even more). We
call such reductions adequate because they preserve 100% of
some property. Note that“adequate” in our context refers to
the relationship between the reduced and original test cases,
although the original test case itself may provide far from
adequate code coverage.

The utility of non-adequate reduction for test suites [22]
naturally suggests that non-adequate reduction may be use-
ful for test cases as well. Non-adequate reduction, either
for test suites or test cases, greatly enlarges the number of
points to explore in trading off size and fault-detection ca-
pability. For test cases, requiring adequacy limits how much
size can be reduced (some test cases cannot be reduced sub-
stantially without sacrificing at least some coverage or killed
mutants) and increases the time required to reduce test cases
(because searching for an adequate reduction is often harder
than finding a “good enough” reduction).

Combining the recent ideas of non-adequate reduction for
test suites [22] and adequate reduction for test cases [10,11],
this paper empirically evaluates a new combination: non-
adequate reduction for test cases. To the best of our knowl-
edge, ours is the first such evaluation.

Specifically, we evaluate C%-coverage reduction (where a
test case is reduced to retain at least C% of its original cov-
erage) and N-mutant reduction (where a test case is reduced
to kill at least a given set of N mutants it originally killed).
Both reductions reduce a larger test case to a smaller test
case while only partially preserving some property. Hence,
we call these reductions “non-adequate” because they do not
necessarily preserve completely either the code coverage or
all mutants killed. However, the reduced test case could, in
theory, cover code elements or kill mutants that the original
test case does not, even if the reduced test case does not
cover all code elements or kill all mutants that the original
test case did; in fact, the reduced test case can even cover
more code or kill more mutants.

Non-adequate test-case reduction further generalizes pre-
viously proposed test-case reductions. By parameterizing
the level to which the reduced test case needs to preserve
a property, we allow more freedom to explore trade-offs be-
tween size reductions and preservation of fault-detection ca-
pability [22, 25]. For example, cause reduction [10, 11] be-
comes just a special case of our C%-coverage with C = 100.
Preserving to kill only one mutant that encodes some fault
(N -mutant with N = 1) can mimic delta-debugging. At
the other extreme, setting N to equal the total number of
all mutants originally killed results in a very strict test-case
reduction that preserves all mutants killed; however, such
reduction may be prohibitively expensive to perform (and
would likely provide very little reduction unless test cases
have excessive redundancy), so our evaluation concerns only
small values for N .

We evaluate non-adequate test-case reduction on four real-
world C projects: Mozilla’s SpiderMonkey JavaScript en-
gine, the YAFFS2 flash file system, Grep, and Gzip. We used

manual Grep test cases, and automatically generated test
cases for the other projects. We evaluate C%-coverage for
various levels of C%, from 70% to 100%. We evaluate N -
mutant with (1) randomly selected mutants for various val-
ues of N from 1 to 32, and (2) mutants that are hard to
kill based on the minimal mutant set [1]. We measure size
reduction, code coverage, and mutants killed, with the lat-
ter two1 used as proxies for fault-detection capability. Our
results show that in many cases, non-adequate test-case re-
duction can substantially reduce the size of the given test
cases while still preserving considerable fault-detection ca-
pability. Perhaps most interestingly, when performing C%-
coverage reduction, the largest gain in size reduction for all
cases comes when C% changes from 100% to 95%; the gain
is typically twice as large as for any other C% change. This
gain does not result in a similarly large loss in mutation de-
tection. In brief, simply giving up on perfection enables a
larger reduction in size than the associated reduction in ef-
fectiveness. Additionally, preserving even a small number N
of mutants killed usually indirectly preserves a large fraction
of all other mutants killed, often more than 70%.

This paper makes the following contributions:

• Novel test-case reduction approach: We define
two types of non-adequate test-case reduction: C%-
coverage and N -mutant reduction.

• Evaluation of reduction trade-offs: Using four
real-world C projects, we evaluate the relationship be-
tween the size reductions obtained with varying pa-
rameters for these reductions, and the code coverage
and killed mutants for reduced test cases relative to
the original, unreduced test cases.

2. Non-Adequate Test-Case Reduction
We next describe our test-case reductions in more detail.

We use to to denote the original test case and tr to denote
the reduced test case. We use t to denote an arbitrary test
case, Cov(t) to denote the set of statements2 covered by t,
Mut(t) to denote the set of mutants killed by t, |S| to denote
the cardinality of the set S, and Size(t) to denote the size of
t. Measuring the size of a test case is specific to the project
or the format of test cases; Section 4.1.1 precisely defines
size for the projects used in our evaluation. Conceptually,
we define size as the number of atomic parts that a test case
has. The parameterized nature of parts is taken from the
original delta-debugging work [27]. In some projects, parts
are function calls; in other projects, they are lines or char-
acters in a file/string; and in rare cases, they may be much
more complex, e.g., defined by a grammar. For example,
reduction of test cases that are computer programs (e.g.,
an input to a compiler) [19] often relies on a semantically
involved notion of part.

The high-level goal of test-case reduction is to produce a
reduced test case tr with size smaller than the size of to, i.e.,
Size(tr) < Size(to) (and ideally Size(tr)� Size(to)), such
that tr still retains (either completely or partially) some de-
sirable property of to. That is, for some notion of “quality”,

1Although they are not ideal proxies, code coverage is often
used by developers to evaluate quality of test cases and both
are commonly used to evaluate test cases in research.
2While we present and evaluate C%-coverage only for state-
ment coverage, it can generalize, e.g., to branch coverage.



tr has similar quality to to. to itself may have good or bad
quality, but tr should not have much worse quality than to.
While in principle the reduction process can stop at various
steps (and in the limit, even the original test case can be
considered a reduced version of itself), we are interested in
so called “1-minimal” test cases [27] where no single part of
tr can be removed without losing some desired property.

2.1 Reduction Algorithm
The test-case reduction algorithm we use is derived from

the original delta-debugging [27] algorithm, and we mod-
ify it to support non-adequate test-case reduction. Delta-
debugging takes as input a failing test case and reduces it
by removing parts that are not relevant for the failure. A
generalized algorithm for cause reduction [10, 11] extends
delta-debugging to reduce a test case with respect to any
property, not just failure, that can be detected when run-
ning the test case. The most direct application of cause
reduction is to completely preserve code coverage.

At a high level, the delta-debugging algorithm (described
in detail by Zeller and Hildebrandt [27] and extended in the
work on cause reduction [10,11]) iteratively splits a test case
into multiple candidate test cases. At each of these steps,
the algorithm checks if any candidate satisfies the desired
property (which, in traditional delta-debugging, is whether
the test case fails). If there is a satisfactory candidate, it
becomes the new base test case to be reduced further in the
future steps. If no candidate is satisfactory, the granular-
ity for splitting is increased, until the algorithm determines
that the test case is 1-minimal: removing any single part
produces a test case that does not satisfy the property. In
this paper, we further generalize delta-debugging and cause
reduction by allowing the candidate test case to only par-
tially preserve some property.

2.2 C%-coverage Reduction
We relax the requirement from cause reduction [10, 11]—

that the reduced test case tr preserve all code coverage ob-
tained by the original test case to—with the requirement
that tr preserve at least C% of coverage obtained by to. Re-
ducing large test cases to preserve all (statement) coverage
can be prohibitively expensive. For example, we previously
reported that cause reduction of a single test case for the
GCC compiler could take days [10, 11]. Moreover, preserv-
ing 100% of the coverage may not be necessary, because a
test case that preserves less may still have acceptable qual-
ity. Hence, we propose C%-coverage reduction:

Definition 1. C%-coverage test-case reduction produces
a reduced test case tr that covers at least C% of the state-
ments covered by the original test case to:

|Cov(tr)∩Cov(to)|
|Cov(to)| ≥ C%

Note that the percentage is determined by the coverage
of the original test case and not by coverage over all state-

ments in the code under test. The property is not |Cov(tr)|
|Cov(to)| ≥

C%, because tr could then end up covering statements un-
related to those covered by to. Coverage-based cause reduc-
tion [10, 11] can be (re)defined as C%-coverage with C =
100: |Cov(tr) ∩ Cov(to)|/|Cov(to)| = 100%, or equivalently
Cov(tr) ⊇ Cov(to). C%-coverage does not impose any re-
quirements over statements not covered by the original test

case: the reduced test case may or may not cover those
statements. Also, C%-coverage does not (directly) require
any relationship between |Cov(tr)| and |Cov(to)|, so it can
even happen that |Cov(tr)| > |Cov(to)| if tr covers some
statements that to does not cover.

2.3 N-mutant Reduction
We define N -mutant reduction in a similar fashion, but

with three important differences: (1) N -mutant uses killed
mutants instead of covered statements; (2) N -mutant pre-
serves the ability of a test case to kill an absolute number
N of mutants rather than a relative ratio of mutants; and
(3) N -mutant considers the same set of selected mutants for
all steps of the reduction algorithm:

Definition 2. N-mutant test-case reduction produces a
reduced test case tr that kills a specific set of N mutants se-
lected from the set of Mut(to), where typically N � |Mut(to)|.

The difference (3) from C%-coverage is largely motivated
by the cost of determining the complete set of mutants killed
for every candidate test case at each step of the reduction
algorithm. We did initially experiment with allowing the set
of mutants to change, while requiring only that the number
of mutants be preserved through reduction steps be at least
N . However, by allowing the algorithm to only preserve
at least any N mutants, it can be necessary to run a large
number of mutants at each step of the reduction algorithm
(until at least N mutants are killed or all mutants are run
and N are not killed). As a result, the time to perform non-
adequate test-case reduction was often prohibitively long.
Again, we only require the selected N mutants to be a subset
of Mut(to). Mutants other than those in the selected set
may or may not be killed by tr.

3. METRICS
We describe three metrics for evaluating the effectiveness

of test-case reduction: Size Reduction Rate (SRR), Coverage
Preservation Rate (CPR), and Mutant(-killing) Preservation
Rate (MPR). We define all metrics such that higher values
are better and values are normalized to the range 0%–100%.

3.1 Size Reduction Rate (SRR)
The goal of test-case reduction is to reduce the size of a

test case. As such, it is important to measure how much
smaller the reduced test case is compared to the original
test case. Recall that Size(t) denotes the size of a test case
t, i.e., the number of the atomic parts that the test case has.

Definition 3. For an original test case to and its reduced
test case tr, Size Reduction Rate (SRR) is:

SRR(to, tr) = Size(to)−Size(tr)
Size(to)

A higher SRR is desirable as it indicates that more parts
have been removed from the test case, resulting in a smaller
reduced test case.

3.2 Coverage Preservation Rate (CPR)
Our reduction is non-adequate test-case reduction, so we

need some metrics to measure how much fault-detection ca-
pability the reduced test case loses compared to the original



test case. Structural code coverage, although not an ideal
proxy for fault-detection capability [8, 9, 15], is commonly
used to evaluate the quality of test cases: the more code a
test case covers, the higher the chance it can detect a fault.
We therefore use statement coverage as one way to evaluate
quality. Recall that Cov(t) denotes the set of statements
covered by a test case t.

Definition 4. For an original test case to and its reduced
test case tr, Coverage Preservation Rate (CPR) measures
the ratio between the number of statements covered by both
tr and to and the number of statements covered by to:

CPR(to, tr) = |Cov(tr)∩Cov(to)|
|Cov(to)|

A higher CPR is desirable as it indicates the reduced test
case covers a larger subset of statements covered by the orig-
inal test case. Note that while a reduced test case can po-
tentially cover more statements than the original test case,
CPR is limited to 100% as it considers only the statements
covered by to.

3.3 Mutant Preservation Rate (MPR)
MPR is essentially the same as CPR, except measured

with respect to mutants killed, not statements covered:

Definition 5. For an original test case to and its reduced
test case tr, Mutant Preservation Rate (MPR) measures the
preservation of mutants killed by tr relative to the mutants
killed by to:

MPR(to, tr) = |Mut(tr)∩Mut(to)|
|Mut(to)|

A higher MPR is desirable as it indicates the reduced
test case is better at killing mutants among those that the
original test case kills. Like CPR, MPR is relative to the
original test and cannot exceed 100%.

3.4 Reduction Requirements vs. Metrics
Although both of the reduction algorithms and the metrics

are based on coverage and mutants, note that the require-
ments for reduction are not the same as the metrics used
to evaluate the reduced test cases. Therefore, we cannot a
priori tell how high or low the metrics will be for all re-
ductions. For C%-coverage reduction, we know that CPR
will be at least C%, but it could be much higher (up to
100%), and MPR could in theory range from (literally) 0 to
100%. For N -mutant reduction, we know that MPR will be
at least N/|Mut(to)|, but it could be much higher (in our
experiments, even when N/|Mut(to)| < 1%, MPR can be
quite high), and CPR could range from almost 0 to 100%.

4. EVALUATION METHODOLOGY
We describe the projects, test cases, and mutants used

in our evaluaton (Section 4.1) and the experimental setup
(Section 4.2). Our experiments ran on a high-performance
cluster of commodity computing nodes; each node had 6–12
2.6Ghz Intel Xeon cores.

4.1 Projects
Table 1 lists the projects used in our evaluation. We tab-

ulate the project name, the number of non-comment lines of

code, the number of test cases used in our evaluation, what
an atomic part is, the total number of mutants used, and the
minimum and maximum number of mutants killed by each
test case. The last two columns are the number of tests
in a randomly generated test pool for each project and the
number of minimal mutants determined for each project;
these last two columns are metrics relevant for our analy-
sis involving minimal mutants (Section 4.1.3). We use four
small- to medium-size C projects: SpiderMonkey is Mozilla’s
JavaScript engine, YAFFS2 is a popular flash file system used
in the early Android versions, Grep is the standard Unix util-
ity for searching files, and Gzip is the standard Unix utility
for compressing/decompressing files.

4.1.1 Test Cases
We use automatically generated test cases for SpiderMon-

key, YAFFS2, and Gzip, and we use manually written test
cases for Grep. The SpiderMonkey test cases are JavaScript
programs randomly generated using the highly successful
jsfunfuzz [21] fuzzer. The YAFFS2 test cases are sequences
of API calls to the file system, randomly generated using
a publicly available test generator for YAFFS2 that has been
used by several research projects on test generation [4,10,11].
The Gzip test cases are files that have 500 to 3,500 random
bytes. For Grep, we use the manually written test cases ob-
tained from SIR [6]; each test case consists of command-line
arguments to Grep.

How best to measure the size of a test case is an open ques-
tion in software testing research. Researchers use a variety
of metrics, such as the number of API calls, execution time,
or number of assertions. As in our previous work [10,11], we
define size as the number of atomic parts of atest case. The
concrete part differs from one project to another, as sum-
marized in Table 1. A part is a JavaScript code fragment
in the generated program for SpiderMonkey, one API call in
the generated sequence of API calls for YAFFS2, a character
in the command-line arguments for Grep, and simply one
byte in the input file for Gzip.

We limit the size of generated test cases to enable experi-
ments to finish in a reasonable amount of time. Time com-
plexity of the basic delta-debugging algorithm is quadratic [27]
in the number of parts in a test case. For SpiderMonkey,
YAFFS2, and Gzip, we control the number of parts based
on the specific limits from our initial experiments, trying to
finish most test-case reductions within 30 minutes. In par-
ticular, we limit each SpiderMonkey test case to be exactly
200 lines of JavaScript code, each YAFFS2 test case to be a
sequence consisting of exactly 200 API calls, and each Gzip

test case to be a file consisting of at most 3,500 bytes. For
Grep, we use all the test cases manually written by oth-
ers [6], and we do not limit their sizes; the largest test case
for Grep has 146 characters in the command-line arguments.

4.1.2 Mutants
We use a mutation-testing tool for C code developed by

Andrews et al. [2] and used in many previous studies. Quot-
ing [2], the tool provides the following four classes of muta-
tion operators: “(1) Replace an integer constant I by 0, 1,
−1, ((I) + 1), or ((I) − 1); (2) Replace an arithmetic, re-
lational, logical, bit-wise logical, increment/decrement, or
arithmetic-assignment operator by another operator from
the same class; (3) Negate the decision in an if or while
statement; and (4) Delete a statement.”



Table 1: Four projects used in our evaluation and some statistics of their test cases and mutants

project NCLOC # test cases definition of an atomic part # mutants min killed max killed test pool # minimal mutants

SpiderMonkey 81, 920 99 A statement of JavaScript program 69, 067 8101 12825 850 256
YAFFS2 10, 356 99 One API call 15, 046 2071 3439 1000 57
Grep 8, 433 112 A character in command-line arguments 7, 591 19 993 840 99
Gzip 5, 129 73 A byte in the input file 7, 175 1813 2046 1000 32

Each mutant was compiled with GCC using the highest
optimization -O3 and compared with other binaries to avoid
trivially equivalent mutants [18]. About 15% of the gener-
ated mutants were found to be trivially equivalent. Table 1
shows the number of mutants for each project and the min-
imum and maximum number of mutants killed by each test
case. A mutant is considered killed if its output (including
stdout, stderr, and produced files) differs from the output
of the original code.

4.1.3 Minimal Mutants
To evaluate N -mutant reduction, we use two methods to

select mutants. The first method is simple random sam-
pling: we select N mutants from the set of mutants killed
by the test case. In the second method, we wanted to al-
leviate the impact of redundant and trivial mutants on the
results. Redundant mutants are those mutants that are se-
mantically equivalent to one another, albeit syntactically dif-
ferent. Trivial mutants are those mutants that are killed by
a majority of test cases. The impact of these two kinds
of mutants can be alleviated by using minimal mutant sets
introduced by Ammann et al. [1].

A minimal mutant set is computed based on an original
set of killed mutants and a test suite, The first step is to
construct a minimal test suite from the original test suite,
i.e., a subset of the original test suite that kills all the mu-
tants killed by the original test suite. Removing any test
case from the minimal test suite means failing to kill some
mutant. Given a minimal test suite, a minimal mutant set is
the smallest subset of mutants from the original mutant set
such that killing all the mutants from the minimal mutant
set (using the minimal test suite) also kills all the mutants
from the original set of killed mutants.

We generated minimal mutant sets for projects as follows:
first, we generated a large test pool of random test cases
for each project. We used these larger pools because mini-
mal mutants require (almost) adequate test suites to ensure
that useful mutants are not removed. Then, we obtained
the complete set of mutants killed by each test pool. We
minimized each test pool with respect to its corresponding
project’s set of mutants to obtain the minimal set of test
cases from the test pool that kill all those mutants, using a
greedy test-suite reduction algorithm [26]. Using this mini-
mal set of tests, we minimized the mutant set to obtain the
minimal mutant set. Table 1 shows the number of test cases
in these pools and the sizes of the minimal mutant sets. We
later compare randomly selected mutants with minimal mu-
tants by reducing the test cases taken from the large test
pool for each project.

4.2 Experimental Setup
For C%-coverage, we perform experiments with the non-

adequacy value C chosen from the set {70, 80, 90, 95, 100}.
For each original test case, we create a reduced test case
that preserves at least C% of the statements covered by

the original test case. We use GCov to obtain the set of
statements covered by each test case.

For N -mutant, we perform experiments with the non-
adequacy value N chosen from the set {1, 2, 4, 8, 16, 32}. For
each original test case, we first determine what mutants the
test case kills and then randomly select N of those mutants
(for a small number of test cases that kill fewer than N
mutants, we use all mutants) to create a reduced test case
that preserves these N selected mutants. To compare ran-
domly sampled mutants with the harder to kill minimal mu-
tants, we take each test case from the minimal test suite
(constructed from the large test pool is described in Sec-
tion 4.1.3) and reduce the test case while preserving one
randomly selected mutant and then reduce it to perserve
the one mutant (N = 1) from the minimal mutant set that
the test case uniquely contributes to the minimal mutant
set. If a test case kills no mutants in the minimal mutant
set, we do not reduce the test case at all.

Performing test-case reduction can take a long time for
some test cases. We limit reduction to 30 minutes per test
case. We observed that N -mutant test-case reduction starts
having many timeouts when N gets greater than about 40,
so we restrict our choices of N to values less than 40. The
experiments ignore test cases whose reduction times out.

For each reduced test case, we further generate three ran-
domly reduced test cases that have exactly the same size as
the reduced test case. We create such a randomly reduced
test case by starting from the original test case and iter-
atively choosing to remove (uniformly randomly selected)
one part at a time until the resulting test case has the same
number of parts as the reduced test case. We perform ran-
dom test-case reduction merely as some kind of baseline to
show the benefits of preserving benefits of a test case; we
do not actually recommend actually using random test-case
reduction in practice.

5. RESEARCH QUESTIONS
Our evaluation addresses the following questions about

the effects of non-adequate test-case reduction:

• RQ1: How much are test cases reduced (SRR)?

• RQ2: How much are code coverage and mutants killed
preserved (CPR and MPR)?

• RQ3: How do SRR, CPR, and MPR trade off?

• RQ4: How do CPR and MPR for our approaches com-
pare to CPR and MPR for random test-case reduction?

5.1 RQ1: SRR
Figures 1 and 2 summarize the results for SRR on the

test cases reduced using C%-coverage and N -mutant, re-
spectively. For each project and level of C and N , the
boxplots show the distribution of SRR. From the figures,
we see that both approaches can greatly reduce the size of
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Figure 1: SRR for C%-coverage
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Figure 2: SRR for N -mutant

test cases. In most configurations, the median SRR for all
test cases reduced using either C%-coverage or N -mutant is
greater than 50%: the size of a reduced test case is usually
less than half the size of the original test case. For both
reductions, Grep behaves somewhat differently, with median
SRR. The likely cause is the small size of test cases in Grep:
most have < 100 characters.

SRR decreases when C or N increases, as expected. We
emphasize that SRR for C = 100 is particularly low com-
pared with SRR for other values; allowing coverage to miss
even a small set of statements increases SRR substantially.
For example, for Grep, the median SRR for C = 100 and
C = 95 differ by over 30pp3.

5.2 RQ2: CPR and MPR
Figures 3 and 4 summarize the results for CPR on the

test cases reduced using C%-coverage and N -mutant, re-
spectively. CPR is, of course, always at least as high as
the C% value given to the reduction. From Figure 3, for
SpiderMonkey and YAFFS2, CPR is almost exactly the given
C%, but for the other two projects, CPR is sometimes much
higher. Overall, the median CPR across different values of
C across all projects ranges from 70.07% to 100%.

Figure 4 illustrates the relation between different values
of N and CPR. The range of median CPR here goes from
78.39% to 100%, which is quite high, showing that preserv-
ing even just one mutant leads to CPR close to 80%.

Figures 6 and 7 summarize the results for MPR on the
test cases reduced using C%-coverage and N -mutant, re-
spectively. For C%-coverage reduction, the median MPR
ranges from 41.51% to 100% across all projects and all val-

3The “pp” metric (from “percentage points”) represents dif-
ferences in values that are already expressed as percentages.
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Figure 3: CPR for C%-coverage
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Figure 4: CPR for N -mutant
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Figure 6: MPR for C%-coverage
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Figure 7: MPR for N -mutant
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Figure 5: SRR vs. MPR, contrasting minimal mutants against randomly chosen mutants, for N -mutant test-case reduction

ues of C. Concerning general trends, we see that MPR is
positively correlated to the value of C: more coverage pre-
served yields more mutants killed. With C of 95 or higher,
the reduced test cases have the median MPR of at least 70%
for all projects. Kendall-τ values for SpiderMonkey, YAFFS2,
Grep, and Gzip were 0.89, 0.80, 0.67, and 0.76, respectively,
all with p < 0.001, showing a strong positive correlation
between the value of C and MPR.

Comparing across the projects, we see that YAFFS2 has the
lowest median MPR when reduced using N -mutant reduc-
tion (33.10%). YAFFS2 test cases are sequences of function
calls to the file-system API, such as mount, open, or close.
There is little dependency across those functions (e.g., only a
few functions call one another), so it is the YAFFS2 test cases
that effectively control the interaction among the functions
by the ordering of the API calls. Thus, individual mutants
can be isolated reasonably well from the other mutants, due
to better decoupling between functions. On the other hand,
modules in SpiderMonkey, like in any other interpreter or
compiler, are deeply intertwined. Thus, each test case exer-
cises multiple functions. As a result, killing a mutant in the
parsing module, may also correlate with killing many other
mutants in passes before or after parsing, such as lexing or
interpretation. Therefore, it is expected that reduced test
cases based on even a single mutant in SpiderMonkey could
still kill a large portion of the mutants killed by the original
test cases, with median MPR of 60.26%.

As N grows, MPR of the reduced test cases increases,
unsurprisingly: more interdependent mutants can be killed.
This observation is validated by the Kendall-τ values: 0.66,
0.69, 0.56, and 0.51 for SpiderMonkey, YAFFS2, Grep, and
Gzip, respectively, all with p < 0.001, suggesting that there
is a strong positive correlation between N and MPR. How-
ever, a trade-off is that as N increases, the time to perform
the reduction increases as well, because intermediate test

cases need to be checked against more mutants, and the
chance of timeout increases.

In addition to performing N -mutant test-case reduction
using N random mutants, we also used minimal mutants.
Figure 5 shows for each project the relationship between
SRR and MPR for test cases from the large, randomly gen-
erated test pool reduced using N -mutant with a randomly
selected mutant or a minimal mutant. These plots only show
the values for N = 1, because each test case can kill at most
one minimal mutant. Surprisingly, there is no statistically
significant difference (p < 0.001), except for YAFFS2. For
YAFFS2, test cases reduced based on minimal mutant often
result in a better trade-off between SRR and MPR: for the
same SRR, test cases tend to have a higher MPR.

5.3 RQ3: Trade-Offs
Figure 8 shows the trade-off between SRR and CPR for

YAFFS2 test cases reduced using C%-coverage andN -mutant.
We show plots only for YAFFS2 due to space reasons; the
plots for the other projects are similar. For C%-coverage,
the CPR values cluster very closely with C values, but the
SRR values vary, with higher SRR usually corresponding to
lower CPR. For N -mutant, many test cases have high SRR,
but CPR values vary widely.

Figure 9 shows the trade-off between SRR and MPR for
SpiderMonkey test cases. Again, we show plots only for Spi-
derMonkey; the other projects are similar. For C%-coverage,
we obtain good SRR and MPR without preserving all cov-
erage: many points for C = 90 or C = 95 cluster in the
upper-right of the plot. For N -mutant, more reduced test
cases have high SRR, and larger N values have higher MPR.

Finally, Figure 10 visualizes the trade-off between CPR
and MPR for all projects. For both plots, we see a linear
correlation between CPR and MPR, especially for test cases
reduced using C%-coverage. This trend suggests that the
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Figure 8: SRR vs. CPR for YAFFS2
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Figure 9: SRR vs. MPR for SpiderMonkey
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Figure 10: CPR vs. MPR for all four projects

more statements a test case covers the more mutants it kills.
ForN -mutant, especially for YAFFS2, there is more clustering
towards the right side of the plot, indicating that even with
a high CPR, MPR can still vary widely for the test cases
reduced using N -mutant.

5.4 RQ4: Comparison with Random
We also compared our approaches to simple random test-

case reduction that simply forces a certain size reduction on
test case. For each test case reduced using non-adequate
test-case reduction, we generate three reduced test cases of
exactly the same size, by randomly removing parts from the
original test case. SRR is exactly the same for a randomly
reduced test case as for its corresponding test case. There-
fore, we measure only CPR and MPR for these randomly
reduced test cases.

Figure 11 shows boxplots that compare CPR for test cases
reduced using C%-coverage and N -mutant with test cases
reduced randomly. We see from these figures that the me-
dian CPR computed for test cases reduced by non-adequate
test-case reduction is greater than the median CPR com-
puted for the test cases reduced randomly. Figure 12 shows
the same comparison for MPR. Once again, we see from
these plots that the median MPR computed for test cases
reduced by non-adequate test-case reduction is greater than
the median MPR computed for the test cases reduced ran-
domly. The median CPR/MPR for test cases reduced us-
ing non-adequate test-case reduction is greater than the me-
dian CPR/MPR for the test cases reduced randomly. A val-
ues of randomly reduced test cases are significantly different
(p < 0.001) from the test cases reduced using non-adequate
test-case reduction.

This is hardly surprising, but confirms that our approaches
add value. For YAFFS2, there is also a specific cause for the
extreme differences due to the validity of the reduced test
cases: if the original test case is valid, our non-adequate
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Figure 11: Comparing CPR of non-adequate test-case re-
duction with random test-case reduction
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Figure 12: Comparing MPR of non-adequate test-case re-
duction with random test-case reduction
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Figure 13: Percentage of mutants used for N -mutant test-
case reduction vs. MPR

test-case reduction is unlikely to produce an invalid reduced
test case. Each valid test case in YAFFS2 starts by calling a
startup function that prepares for mounting the file system.
If a test case does not start with this function, the other
function calls in the test case fail. The random test-case re-
duction is unaware of this, so if it has to reduce a sequence
of 200 function calls to 4, each function call, including the
startup function, has only 4

200
= 2% chance to be in the re-

duced test case, i.e., there is a high chance the reduced test
case does not include the startup call and is invalid.

6. DISCUSSION
Inter-dependencies among mutants. From the MPR

values for N -mutant reduction, we see that focusing the re-
duced test case to preserve only a small number of mutants
killed by the original test case still kills a large fraction of all
those mutants. For example, by reducing test cases based
on only one mutant (i.e., N = 1), the median MPR values
are 60.26%, 33.10%, 80.28%, and 43.92% for SpiderMonkey,
YAFFS2, Grep, and Gzip, respectively. These high MPR val-
ues for such a small N suggest that many mutants killed by
a test case have strong dependencies. Figure 13 illustrates
this. The x-axis shows the ratio of N to the total number
of mutants killed by the original test case, i.e., N/Mut(to),
and the y-axis shows the corresponding MPR. For space rea-
sons, we show plots only for YAFFS2 and Grep; the other two
projects are similar to YAFFS2, but Grep is different from all
others. We see that a test case reduced based on less than
0.5% of the mutants can still kill more than 50% of origi-
nally killed mutants. Note that when a test case reduced to
kill some mutant M1 also kills another mutant M2, it does
not imply that M1 subsumes M2 in the sense that all tests
killing M1 also kill M2 [17].

Time for non-adequate test-case reduction. The
time for reducing a test case depends on (1) the number of



Table 2: Time in seconds to perform test-case reduction

project C%-coverage N -mutant
Min Med Max Min Med Max

SpiderMonkey 2 74 1003 1 9 1746
YAFFS2 12 102 794 1 24 1700
Grep 1 1 15 1 5 483
Gzip 4 430 1544 1 82 1799

parts in the test case, (2) the time to execute the test case,
and (3) the cost of computing coverage or mutants killed.
Table 2 summarizes the time required for test-case reduction
in our experiments. For 50% of the test cases in SpiderMon-

key, YAFFS2 and Grep, both C%-coverage and N -mutant
non-adequate test-case reduction finish relatively fast (un-
der two minutes for C%-coverage and under one minute for
N -mutant). Gzip has significantly more parts (up to 3,500)
than the other projects, which increases the time needed for
reduction. In our experiment, all coverage-adequate reduc-
tion (i.e. C = 100) of Gzip test cases failed due to timeout,
but all C%-coverage non-adequate test-case reduction fin-
ished within the time limit, with 50% of them being reduced
in under ten minutes.

7. THREATS TO VALIDITY
Based on our results, it appears that non-adequate test-

case reduction can substantially reduce the size of test cases
while still preserving much of test case quality. As usual,
experimental result may not generalize to other projects be-
yond the four we evaluated or even to other test cases and
mutants than the ones we used for these projects. A partic-
ular threat is how we measure quality. We do not consider
some interesting metrics at all (e.g., the execution time of
reduced test cases), and the ones used are imperfect.

MPR considers all the mutants killed after performing N -
mutant test-case reduction even though the reduction al-
ready uses some killed mutants as guidance to reduce the
test case; one may argue that by construction the reduced
test cases will be good by this metric, or, dually, that this
metric is bad. However, we perform non-adequate test-case
reduction that does not aim to preserve all mutants killed by
the original test case, while MPR does consider all mutants
killed. Therefore, we do not produce test cases that nec-
essarily have a high MPR. Moreover, we also measure the
CPR of these reduced test cases, and we do not use coverage
to guide N -mutant test-case reduction.

Mutants of C code can introduce undefined behavior. For
example, a mutant that removes initialization of a local vari-
able can introduce such behavior. We did not explicitly re-
move such mutants, but we expect them to be relatively few.
Therefore, we generate a large number of mutants for each
project, reducing the chance that mutants that introduce
undefined behavior significantly bias our results.

Another problem was that of the non-deterministic load
on the shared high-performance cluster. Due to nodes hav-
ing different configurations, and with different loads, a fixed
timeout of 30 minutes may not correspond to the same
amount of reduction. Hence, some mutants that happened
to be evaluated on a slow machine may have been considered
killed due to timeout while similarly slow-running mutants
evaluated on a fast machine may have managed to complete
successfully, thereby not considered killed.

8. RELATED WORK
Test-case reduction aims to reduce the size or complexity

of test cases while preserving some desirable properties of
these test cases. Reduction is essentially a search in the
space of possible modifications to the original test case. In
many uses, the only modification allowed is removing a part
of the test case [23,24,27].

One goal of test-case reduction is to speed up testing, and
this goal is shared with many techniques for regression test-
ing, including regression test selection, test prioritization,
and test-suite reduction [26]. The most similar to test-case
reduction is test-suite reduction. Whereas test-case reduc-
tion aims to reduce a single test case, test-suite reduction
aims to reduce the size of an entire test suite while pre-
serving some desirable properties for the reduced test suite.
Many studies investigated test-suite reduction techniques
(e.g., [13,14,20]), including our recent work on non-adequate
test-suite reduction [22]. However, this paper presents the
first study of non-adequate test-case reduction. Test-case re-
duction and test-suite reduction can be easily combined [11],
either in succession or in tandem.

Delta-debugging [27] is the best known technique for re-
ducing the size of a failing test case: it reduces the test
case so that it still fails but no single part can be removed
without passing. Cause reduction [10, 11] generalizes delta-
debugging by reducing a test case so that it still has the same
coverage (or another property) but no single part can be re-
moved without losing coverage (or another property). Our
non-adequate test-case reduction further generalizes cause
reduction by not requiring a test case to preserve the com-
plete property the original test case satisfies.

9. CONCLUSION
Having smaller test cases is desirable for developers: such

test cases run faster and make debugging easier. Test-case
reduction reduces the size of test cases. Previous research
has studied how to conduct test-case reduction while com-
pletely preserving some property of the original test case,
e.g., failure or coverage. We evaluate a more general ap-
proach to test-case reduction, called non-adequate test-case
reduction, that allows only partially preserving a property.
Specifically, we propose and evaluate C%-coverage and N -
mutant. Our results show that non-adequate test-case re-
duction can substantially reduce the size of test cases while
still preserving a large percentage of all coverage or mutants
killed by the original test cases. For C%-coverage in particu-
lar, simply giving up on a very small percentage of coverage
can greatly reduce reduction time and produce a higher gain
in size reduction than the associated loss in coverage. The
idea of non-adequate test-case reduction greatly expands the
options available in exploring trade-offs between test suite
size (measured by adding sizes of individual test cases) for
fault-detection capability.
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