
Coverage Rewarded: Test Input Generation via
Adaptation-Based Programming

Alex Groce
School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, OR
agroce@gmail.com

Abstract—This paper introduces a new approach to test input
generation, based on reinforcement learning via easy to use
adaptation-based programming. In this approach, a test harness
can be written with little more effort than is involved in naı̈ve
random testing. The harness will simply map choices made
by the adaptation-based programming (ABP) library, rather
than pseudo-random numbers, into operations and parameters.
Realistic experimental evaluation over three important fine-
grained coverage measures (path, shape, and predicate coverage)
shows that ABP-based testing is typically competitive with,
and sometimes superior to, other effective methods for testing
container classes, including random testing and shape-based
abstraction.

Keywords-software testing; reinforcement learning

I. INTRODUCTION

The majority of modern software systems rely on at least
one module that (1) presents a well-defined set of API calls or
events that (2) modify a (potentially complex) state. Container
and string libraries, database packages, GUI back-ends, and
other examples appear in a wide range of programs. Such
components are often both critical and more reused than
other software artifacts, increasing the payoff for effective
testing, which is currently the most effective method for
verifying rich properties, such as functional correctness, of
these components. Generation of quality tests for an API
automatically has been widely studied [1], [2], [3]. Tools for
generating test input sequences are now widely available, e.g.
the SPIN model checker, which supports model checking of
C code [4], the Java model checker JPF [5], and the concolic
testing tool CREST [6]. Unfortunately, use of these tools
requires programmers to learn a new approach to testing,
sometimes including a new language for describing tests, and
often requires the installation of numerous untested software
packages, including theorem provers, unfamiliar programming
languages, etc.; model checking and concolic testing also
sometimes fail to scale to complex code. These tools are
therefore not yet widely adopted, even when they are highly
appropriate to a testing task. At present, programmers seem
to prefer to code their own tests in the same language as the
program tested rather than use tools that take a program and
produce tests, or that require special compilation or execution
environments.

Random testing, on the other hand, can require no invest-
ment on the part of a programmer beyond the generalization

of unit tests to sequences of random method calls with ran-
dom parameters. Moreover, recent evaluations of methods for
testing container classes have shown that random testing can
often be as effective as approaches based on model checking
[1], [2], [7]. Unfortunately, random testing does not work well
even for all container classes [2]. It would be of benefit to
programmers to have access to other approaches that strike
a similar trade-off between effectiveness and ease-of-use as
random testing but work well in cases where random testing
does not do well.

Adaptation-based programming (ABP) [8] allows a pro-
grammer to exploit reinforcement learning [9] to “implement”
difficult algorithms. Rather than writing a function to compute
a value, the programmer simply asks the ABP-library to
“suggest” a value, given a context (the context is information
on the current state of the system). The programmer then
signals a reward to the ABP library based on the results of
taking this “advice.” The ABP-library uses a reinforcement
learning (RL) algorithm to optimize expected reward. RL is an
approach to the problem of learning controllers that maximize
expected reward in controllable stochastic transition systems.
E.g., to program tic-tac-toe in ABP, a programmer would allow
the library to suggest a move based on the board state, and
provide a reward if the moves resulted in a win. Each game
would constitute one “episode” of learning, since moves in
previous games have no influence on the reward for future
games. Initially, behavior of the ABP-based player would be
essentially random. Over time, however, the adaptive process
(using the RL algorithm) should improve its behavior.

The key insight of this paper is that a programmer can take
an ABP approach to generating tests for a program with a
clear API. She lets the ABP library select methods to call
and parameters for the selected method calls for the program
being tested (called the Software Under Test, or SUT). In
practice, the programmer essentially writes a random testing
harness, replacing calls to a pseudo-random number generator
with calls to the suggest method, using, e.g., a string
representation of the SUT’s current state as a context. Each
test sequence (from container initialization until we begin a
new test on a new container) constitutes an episode. Figure 1
shows an example ABP test harness. Notice that the harness is
just a standard Java program, making calls to an ABP library.

What can our programmer reasonably use as a reward, in
order to “encourage” an adaptive process to thoroughly test

AdaptiveProcess test=AdaptiveProcess.init();
Adaptive<String,TestOp>opChoice=test.initAdaptive(String.class,TestOp.class);
Adaptive<String,TestVal>valChoice=test.initAdaptive(String.class,TestVal.class);
for (int i = 0; i < NUM_ITERATIONS; i++) {

// Empty test and reg objects
SUT = new SplayTree(); Oracle = new BinarySearchTree();
// The state is simply a linearization of the SplayTree
String context = SUT.toString();
for (int j = 0; j < M; j++) {

// Used just like pseudo-random number generator
// AllVals fields contain a set of all values of the type
TestOp o = opChoice.suggest(context, TestOp.AllVals);
TestVal v = valChoice.suggest(context, TestVal.AllVals).ordinal();
switch (o) {

case INSERT: r1 = SUT.insert(v); r2 = Oracle.insert(v); break;
case REMOVE: r1 = SUT.remove(v); r2 = Oracle.remove(v); break;
case FIND: r1 = SUT.find(v); r2 = Oracle.find(v); break;

}
assert ((r1 == null && r2 == null) || r1.equals(r2));
context = SUT.toString(); // Update the context
if (!states.contains(context)) { // Is this a new state?

states.add(context); test.reward(1000);
}

}
test.endEpisode();

Fig. 1. ABP Test Harness for SplayTree Using BinarySearchTree as Oracle

code? The SplayTree example provides an instance of the
general answer. After each test step, the harness checks to see
if the current SUT state has been observed before. If not, it
adds it to the set of visited states and rewards the ABP library
for exposing new behavior of the SUT. In other words, the
programmer can provide rewards based on increases in test
coverage. It is easy to augment instrumentation to not only
record coverage, but to signal an appropriate reward for new
coverage. This gives the ABP’s adaptive process a goal that
the programmer can hope will correlate with effective testing,
with no overhead beyond that required in computing coverage.
Initially, choices will be random, and ABP-based testing will
be random testing. However, after the adaptive process has
learned a policy, the choices will usually be chosen to optimize
expected reward; the remainder of the time the process will
provide a random value. This alternation of “optimal” choices
and random choices ensures that testing can improve over time
but that exploration is never completely abandoned. Note that
the adaptive process will only receive a reward for its first
exploration of a new coverage element, whether that element is
a statement, a branch, a shape, a path, or a predicate valuation.
Experimental results indicate that this unusual reward structure
does not prevent RL from learning a policy that, over time,
improves test suite coverage. Informally, we can think of this
as playing a game against an opponent who never “falls for”
the same trick twice.

II. RELATED WORK

The problem of generating test input sequences has recently
considered generation of tests for container classes, with
random testing, shape-abstraction based “model checking” and
symbolic execution emerging as the most promising methods
[1], [2]. The only previous work on using reinforcement
learning in software testing, to our knowledge, is that of
Veanes et al. [10], which considered only model-based online
testing of reactive systems and a reward based on an ad hoc
planning-type problem. The general idea of “learning” either
tests or specifications is also relatively widely studied. E.g.,
Andrews et al. [3] used genetic algorithms in the Nighthawk
tool. ABP-based testing is similar in that both approaches learn
how to construct test cases rather than learning an ideal set
of test cases; however, ABP-based programming learns what
method to call and what input to provide based on a context,
while Nighthawk aims at tuning probabilities for better random
test generation.

III. EXPERIMENTAL RESULTS

Most of the SUTs included in the experimental results are
taken from the previous literature on test input generation; in
particular 13 subjects are taken from the work of Sharma et
al. [2] which combines subjects from several other studies.
Two additional popular container classes (a splay tree and a
chaining hash table) were added for this paper, both from stan-
dard textbook implementations. A test case largely follows the
form: SUT = new Container(); SUT.m1(i1); ...;

SUT.mM (iM);, where ∀n : 0 ≤ in < N . In some cases (e.g.,
heaps), methods require more than one input parameter, or use
of a vector to track nodes, but a test case is still a sequence of
method calls on the SUT. M (test case length) and N (input
range) in all experiments are set at 200 and 20, a “good” value
tuned by experiments with random testing. The coverage of a
test suite is the union of coverage for all test cases.

Random testing been recognized as an effective method
for testing API-based programs such as container classes [7],
[11]. Here, a random test consists of M randomly selected
method calls with inputs chosen randomly from N integers.
Exploration based on shape abstraction is performed as in the
exposition of Sharma et al. [2].

The framework for ABP-based testing is almost identical
to that used for random testing. The random selection of
methods and input parameters is replaced with the choice
method of an adaptive process, with the additional parameter
of a context. The adaptive process is rewarded each time a
test results in coverage of a new branch, statement, path,
or shape. In order to demonstrate that effective coverage
does not depend on explicit rewards, the framework does not
reward predicate coverage. Experiments were performed with
a variety of obvious contexts, ranging from fully concrete to
the shape abstractions used in previous model checking efforts,
in some cases augmented with basic coverage information. The
results reported below are based on a configuration pairing
a shape abstraction and a count of the current test case’s
branch and statement coverage. While this configuration did
not always perform best, it was consistently effective and
provides a fair baseline for comparison, with no tuning of
ABP to the particular SUT.

The test suites generated by each method are evaluated
in terms of coverage metrics. All SUTs are automatically
instrumented for branch and statement coverage by CodeCover
(http://codecover.org). Since methods obtained the same (ex-
cellent) branch and statement coverage for almost all SUTs,
evaluation is based on three much more difficult-to-obtain cov-
erages: path, shape, and predicate coverage. Shape coverage,
to our knowledge not used in previous evaluations of testing
approaches, simply applies the underlying rationale of shape
abstraction as a coverage metric: it is desirable to cover many
different shapes of a container, ignoring the contents of the
structure. This paper adopts the same predicate coverage code
as used in other studies [2]. Metrics are likely correlated, but
are independent, with no subsumption relationships. Rather
than base an evaluation on the effectiveness of fixed-size test
suites produced by each method, we allow each method to
test each subject for a fixed amount of time, on the same
hardware, using a common framework. Evaluation is based
on coverage obtained by each testing method for three time
budgets. A budget of only 30 seconds represents a reasonable
“quick check” for errors, e.g. after every compile. Budgets
of 30 minutes and 1 hour show how much improvement in
coverage can result from more in-depth testing. A 6GB heap
was used in all experiments. Experiments were duplicated 5
times, with different seeds, showing no overlap in rankings

with different seeds: e.g, if ABP-based testing performed better
than random testing, it performed better for all seeds.

Basing experimental results on real-time poses an obvious
danger: if one method is implemented more efficiently than
others, it will have a major advantage. Because it is so easy to
implement, this may produce results that favor random testing.
In order to adjust for the additional overhead of replay in shape
abstraction, all such experiments were allowed time equal to
twice the limit. This rough estimate of costs is based on a
comparison with exhaustive testing (using the same replay
mechanism) and random testing. No adjustment was applied
for the inefficiency of the current ABP library, in order to show
that, even with a primitive prototype using slow Java strings to
represent contexts, ABP-based testing is competitive with or
superior to random testing and shape abstraction for interesting
container classes.

Table I shows the results of testing a large number of Java
containers, summarizing over 12 straight days of computation.
In the table, X indicates that a particular method obtained the
highest coverage obtained by any method for that SUT and
amount of testing time. In some cases, more than one method
tied for best coverage; XX indicates unique best coverage.
× indicates unique worst coverage. For all metrics other
than predicates, maximum coverage increased considerably
with more time spent testing. The final three columns of the
results show the actual maximum coverage value obtained
by any method, and the difference (∆) between best and
second-best coverage value. Due to space budgets, we have
omitted the 30 second results except in cases where random
testing did not perform best, and omitted results for LinkedList
and NodeCachingLinkedList as the relative performance of
methods was so similar to that shown in SinglyLinkedList.

The density of Xand XXsymbols conveys a simple sum-
mary of the results: random testing performed well on a wide
array of test subjects, ABP-based testing performed second
best, and shape abstraction performed least well for most
SUTs. Each method performed best on at least one coverage
metric, for at least eight SUT/time combinations. ABP-based
testing performed especially well on BinomialHeap, FibHeap,
and HeapArray, suggesting its strength lies in testing SUTs
requiring complex input sequences, a weakness of random
testing observed in previous work [1], [2]. However, ran-
dom testing was the best method for testing FibonacciHeap.
Moreover, ABP-based testing also generally did better than
random testing for linked lists, the simplest of the containers
considered. In general, the experimental data does not support
a claim for dominance for either random testing or ABP-
based testing. Both methods are competitive, and results vary
widely and unpredictably with SUT. It is best to use both
methods if there is sufficient test budget. For very small
budgets it may be best to only use random testing, as it
generally performed best for the 30 second test budget. Shape
abstraction appears to be less effective overall, but for some
SUTs it was the most effective method for obtaining path
coverage. This experimental data clearly supports ABP-based
testing, even with an inefficient library implementation and no

TABLE I
COVERAGE RESULTS

SUT + Time ABP Random Shape Abstraction Max Coverage(∆ vs. 2nd Best)
PA SH PR PA SH PR PA SH PR PA SH PR

AvlTree 30m × XX XX X × × X 428(96) 16925(12005) 104(1)
AvlTree 1h X XX XX X × × X 442(99) 22668(15320) 104(0)

BinomialHeap 30s XX XX XX × × × 233(54) 27(11) 304(8)
BinomialHeap 30m XX XX XX × × × 1378(523) 39(12) 327(12)
BinomialHeap 1h XX XX X × × × X 1735(620) 38(3) 327(11)

BinTree 30m X XX XX X × × X 4487(3094) 122921(90605) 157(0)
BinTree 1h X XX XX X × × X 5657(3105) 224828(143751) 157(0)

ChainedHashTable 30m XX X XX X × × X 342(299) 386689(301362) 6(0)
ChainedHashTable 1h XX X XX X × × X 323(281) 787968(344720) 6(0)

FibHeap 30s × XX XX XX × × 620(324) 629(526) 115(6)
FibHeap 30m XX XX X × X × × 24584(16506) 2519(1933) 118(14)
FibHeap 1h XX XX X × × X × 51608(37025) 3571(2637) 118(14)

FibonacciHeap 30m XX XX XX × × × 18522(14659) 5047(1343) 506(266)
FibonacciHeap 1h XX XX XX × × × 32099(24586) 8723(1614) 538(265)

HeapArray 30s XX XX XX × × × 283(33) 344(256) 69(9)
HeapArray 30m XX XX X × X × × 3107(2486) 7991(6815) 71(6)
HeapArray 1h XX XX X × X × × 4532(3799) 13097(11921) 71(2)

IntAvlTreeMap 30m X XX XX X × × × 624(111) 3113(526) 225(10)
IntAvlTreeMap 1h X XX XX X × × × 638(51) 3937(326) 225(0)

IntRedBlackTree 30m XX XX XX × × × 708(173) 6943(2814) 379(4)
IntRedBlackTree 1h XX XX XX × × × 755(139) 8713(2830) 379(2)

SinglyLinkedList 30s × XX × XX × XX 699(81) 189(155) 67(4)
SinglyLinkedList 30m XX X × × X XX X 3875(2240) 187(83) 67(0)
SinglyLinkedList 1h XX × × × X XX X 4999(2337) 192(61) 67(1)

SplayTree 30m X XX XX X × × × 2408(957) 50870(22885) 262(3)
SplayTree 1h X XX XX X × × × 2969(1109) 79223(29803) 262(3)
TreeMap 30m × XX XX XX × × 671(114) 5154(1006) 358(2)
TreeMap 1h XX XX XX × × 697(82) 6637(872) 358(2)
TreeSet 30m × XX XX X × × X 707(105) 6668(1429) 334(2)
TreeSet 1h X XX XX X × × X 805(112) 8666(20) 334(0)

customization in rewards or context, as competitive with the
container testing methods previously considered most effective.
Given that the implementation effort for ABP-based testing is
little more than that required for random testing this makes
a very compelling case for adding ABP-based testing to the
arsenal of effective test input generation methods.

IV. FUTURE WORK

This paper presents only a very preliminary investigation of
this approach; on the empirical side, obvious next efforts are
application to more complex systems (e.g. file systems) that
are already tested using random testing, comparisons of muta-
tion testing results, and longer run-times. More fundamentally,
an investigation of why the ABP based approach succeeds
in many cases, and how, without requiring programmers to
have RL expertise, RL algorithms can be better exploited (or
modified) is critical to making full use of this new technique.

ACKNOWLEDGEMENTS

The author would like to thank Martin Erwig, Alan Fern,
Jervis Pinto, Tim Bauer, Darko Marinov, Milos Gligoric,
Willem Visser, Chaoqiang Zhang, Shalini Shamasunder, Amin
Alipour, and Jamie Andrews.

REFERENCES

[1] W. Visser, C. Păsăreanu, and R. Pelanek, “Test input generation for
Java containers using state matching,” in International Symposium on
Software Testing and Analysis, 2006, pp. 37–48.

[2] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov, “Testing
container classes: Random or systematic?” in Fundamental Approaches
to Software Engineering, 2011, to appear.

[3] J. Andrews, F. Li, and T. Menzies, “Nighthawk: A two-level genetic-
random unit test data generator,” in Automated Software Engineering,
2007, pp. 144–153.

[4] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2003.

[5] “JPF,” http://babelfish.arc.nasa.gov/trac/jpf.
[6] “CREST,” http://code.coogle.com/p/crest.
[7] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed

random test generation,” in International Conference on Software Engi-
neering, 2007, pp. 75–84.

[8] T. Bauer, M. Erwig, A. Fern, and J. Pinto, “Adaptation-based pro-
gramming in Java,” in Workshop on Partial Evaluation and Program
Manipulation, 2011, pp. 81–90.

[9] R. Sutton and A. Barto, Reinforcement Learning: an Introduction. MIT
Press, 1998.

[10] M. Veanes, P. Roy, and C. Campbell, “Online testing with reinforcement
learning,” in Formal Approaches to Software Testing and Runtime
Verification, 2006, pp. 240–253.

[11] A. Arcuri, M. Z. Z. Iqbal, and L. C. Briand, “Formal analysis of
the effectiveness and predictability of random testing,” in International
Symposium on Software Testing and Analysis, 2010, pp. 219–230.

