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ABSTRACT
This paper describes a flexible and easily extensible predi-
cate abstraction-based approach to the verification of STL
usage, and observes the advantages of verifying programs
in terms of high-level data structures rather than low-level
pointer manipulations. We formalize the semantics of the
STL by means of a Hoare-style axiomatization. The verifi-
cation requires an operational model conservatively approx-
imating the semantics given by the Standard. Our results
show advantages (in terms of errors detected and false pos-
itives avoided) over previous attempts to analyze STL us-
age, due to the power of the abstraction engine and model
checker.

Categories and Subject Descriptors: D.2.4[Software
Engineering]:Program Verification; D.3.1[Programming Lan-
guages]:Formal Definitions

General Terms: Verification, Languages

1. INTRODUCTION
C++ is one of the most widely used programming lan-

guages. Software programs including office applications, data-
bases, games, and critical embedded systems are often imple-
mented in C++. Software model checking for C programs
is widely recognized as providing real benefits for suitable
programs, and is implemented by a number of tools [1, 14,
6]. Previous efforts to model check C++ code are based
on explicit execution of the program; we propose to extend
the popular predicate abstraction framework [12, 2, 7] to the
verification of C++ code using abstract data types (ADTs).

We concentrate our efforts on uses of the Standard Tem-
plate Library (STL) [16], which defines generic containers
and iterators. Use of interesting data structures in C typi-
cally involves direct pointer manipulation and“hand-crafted”
approaches to even common structures such as lists. Con-
siderable effort must be spent in directly abstracting pointer
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behavior, not a strong suit of typical predicate abstraction
engines. In contrast, code using the STL makes the opera-
tions explicit at the level of the data structure — the STL
has made the most difficult part of the abstraction trivial,
e.g., by replacing a for-loop stepping through next pointers
of a struct with a for-loop incrementing an STL iterator
into a list variable. Liskov and Zilles noted that abstract
data types (such as those provided by the STL) allow pro-
grammers to abstract away from the implementation details
of commonly used structures and concentrate on the task at
hand [19]. We observe that abstract data types provide the
same facility in abstraction for verification tools.

Our approach is to produce an operational model of the
behavior guaranteed by the STL standard and apply predi-
cate abstraction to a modified C++ program in which STL
calls have been replaced by an operationally equivalent mod-
el. SatAbs [8, 9] is a predicate abstraction-based model
checker for C programs that we extend to handle a large sub-
set of the C++ language, including objects, (operator) over-
loading, references and templates (without partial special-
ization). Previous abstraction-based model checkers neither
handle C++ programs nor provide an operational semantics
supporting implementation-independent verification of code
using the STL.

The operational model is an implementation of the Stan-
dard Template Library optimized for verification purposes,
as it makes use of non-executable features such as infinite ar-
rays — supported by the logic of our model checker, but not
realizable in compiled code. The C++ model checker han-
dles STL code, once it has been rewritten using the opera-
tional model, with the same standard abstraction-refinement
loop as is used for the rest of the program.

Related Work
Wang and Musser present a dynamic approach for verifying
template code using gdb, which provides correctness proofs
only if loop invariants are provided [22]. CMC [20] can, in
theory, verify C++ code compiled with templates and STL
constructs, but checks implementation-dependent behavior
as it actually executes the code. At the other end of the
spectrum, SAVCBS 2006 presented iterator specification as
a challenge problem, resulting in a number of approaches,
focusing mainly on logical specification rather than practical
verification methods [17, 23, 3, 18]. Cok shows how to use
ESC/Java 2 and JML to verify usage in some cases, but
notes the serious limitations of such an approach [10].

Gregor and Schupp [13] describe STLlint, a static analysis
tool for checking properties of STL code. Their goals are



quite similar to ours: checking the implementation-indepen-
dent properties of STL usage in source code. STLlint relies
on symbolic execution of an executable specification, similar
in spirit to our approach, but without a formalization to
establish the link between the operational semantics and the
STL definition, or the power of model checking to produce
counterexample traces for errors. The latter is critical both
for avoiding spurious errors and for the diagnosis of real
errors.

The contribution of this work is twofold: 1) we extend
predicate abstraction to C++ programs, and 2) in particular
we show that an operational model and the principles of
abstract data types can be combined efficiently to verify
usage of the C++ STL in an implementation-independent
manner.

2. AXIOMATIC SEMANTICS
The C++ standard defines the semantics of the STL in-

formally using pre- and post-conditions — in potentially
ambiguous English text that is not machine-readable. We
axiomatically formalize the semantics of the standard con-
tainers, providing a basis for correctness of an abstract im-
plementation. We define Hoare triples in the “forward”-style
for the methods of the container classes. Hoare-style axiom-
atizations of languages [15] that permit aliasing are prob-
lematic [17, 23, 3, 18, 21]; we reduce the aliasing problem
between iterators to aliasing between elements of an array,
and exclude reasoning about nested data structures. This
section provides a short overview of the formalism we devel-
oped. Those interested in further details may consult the
technical report [4].

We distinguish three types of variables: the set of con-
tainer variables C, the set of integer variables N , and the
set of iterator variables I. By convention, the variable c
denotes a container, {i, j} ⊂ N , and {it, it1, it2} ⊂ I. We
assume that the containers contain elements of some type
T. We denote the set of variables of this type by T , and
by convention, t ∈ T . We distinguish two different kinds
of container variables: active and inactive containers. We
denote active containers with unprimed variables, e.g., c,
and inactive containers by primed variables, e.g., c′. Inac-
tive container variables are used in post-conditions to denote
the pre-state of containers. The set of active containers is
denoted by A ⊂ C.

We define the syntax for integer expressions (IntExpr) in
the usual manner:

IntExpr := N | Z | C.size
| IntExpr ( + | − | ∗ | ...) IntExpr

The expression c.size denotes the size of a container c. We
define the following iterator expressions:

ItExpr := I | ItExpr ( + | − ) IntExpr
| C.begin() | C.end()

Note that expressions of iterator type used in the program
may contain additional operators, e.g., the dereferencing op-
erator. These operators are not permitted in assertions . We
define the following expressions of type T:

TExpr := T | CIntExpr

The expression ci, which corresponds to the syntactic case
CIntExpr, denotes the value of the ith element of the con-
tainer c.

Assertions may relate integers, compare container elements
and iterators, relate iterators to container elements, and may
contain the usual Boolean connectives:

Assert := IntExpr (< | = | ...) IntExpr
| TExpr = TExpr | ItExpr = ItExpr

| ItExpr
IntExpr

� C
| ¬Assert | Assert (∨ |∧ | ...) Assert
| ∀var . Assert | ∃var . Assert

By it
i

� c we denote the fact that the iterator it points to
the ith element of the container c. As a special case, i may
be equal to the number of elements in the container. In this
case, we say that i points to the end of the container c. The

operator
i

� c is only defined for offsets i ∈ {0, . . . , c.size}.
We first formalize the concept of the Iterator, which is

technically a pointer to an element inside a container. Fig. 1
shows the axiomatization of the semantics of the operations
on iterators. Iterators are typically created using the begin()
and end() methods of containers. This is axiomatized by the
two schemata it-begin and it-end.

Two iterators that point to the same location are equal
(schema it-eq). To argue that two iterators are not equal it is
necessary to show that they point to two different positions
inside the same container (schema it-neq).

All containers permit incrementing and decrementing an
iterator. If it points to the position i inside container c, then
it+1 points to the position i+1 (schema it-inc). Note that
it+1 may be c.end(). Similarly, if it points to the position i
and i is greater than zero, then it− 1 points to the position
i− 1 (schema it-dec).

As exemplary Hoare’s rules, we provide the schemata for
the dereference of iterators and the insertion into a list in
Fig 2. Note that schema it-deref-1 can be instantiated if
container c is active only. Let l be an active instance of
list<T>. The insert method takes an iterator it1 and a
reference to an object t. As a pre-condition, it1 must point
to an element of l or be equal to l.end(). The post-condition
guarantees that an iterator valid in the pre-state is also valid
in the post-state. Note that the schema partially defines the
semantics of insert, as update statements about it2 and the
content of l are omitted. Further rules are presented in the
technical report [4].

3. OPERATIONAL MODEL FOR THE STL
In order to verify that a program using the STL obeys

the pre-conditions of the methods of the containers and it-
erators as formalized above, we use an operational model.
The operational model assumes that variables with an array
type of infinite size can be declared.

A container is a tuple (data[∞] , version[∞], size). A ver-
sion number is associated with each offset of the data array
of a container, and the field size encodes the number of
elements stored inside the container.

Similarly, an iterator is a tuple (vcont, offset, version).
The field vcont ∈ A∪̇{⊥} identifies the container into which
an iterator points, or is ⊥ in the case of an iterator that has
not yet been assigned to. The field offset records the offset
inside the container. Finally, the field version is a number
used to assert the validity of the iterator.

Our operational model maintains the following invariant:
In a state s, an iterator it points into a container c if and
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0
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i
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i
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Figure 1: Axiomatization of Iterators

{P ∧ it
i

� c ∧ i < c.size }
t = ∗it; (it-deref-1)

c ∈ A{P [t/t′] ∧ t = ci }

{ P ∧ it1
i

� l } it2 := l.insert(it1, t);
{ P [l/l′][it2/it′2] ∧ i′ = i[l/l′]∧ (lst-ins)

∀it, j < i′ . it
j

� l′ ⇒ it
j

� l∧
∀it, j ≥ i′ . it

j
� l′ ⇒ it

j+1
� l }

Figure 2: Examples of Hoare’s rules

only if the version of the iterator matches the version of the
element it points to (̊c ∈ A denotes the variable c itself):

s � it
i

� c ⇐⇒ s � it.vcont = c̊ ∧ it.offset = i∧
it.version = c.version[i]

(ass-ptsto)

Consequently, it is sufficient to increment the version num-
ber c.version[i] to invalidate all the iterators pointing to the
element c.data[i].

One can show correctness of the operational model with
respect to the formal semantics given in Section 2. The
following three claims are shown for each of the methods:

1. The invariant is maintained (ass-ptsto),

2. the pre-condition of the operational model is at least as
strong as the pre-condition required by the standard,

3. the post-condition of the operational model is at most
as strong as the post-condition guaranteed by the stan-
dard.

The translation of the operational model for vector to
C++ is straight forward, and as an illustrating example, we
provide here the implementation of the insert method:

Iterator vector<T>::insert(Iteraror& it, T& t) {

assert(it.vcont == this);

assert(it.version == version[it.offset]);

size++;

for(int i = size; i > it.offset; i-- )

data[i] = data[i-1];

data[it.offset] = t;

for(int i = it.offset; i <= size; i++ )

version[i]++;

return Iterator(this,version[it.offset],

it.offset);

}

This example omits the consideration of the vector capacity,
in the interests of clarity and space. The assertions check
whether the iterator it is valid or not. Subsequently, the

value t is inserted into the array. According to the seman-
tics of vector, any iterator pointing after the position of
insertion needs to be invalidated. This operation is per-
formed by incrementing the version number of all the ele-
ments with indexes in range [it.offset ... size]. Fi-
nally, the method returns a valid iterator pointing to the
newly inserted element.

Schema lst-ins in Fig. 2 illustrates the difficulties that may
arise with the use of universal quantifiers in post-conditions.
Due to quantification, every iterator variable pointing after
the position of insertion needs to be updated. The opera-
tional model overcomes this issue by considering a safe over-
approximation, i.e, the checker does not incorrectly report
that a program is correct.

A possible over-approximation for a list consists in keep-
ing valid only the iterators whose offsets are not affected by
the insertion. The checker may as a result report spurious
counterexamples, but the approximation may be sufficient
for proving some properties. We hope to implement a re-
finement procedure for ruling out some spurious counterex-
amples introduced by the over-approximation.

4. EXPERIMENTAL RESULTS
The operational model uses an unbounded array in order

to store the container elements. We extend SatAbs in order
to support unbounded arrays in the predicates and in the
transition relation. This is implemented using a decision
procedure for the combined theory of bit-vector arithmetic
and array logic. The procedure is similar to the procedure
presented in [5].

We use the source code of MiniSat as a benchmark for
our technique. MiniSat is “a minimalistic, open-source SAT
solver” [11]. The importance of effective SAT solvers to
many applications, particularly verification, is well known,
and MiniSat is a popular base for research in the field.

We verify the version of MiniSat which uses the vector
class provided by the STL. The MiniSat code is hand-crafted
for high performance, and makes use of templates, refer-
ences, and operator overloading.

We obtain a total of 299 non-trivial safety properties for
the MiniSat code, out of which 272 are due to the pre-



conditions of our operational version of the vector class. The
benchmarks were performed on a Linux machine with a 2.8
GHz Intel Xeon processor. Within 13s (including parsing),
our static analysis is able to prove 150 of the properties. The
remaining ones are passed to the predicate-abstraction en-
gine. We use a limit of 20 refinement iterations. The times
are split up into the time taken by the abstraction, model
checking, simulation, and refinement.

Avg. Time (s)
No. Total Abs. Mc. Sim. Ref. It.

CE 5 324.8 18.3 276.7 5.6 23.8 6.4
Success 229 52.8 7.6 38.1 1.5 5.6 2.6
Failed 65 420.6 14.8 331.8 29.1 44.9 20.0

We were able to prove 229 properties (76%) in an average
of about one minute each, and obtained counterexamples
for 5 properties. The counterexamples are due to impre-
cise modeling of the environment. As an example, Mini-
Sat contains an assertion that compares an integer read
from a file with a constant. For 65 properties, the iter-
ation limit was exceeded. Those cases were mostly due
to vector indexing by values taken from non-STL dynamic
memory. The model checker and the operational model of
STL are available to other researchers for experimentation
at www.verify.ethz.ch/stl/.

A problematic pattern appearing in MiniSat is the use of
a literal taken from a clause vector as an index into another
vector, as in this code fragment:

Lit q = c[j];

if (!seen[var(q)] && level[var(q)] > 0){

where c originally derives from a clause database. In order
to prove safety for the accesses to seen and level, Sat-
Abs must derive and manipulate a predicate involving a
pair of quantifiers, e.g. ∀i.(i < db.size()) ⇒ (∀j.(j <
db[i].size()) ⇒ db[i][j] < seen.size()) if c[j] de-
rives from a vector of clauses db. Such a nested quan-
tifier predicate is beyond the state-of-the-art for predicate
abstraction tools at this stage. However, we note that the
property we really wish to prove is that var of a Lit is always
a valid index into a set of vectors. This is a class invariant of
the Lit class. As future work in the spirit of our approach to
STL, we hope to introduce annotations for such class/type
invariants, enabling proofs for programs making judicious
use of ADTs.

5. CONCLUSION
We have shown how an operational semantics for the de-

fined behavior of the C++ Standard Template Library may
be used to verify programs with STL data structures in an
implementation-independent manner, leveraging the high-
level nature of abstract data types to aid predicate abstrac-
tion. The success of this effort demonstrates that ADTs
can be as useful in assisting automated reasoning tools in
“understanding” code as they are in assisting programmers
in organizing code: theorem provers and abstraction engines
find ADTs easier to reason about than low-level pointer ma-
nipulations, as the implicit relationships in structures are
made explicit, in an implementation-independent way. This
approach relies on the first reported symbolic model checker
for complex C++ code, implemented in the SatAbs model
checker.
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