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Abstract. In the last 25 years, the notion of performing software verification 
with logic model checking techniques has evolved from intellectual curiosity to 
accepted technology with significant potential for broad practical application. In 
this paper we look back at the main steps in this evolution and illustrate how the 
challenges have changed over the years, as we sharpened our theories and tools. 
Next we discuss a typical challenge in software verification that we face today – 
and that perhaps we can look back on in another 25 years as having inspired the 
next logical step towards a broader integration of model checking into the 
software development process. 
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1  Introduction 
 
The idea to build a practically useful tool to check the correctness of program code 
quite possibly already occurred to the first people who attempted to write code. Not 
by coincidence, many of those people were mathematicians. Goldstein and Von 
Neumann took a first step in 1947 when they introduced the notion of an assertion in 
program design [6]: 
 

For this reason we will denote each area in which the validity of such 
limitations is being asserted, by a special box, which we call an 
'assertion box.’ 

 
A series of foundational papers on program analysis and program verification 
techniques appeared in the sixties and seventies, including seminal work by Robert 
Floyd, Tony Hoare, and Edsger Dijkstra, that we will not attempt to summarize here. 
More closely related to the topic of this paper and the theme of this symposium is 
work that started in the late seventies on model based verification techniques. Among 
the earliest models used for this purpose were Petri nets and finite automata, initially 
paired with manual analysis procedures (e.g., [3]). Carl Sunshine described a basic 
reachability analysis method for automata models in 1975 [19], a variant of which 
was applied in a verification tool built by West and Zafiropulo at IBM [23]. The latter 
tool attracted attention by uncovering relatively simple defects in trusted international 
standards for data communication. A favored example of an automaton model from 
this period was also the simple alternating bit protocol [2]. It is in retrospect 



remarkable that some of the early verification tools could not yet handle the 
complexity of this very basic protocol. 
 
Work on what later became the SPIN model checker started in 1980 at Bell 
Laboratories. This first tool, named pan, was also based on an optimized reachability 
analysis procedure, though initially supported by an algebraic specification formalism 
[7]. Like the IBM tool, this tool attracted attention within AT&T by successfully 
uncovering defects in models of trusted telephony software. Pan was restricted to the 
verification of safety properties, and was therefore not a true logic model checking 
system as intended in [4]. The restriction to safety properties did however allow us to 
verify models with up to millions of reachable states, although the latter could take a 
good week of computation on the fastest available hardware at that time. We did not 
contemplate an extension of the verification system to properties specified in linear 
temporal logic, and more broadly the set of omega-regular properties, until the late 
eighties, when available compute power had increased, and our verification 
techniques had sharpened. 
 
Looking back, we can recognize some patterns in what we considered to be the main 
obstacles to a broader application of model checking techniques to problems in 
software verification. As obstacles were overcome, new challenges were identified 
and targeted. The following list sketches some of the deciding issues that influenced 
the evolution of the SPIN model checker. 
 

1. Specification formalisms: The initial challenge, in a period that we can 
indicate very approximately as 1975-1985, was to find a usable formalism 
for constructing models with verifiable properties. The focus in this period 
was on the identification of specification formalisms that could facilitate 
analysis. Ultimately, automata-based models were found to provide the most 
solid foundation, and much work has since been focused on them. Trace, the 
successor to pan and the next step in the evolution of SPIN, dropped pan’s 
process algebra specification formalism in favor of automata models in 1983, 
leading the way for SPIN to easily conform to the automata-theoretic 
foundation from [21]. 

 
2. Efficient Algorithms: The next challenge, between approximately 1985 and 

1995, was on developing new data structures and algorithms that could 
improve the range and efficiency of model checking systems. This 
development produced BDD-based and symbolic verification methods, as 
well as the partial order reduction methods that are at the core of model 
checking systems today. Partial order reduction was integrated into SPIN in 
the early nineties [8]. 

 
3. Model Extraction from Code: The third challenge, between 1995 and 2005, 

was to find ways to apply model checking techniques more directly to 
implementation level code, using software abstraction and model extraction 
techniques. This work led to the extension of the SPIN model checker with 
support for embedded software in abstract models. This change enabled the 



application of SPIN to the verification of unmodified, implementation level 
software for call processing in a commercial voice and data switch, and as 
such perhaps the first application of formal software verification at this scale 
[9]. Similarly, this third challenge led to the successes at Microsoft in the 
formal verification of device driver code [18], and the work at Stanford on 
the CMC model checker [16]. 

 
4. Today’s Challenge: This brings us to the next, and current, challenge for 

work that may well turn out to define the primary emphasis for our work in 
logic model checking for the period 2005 to 2015. This fourth challenge is to 
find effective ways to structure software such that formal verification 
techniques, and especially logic model checking techniques, become simpler 
to use and more effective in identifying potential violations of correctness 
properties in executable code. 

 
We will devote the remainder of this paper to a description of this new challenge. 
 
 
2  The New Challenge 
 
The “Grand Challenge in Verification” recently posed by Sir Tony Hoare [22], 
prompted us to propose a mini-version, which is to design and implement a verifiable 
file system for non-volatile memory [13]. This mini-challenge was of course not 
chosen arbitrarily. Space exploration missions need a reliable capability to record data 
that is either received from earth (e.g., commands and parameters), or to be returned 
to earth (e.g., telemetry and images). Often a spacecraft is temporarily pointed away 
from earth to capture an image or take a measurement. The data can only be returned 
later, sometimes much later, when communication with the Deep Space Network on 
earth is restored. 
 
The MER Rovers that currently explore the surface of Mars, for instance, use flash 
memory cards to store critical data. The reliability of hardware components can often 
be increased by adding nominally redundant backups. The flash memory cards used 
on spacecraft are special radiation-hardened designs that can be duplicated for 
redundancy if needed. For software, though, increasing reliability is not nearly as 
simple to achieve, and a number of mission anomalies related to data storage on flash 
memory cards can be traced back to software flaws. Curiously, the software used for 
the management of flash memory cards in missions to date has consisted of off-the-
shelf code that was designed and built primarily for use in cameras and home 
computers, but not for reliable operation in space, resisting hardware failures, power-
loss, and sudden reboots. What makes failures in this software so difficult to accept is 
that a file system is easily one of the best understood modules on a spacecraft in terms 
of its required functionality. It should be possible to design an ultra-reliable version of 
this type of software. These observations provided the motivation behind our mini-
version of the grand challenge. The real challenge, though, is somewhat broader:  
 



Is there a way to structure software in such a way that the application 
of logic model checking techniques becomes a trivial exercise? 

 
It is of course all too easy to pose a challenge problem and wait for others to solve it. 
We have therefore decided take our own challenge and to pursue a full design, a full 
verification, and a complete implementation of a flight-qualified file system module 
that can withstand the rigors of space. We have also committed to building the 
module to standards that satisfy all existing flight software development requirements 
at JPL. This decision rules out a number of choices for the design and development 
that otherwise might have been possible. It means, for instance, that the target 
programming language is most conveniently C (the language most commonly used at 
JPL for implementing mission critical software), the target operating system 
VxWorks® (a real-time operating system), and the process followed must comply 
with all reporting and book-keeping requirements for software development at our 
host institution. Naturally, our desire is to not just comply with the existing process, 
but to show how it can be exceeded. Our goal is further to chart a course for reliable 
software development that can later plausibly be followed by non-experts in formal 
software verification. 
 
At the time of writing, we have completed a first implementation of the file system 
software that we will use as a reference for our formal verification attempts. The 
prototype is written to a high standard of reliability, compliant with all JPL coding 
requirements, as well as conforming to a small set of fairly strict additional coding 
rules, described in [14]. These additional rules are in part meant to simplify, if not 
enable, formal verification with logic model checking techniques. 
 
 
3  Our Plan 
We started on our mini challenge in the middle of 2005, initially pursuing three tracks 
in parallel. 
 

1. The first track is to build a simulation environment for a file system that can 
reproduce all relevant behavior of the target hardware. A software simulation 
of the environment will simplify the use of model-driven verification 
techniques, as outlined in [11]. We have meanwhile completed several 
versions of this hardware simulation layer, supporting different levels of 
abstraction. The most accurate simulation module supports a bit-level 
accurate representation of a typical flash memory card.  

 
2. The second track is to develop a formalization of all relevant requirements, 

including standard POSIX requirements for the user interface to the file 
system [17]. As always with requirements specifications, identifying and 
capturing a representative set of requirements is a non-trivial task. The 
primary requirements for file systems, for instance, are functional and not 
temporal in nature, and there are few if any adequate formalisms available 
for expressing such requirements. We currently plan to capture most 



requirements of this type as system invariants, and as pre- and post-
conditions on basic file system operations. 

 
3. The third track includes the detailed design of the file system itself. This is in 

principle a white-board design, aspects of which are currently being verified 
with the SPIN model checker [12] and with the ACL2 theorem-prover [1].  

 
 
3.1  Constraints 
 
To give a flavor for the design requirements, note that flash-memory is typically 
logically organized into separately mountable file system partitions (sometimes called 
volumes), but physically they are organized in pages, blocks, and banks. On a typical 
NAND flash memory card there may be 2 banks, 1024 blocks per bank, and 32 pages 
per block, each page able to record 4096 bytes of information. 
 
Pages on NAND-flash devices must always be written in their entirety, in one 
operation. The information can be read back in portions, but only sequentially and not 
randomly. A page can be read any number of times without degrading the information 
that is stored in it, but it should be written only once. After a page has been written, it 
should be erased before it is reused for new write operations. A page, of course, holds 
no useful information until it is written. The reason for the single-write requirement is 
that a page erase operation on flash memory sets all bits on the page to one, and 
subsequent write operations can only set bits to zero. Once a bit is zero, it can only be 
reset to one in an erase operation. 
 
To make things more interesting still, pages on a flash memory card can only be 
erased in multiples of blocks (i.e., 32 pages at a time). This means that there are in 
principle only three types of operations that can be performed on a flash disk: read a 
page, write a page, and erase a block of pages. A block, finally, can only be erased a 
limited number of times, e.g., 100,000 times, and the reliability of the pages in a block 
degrades with the number of erasures that have taken place. Since we don’t want 
some blocks to wear out long before others, blocks have to be erased and reused in 
such a way that the wear on all blocks is roughly the same. This process is called 
wear-leveling. Page read- and write-operations, and block erase operations can fail, 
sometimes intermittently, sometimes permanently. On such a failure, a block may 
have to be marked as bad, to indicate that no further write or erase operations should 
be attempted on that block. When a block goes bad, the pages in that block can no 
longer be written or erased, although any correctly written page in the block may still 
be read. 
 
A first observation about the target design for our file system is that no information 
can be stored in a fixed location on disk, not even information that is unlikely to 
change. The wear-leveling requirement means that all stored data may have to move 
from time to time, so that all blocks can be erased and reused roughly equally. Since 
stored data is the only information that will survive a reboot, it must also be possible 
to reconstruct all relevant information about the file system from scratch, without 



knowing in advance where it is stored on disk. Another requirement, orthogonal to the 
wear-leveling requirement, is that the consistency of the file system must be 
maintained at all times, even in the presence of arbitrary reboots or a sudden loss of 
power. That means that all operations on the file system must be interruptible. No 
data should be lost or corrupted when the system is interrupted at a random point in 
its execution. A user of the file system must be able to assume that changes in the 
stored data are atomic, even if they take multiple page writes to complete. A strong 
design requirement is that, with very few exceptions, file system operations must 
either succeed completely or fail completely, never leaving visible evidence of 
intermediate states when interrupted. 
 
In the target environment, the file system should also be able to deal with random data 
errors caused by radiation, which can be particularly severe during solar flares. To 
give one small example of the problems that this can pose: a so-called Single Event 
Upset (SEU) in the address register of a flash memory device during a read_page 
operation could alter the page address and result in the wrong page being read, 
without an error condition being flagged (i.e., the data read from the page can pass a 
checksum test successfully). The same type of error during a write_page operation 
could result in a page different than the one intended being written, again without 
detectable error unless special precautions are taken in the design that is adopted. 
 
 
3.2  Verification Challenges 
 
A key challenge in this project is to provide the ability to prove the integrity of the file 
system under all types of hardware error, and power-loss scenarios. A model of the 
flash hardware can capture the relevant assumptions about the lower interface to the 
hardware, and a model of nominal user behavior can capture our assumptions about 
the upper interface. This leads to a sandwich model of the file system: enclosed 
between two SPIN models that define the environment in which it is meant to operate 
and against which it must be verified, as illustrated in Figure 1. 
 
The user behavior, though conceptually simple, can add a surprising amount of 
complexity. Note that for even very small systems, there are a very large number of 
possible ways to define directory hierarchies, file contents, and file and directory 
names. Rename operations can move files arbitrarily between different locations in 
the directory hierarchy, and seek operations can change where new contents are 
written to or read from in a file. Files may be truncated, moved, removed, recreated, 
etc. This means that it is not simple to define a single user model and hope to perform 
an exhaustive verification against that model. To alleviate some of these problems, 
different levels of abstraction and different subsets of possible user behaviors can be 
defined to perform a series of targeted verification runs against a relevant subset of 
the correctness properties. 



 
 

Fig. 1.  Sandwich Model for File System Verification 
 
 
A simple model of user behavior could, for instance, specify the manipulation of a 
single file by a user, performing random reads and writes to that file, resetting the file 
pointer to the start of the file at arbitrary points, while the hardware model fails read 
and write operations arbitrarily. We have been able to demonstrate that such a model 
can indeed be verified exhaustively, when applied to the prototype software 
implementation, using model driven verification techniques and fairly straightforward 
conservative abstractions of the file system state. 
 
A simple version of an abstract model for the flash hardware is shown in Figure 2. 
This model captures only basic behavior of the hardware, allowing page reads and 
writes, with the possibility of failure and the sudden appearance of bad blocks, and 
allowing for a distinction between meta-data (directory information) and regular file 
data. Meta-data is typically stored with a verified write cycle, which is slower than 
regular write operations, but lowers the probability of subsequent page read errors. In 
a verified write operation the information is read back and compared with the original 
data to make sure it can be retrieved correctly. 
 
A sample correctness property for the file system is that no page is written more than 
once before it is erased. This property could be expressed in LTL as follows: 
 

[] (pw -> X (!pw U be)) 
 
where pw indicates the occurrence of write operation on an arbitrary given page, and 
be indicates a block erase operation on the block that contains the given page. 
 
A more complete model of the flash hardware will also record page header 
information; so that one can track which pages are current and which are obsolete and 
erasable, in the verification of the properties of the file system software. With that 
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model we should also be able to prove that a block with only obsolete pages and no 
free pages will eventually be erased for reuse, for instance expressed as: 
 

[] (ob -> <> be) 
 
where ob is true when some given block contains only obsolete pages, and be is true 
when that block is erased. 
 

active proctype flash_disk() 
{ byte b, p; 
 bool v; 
 
 do 
 :: flash?readpage(b,p,_) -> 
  assert(b < NBL); 
  assert(p < PPB); 
  if /* non-deterministic choice */ 
  :: blocks[b].meta[p] != free -> 
   user!success 
  :: blocks[b].meta[p] != verified -> 
   user!error 
  fi 
 
 :: flash?writepage(b,p,v) -> 
  assert(b < NBL); 
  assert(p < PPB); 
  assert(blocks[b].meta[p] == free); 
  if 
  :: blocks[b].bad -> user!error 
  :: else -> 
   if 
   :: blocks[b].meta[p] = v; 
    user!success 
   :: blocks[b].bad = true -> 
    user!error 
  fi fi 
 
 :: flash?eraseblock(b,_,_) -> 
  assert(b < NBL); 
  if 
  :: blocks[b].bad -> user!error 
  :: else -> 
   if 
   :: blocks[b].bad = true -> 
    user!error 
   :: erase_pages(b) -> 
    user!success 
  fi fi 
 od 
} 
 

Fig. 2. Simplified Model of the Flash Hardware. 



4  On Code Structure 
 
One focus of our project is to study if the adoption of specific code and data structures 
can enable stronger types of verification, and make it easier to apply existing software 
verification methods. Clearly, code can be written in such a way that most properties 
of interest become unprovable. It is unfortunately easier to demonstrate this point than 
it is to show that the opposite is also possible. To achieve the opposite, to write code 
in such a way that it can be verified, takes more planning, but the additional level of 
effort required may still be relatively small. We adopted strong coding rules for our 
project, that include a restricted use of pointers, statically verifiable bounds on all 
loops, absence of dynamic memory allocation, and even the absence of direct and 
indirect recursion [14].  
 
A loop to traverse a linked list, for instance, can be bounded as follows: 
 

SET_BOUND(MAX); 
for (ptr = start; ptr != null; ptr = ptr->nxt) 
{ ... 
 CHECK_BOUND(); 
} 

 
Where SET_BOUND and CHECK_BOUND are macros. The first macro call will initialize 
a predefined loop variable to the boundary value that should never be exceeded. The 
second macro call decrements the variable and asserts that the result remains positive. 
The protection here is against infinite loops, so the precise bound is often not that 
important, as long as it is a finite number. (Nested loops should be rare in high 
integrity code, and are handled separately since they will require us to track more than 
one loop bound.) 
 
Assertions are also handled differently. The standard assertion definition from the C 
assert.h library is not really adequate for our purposes. In most, if not all, cases, for 
instance, processing should not continue when an assertion fails, but instead some 
type of corrective or recovery action should be taken to handle the unexpected 
situation. We therefore define an assertion as a Boolean pseudo-function that 
normally returns true, but will optionally print a diagnostic message when it fails and 
then return false, so that the caller of the assertion can take corrective action. With 
some C preprocessor magic, this can be written as follows: 
 

#define ASSERT(e) ((e) ? (1) : \ 
    output(“%s:%d assert(%s) failed\n”, 
   __FILE__, __LINE__, #e), 0) 

 
The macro definition makes use of the predefined preprocessor names __FILE__ and 
__LINE__ to print the location of the assertion in the source files, and of the C 
preprocessor operator # to reproduce the text of the failing assertion.  Assertions, then 
are always used as expressions in a conditional and never as separate statements. 
 



The use of an assertion to defend against a null-pointer dereference could for instance 
be written as follows: 
 

if (!ASSERT(ptr != NULL)) 
{ return ERROR; 
} 

 
This forces the programmer to think about the corrective action that would be needed 
in case the assertion fails. 
 
For embedded code, where there is typically no mechanism for printing output, the 
assertion can then be redefined after testing with the variant: 
 

#define ASSERT(e) (e)  
 
which maintains the protection and the full original functionality of the assertion (so 
that test results remain valid), but removes only the diagnostic output. 
 
The rules we adopted allow us to derive bounds on memory and stack use, and to 
prove the finiteness of all file system operations. Without recursion, the function call 
graph is acyclic and can be analyzed with traditional logic model checking techniques. 
We use, for instance, the uno static analyzer [10,20] to generate the function call 
graph for the software,  and convert it with a small awk-script into a SPIN model, that 
is automatically annotated with relevant operations (e.g., semaphore operations). Then 
we use the SPIN model checker to prove additional properties of the code such as 
proper locking orders, bounds on stack use, and absence of direct or indirect recursion. 
 
Importantly, the data structures for the prototype file system are organized in such a 
way that it becomes easy to set up a connection with the model checker for model-
driven verification runs. Just two data structures (a mount table and a partition 
structure) hold all state information that must be tracked in the model checking 
process, and the required tracking statements are trivially defined – possibly even 
mechanically derivable from the source code. It is also relatively straightforward, 
thanks to these structuring conventions, to set up abstraction functions for the model 
checker over the relevant state data, that will allow us to exploit, for instance, 
symmetry abstractions. We further make sure that the level of atomicity in the source 
code, enforced through VxWorks semaphores, matches the level of granularity that 
the model driven verification method handles best (i.e., function level atomicity). 
 
 
5  Testing? 
 
To perform an initial check of the working of our prototype implementation, we have 
relied on a number of methods that include strong static source code analysis, and 
randomized differential testing [15]. These more conventional testing methods serve 
not only for us as designers to gain confidence in our initial prototype, they also help 
to win the trust of colleagues who may need to be convinced of the added value of a 



more formal verification effort of the same code. We have not attempted to generate 
implementation level code from high level design models (e.g., Spin models), 
although we may revisit that decision later once the full design and its verification 
challenges are thoroughly understood. 
 
A few more words on the random differential testing method we used may be of 
interest. For these tests, one or more reference systems are needed to serve as a judge 
of the validity of operations that are performed on the system under test. Fortunately, 
for a standard file system, reference implementations are readily available. As part of 
our tests, we ran randomly generated usage scenarios on the flash file system, 
comparing against reference file systems on Solaris, Linux, and Cygwin. Perhaps not 
surprisingly, we found defects not only in our own prototype software but also in 
some of the widely-used reference implementations. The Linux implementation 
proved to be the most reliable, and was used for the majority of our tests. A test fails 
in this setup when the file system created by the module under test differs from that 
created on the reference system when given the same sequence of POSIX operations. 
Each such test failure is inspected manually and in cases of doubt the official POSIX 
requirements are consulted to determine which implementation is at fault: the 
prototype file system or the reference system. The test harness used in these tests 
randomly injects simulated hardware faults, such as bad blocks and sudden reboots. 
Because these faults cannot easily be reproduced on the reference system, our 
integrity requirement was that the module under test either completes an operation 
fully, matching the result of the completed operation on the reference system, or fails 
the operation completely, matching the state of the reference system before the 
operation is executed, but never creating an intermediate or a corrupted state. Long 
error scenarios found through this method are minimized with a method based on 
Zeller’s delta-debugging system [5] and all error scenarios found are preserved in a 
regression test suite. 
 
The differential test method is easily automated. The random tests run in principle 
non-stop in the background on our machines. Even at that pace, there is of course no 
hope that these tests can be exhaustive, yet our experience so far is that new defects in 
the code are found quickly. 
 
There is an opportunity to replace at least part of the differential test system with a 
stronger Spin driven verification system, using models along the lines of what is 
shown in Figure 2, where we replace the random choices from the tester with non-
deterministic choices that are controlled by the model checker. Our real challenge 
here is to make the model driven software verification methods work as easily, and be 
as effective as the original differential test method. 
 
A switch to the model driven verification method will allow us to formulate and 
verify more complicated correctness properties in linear temporal logic, to perform 
the verifications more systematically, and has the potential for a significantly greater 
accuracy in catching requirements violations.  
 
 



6  Summary 
 
In this paper we have posed a challenge that illustrates where we believe the new 
frontier in the application of logic model checking techniques rests today. To realize 
the full potential of logic model checking techniques for software verification, we will 
need to find ways to structure code in such a way that verification becomes easier. We 
believe that the main potential in this area is in the application of model-driven 
verification techniques. To give substance to these ideas, we have described a specific 
challenge problem that we, and we hope many others, will try to solve fully in the 
coming years. The domain in which we have phrased this problem is that of space 
exploration, but it could be any other application domain where the correctness of 
software is critically important. Like many organizations, JPL and NASA already 
have strict requirements for the development of mission-critical software components. 
Still, anomalies that can be traced to software defects do occur, and have on occasion 
led to mission failures. Stronger types of software verification are therefore essential 
to reach higher levels of software reliability. 
 
JPL today lists among its strategic goals in software development the adoption of 
formal methods for software design, an increased use of model-driven software 
verification techniques, and routine application of logic model checking techniques to 
mission software by the year 2013. The work we have sketched is an attempt to 
realize at least some of these goals. 
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