N/ALI LUMBERJACK MOTORSPORTS

SAE Mini Baja 2017-2018 CONA UNIVERS

Front End, Rear End, Drivetrain, and Frame Teams October 2, 2017

Project Description

- Society of Automotive Engineers (SAE) sanctioned event.
- The competition is broken down into multiple design and dynamic events where the team will be graded based on performance.

Dynamic Events

- Maneuverability
- Hill Climb
- Acceleration
- Rock Crawl
- Endurance

Design Events

- Sales/Cost Presentation
- Design Evaluation

• Sponsors for the competition include: SolidWorks, Honda, Briggs and Stratton, Polaris, Cummins, Volvo, Space X, ANSYS, and more.

Customer and Engineering Requirements: Design Requirements

- Collegiate teams are tasked with designing and building a single seat, off road prototype vehicle capable of handling difficult terrain including but not limited to rocks, logs, sand, mud, and shallow water.
- "The vehicle is to be a prototype for a reliable, maintainable, ergonomic, and economic production vehicle which serves a recreational use market, sized at approximately 4000 units per year."
 [1]

QFD

			Pr	oject:	SAE	Baja							
System QFD				Date:	10/2/2	2017							
								- -	orrel	ation			
									Change				
		\sim					++	Strong Positive Positive No Correlation			ive		
Wheelbase							+						
Trackwidth											on		
Ground Clearance						+ +			Negative				
Horsepower									Strong	Nega	tive		
Torque					++								
Weight		+	-				\sim						
Strenath				+			++						
# of Parts							+	+	\sim				
Turning Radius		++	_							\frown			
Cost			_		-	+		++	L +		\sim		
0031				I	Tech	nical	Requirements						
					1001								
Customer Needa	Customer Weigl	Wheelbase	-rackwidth	Pround Clearanc	Horsepower	orque	Veight	Strength	é of Parts	uming Radius	Cost		
Customer Needs	0	>			I			0	*	-	0		
Durable	5	0	7	0	1		4 7	9		0			
Peliable	10	3		5				8		3			
Maintainable	9							Ť	9		4		
Velocity	6				9	7	7						
Acceleration	8				7	9	9						
Ergonomic	7			3					5				
Economic	8										9		
Safety	10				4			9					
Lightweight	6	1	2				9	7	6				
Ease of Manufacturing	5						4	-	9		8		
	4							- (5		9		
Technical Requirement Units	0				a. n. c.c.				。 "		4		
Technical Requirement Targets		<u>in.</u> 50	<u>IN.</u>	<u>IN.</u> 11	It-Ibt/s		1D.	TRD		10. 10.0	\$		
Absolute Technical Importance	1719	51	47	174	159	114	311	321	281	45	20,000		
ATI (percent)		2.97	2.73	10.1	9.25	6.63	18.1	18.7	16.3	2.618	12.56		
Relative Technical Importance		8		5	6	7	2	1	3	10	12:000		

Front-End Preliminary Design SAE Mini Baja 2017-2018

Zachary Rischar, Dylan Cappello, Reid Johnson

Customer and Engineering Requirements: Engineering Requirements

- Through meeting with our client and assessing past competition results/data, we created a list of goals we believed would result in a successful Baja vehicle.
- Using the rulebook and our customer's requirements as a guideline, we transformed these goals into five engineering targets.
 - < 10 foot turning radius</p>
 - Maintain tire patch through body roll
 - Minimize tire scrub through articulation
 - Minimize bump-steer
 - 10"+ wheel travel

Designs Considered (Suspension)

- Equal- and Unequal-Length Double A-Arms
- Twin I-Beam
- McPherson strut

Designs Considered (Steering Geometries)

- Ackerman
 - Different Wheel Angles for inside and outside tires
 - Slow speed
 - Tight-radius maneuvering
- Parallel
 - Equal wheel angles for both outside and inside tires
 - High speed

NAL

- Large-radius maneuverability
- Causes outside tire to understeer heavily in cornering

Schedule and Budget

Schedule

- Design for Frame Pickup Points: 10/16
- Spring Rate Calculations: 10/23
- Final Design in SolidWorks: 10/31

Budget

- Machining: \$2000
- Material: \$800
- Hardware: \$200
- Shocks: \$2000
- Rack and Pinion: \$500
- Total: \$5500

Rear-End Preliminary Design

SAE Mini Baja 2017-2018

Marco Sliva, Brooks Grivet, Jordan Sundin

Customer and Engineering Requirements: Engineering Requirements

- Through meeting with our client and assessing past competition results/data, we created a list of goals we believed would result in a successful Baja vehicle.
- Using the rulebook and our customer's requirements as a guideline, we transformed these goals into five engineering targets
 - 0-5 degrees toe in
 - 0-12 degrees of negative camber

- Rear Track Width 47-52 inches
- At least 6" of travel
- %5 %15 Sag

Designs Considered

- Trailing Arm
- Semi Trailing Arm
- Double Wishbone
- 4-Link
- 3-Link
- Solid Rear Axle

Moving Forward

- Rear End Geometry
- Brake Calculations
- Shock Location and Spring Calculations
- 3-D CAD Model

Schedule and Budget

Schedule

- Brake Design Calculations: 10/6
- Shock Mounting Locations: 10/6
- Spring Rate Calculations: 10/16
- Final Design: 10/31

Budget

• Less than \$2500

Drivetrain Preliminary Design

SAE Mini Baja 2017-2018

Rhyan Brogmus, Sam Hunker, David Woods

Engine

- Four-cycle, air cooled, Briggs & Stratton 10 HP OHV Vanguard Model 19
- Mechanical governor
- 305 CC
- 10 HP
- 3,800 RPM
- 57 lbs.

Continuously Variable Transmission (CVT)

- Gaged CVT
- GX9 Loaded PLUS
- Enduro Belt PLUS
- GE/SS Back Shifter
- Final ratio 6.0-7.0
- Helical Gears

Engine (rpm)	3600															
CVT Ratio	1															
Reduction Ratio								Tire Si	ze (in)							
Max Speed (mph)	16	18	19	20	21	22	23	24	25	25.5	26	26.5	27	28	29	30
3(3; 34 3(5.711986643	6.425984973	6.782984138	7.139983304	7.496982469	7.853981634	8.210980799	8.567979964	8.92497913	9.103478712	9.281978295	9.460477877	9.63897746	9.995976625	10.35297579	10.70997496
	2 5.354987478	6.024360912	6.359 <mark>04</mark> 763	6.693734347	7.028421064	7.363107782	7.697794499	8.032481217	8.367167934	8.534511293	8.701854651	8.86919801	9.036541369	9.371228086	9.705914803	10.04060152
	\$ 5.039988214	5.669986741	5.984986004	6.299985268	6.614984531	6.929983795	7.244983058	7.559982321	7.874981585	8.032481217	8.189980848	8.34748048	8.504980112	8.819979375	9.134978638	9.449977902
	4.759988869	5.354987478	5.652486782	5.949986086	6.247485391	6.544984695	6.842483999	7.139983304	7.437482608	7.58623226	7.734981912	7.883731564	8.032481217	8.329980521	8.627479825	8.92497913
3	4.509463139	5.073146032	5.354987478	5.636828924	5.91867037	6.200511816	6.482353262	6.764194709	7.046036155	7.186956878	7.327877601	7.468798324	7.609719047	7.891560493	8.17340194	8.455243386
4	4.283989982	4.81948873	5.087238104	5.354987478	5.622736852	5.890486225	6.158235599	6.425984973	6.693734347	6.827609034	6.961483721	7.095358408	7.229233095	7.496982469	7.764731843	8.032481217
4.	4.079990459	4.589989267	4.84498867	5.099988074	5.354987478	5.609986881	5.864986285	6.119985689	6.374985093	6.502484794	6.629984496	6.757484198	6.8849839	7.139983304	7.394982707	7.649982111
4	4 3.894536347	4.381353391	4.624761913	4.868170434	5.111578956	5.354987478	5.598395999	5.841804521	6.085213043	6.206917304	6.328621565	6.450325825	6.572030086	6.815438608	7.05884713	7.302255651
4	3.72520868	4.190859765	4.423685308	4.65651085	4.889336393	5.122161935	5.354987478	5.58781302	5.820638563	5.937051334	6.053464105	6.169876876	6.286289648	6.51911519	6.751940733	6.984766275
4	3.569991652	4.016240608	4.239365087	4.462489565	4.685614043	4.908738521	5.131862999	5.354987478	5.578111956	5.689674195	5.801236434	5.912798673	6.024360912	6.247485391	6.470609869	6.693734347
5	3.427191986	3.855590984	4.069790483	4.283989982	4.498189481	4.71238898	4.926588479	5.140787979	5.354987478	5.462087227	5.569186977	5.676286726	5.783386476	5.997585975	6.211785474	6.425984973
						D										
(1)			$(1)_{T}$		-X	Ra		\boldsymbol{K}	~	7						
$-\omega_E$	ทลเท	.e —	w	vnee		TC.	V'I' 1	<u> </u>	iear	box						
						_	· · · · ·	812 		~ ~ ~ ~ ~						
			6	226	$\cap \vee$	· 17										
			— O.	220	いべ	Vm	av									
						110	uл									
$-(D_{1A})$	thool		_				2 2									
00 VV	neel		D		V	$\pi \lambda$	60									
			DIA	Thoo	1 X	πx	-00									
			- //	nee	L											

Drive Axle

• U-Joint

- Low cost
- Possibility of manufacturing in house
- 30 degree maximum operating angle
- Relatively tough
- More constrained

• Higher cost

• CV Joint

- Outsource (RCV Performance)
- Higher operating angles up to 80 degrees
- Higher efficiency
- Extremely tough
- More design flexibility

Schedule and Budget

Schedule

- Determine Gearbox Features: 10/2
- CVT Purchase: 10/6
- Design Joints/Axles: 10/22
- Design Gearbox: 10/22
- Final Design: 10/31
- On schedule

Budget

- CVT + Back-Shifter: \$2100
- Custom Gears: \$1000
- Axles and Joints: \$600
- Total: \$3700

Frame Preliminary Design

SAE Mini Baja 2017-2018

Koali'l Ladao, Richie Lonzaga, John Rankin

Background and Benchmarking

Current State of the Art

Existing Designs

- 4130 Chromoly Steel Tubing
- Safety Standards
- Space Frame Concept

• Front Braced Frame

Figure B-3: Roll Cage, Primary Members (filled in black), Front Braced Frame

• Rear Braced Frame

Customer Needs and Engineering Requirements

- Use of space frame concept (truss like structure)
- Must maintain a minimum space around driver for ensured safety [1]
- Must be built out of steel tubing [1]
- Structure must be built to SAE Baja Rules and Specifications
- Total frame weight goal = 70-80 lbs

Concept Generation

- 1. Bicycle frames were used to introduce the use of the Weldments tool in SolidWorks
- 2. Rough Baja frames were then used to practice building complex frames in SolidWorks
- 3. Realistic Baja frames capable of giving valuable practice with ANSYS static and dynamic modeling
- 4. Future iterations of the frame will take information gained from the use of ANSYS to adapt and refine the design

Design Consideration

Designs

- Front Braced Frame
- Rear Braced Frame

Evolving Design

- Minimalistic design
- ANSYS / SolidWorks Dynamic FEA

Advantages

- Rear braced frame allows for more room
- Better mounting options

Schedule and Budget

Schedule

- Oct. 13 first iteration of FEA testing
- On schedule

Budget

- Total Frame Budget: \$700
- Anticipated Expenses: \$600
- Expenses to Date: \$0
- Resulting Balance: \$700

Preliminary Design

SolidWorks / ANSYS

- Smart design
- Reference Plane geometry interaction
- Creating custom tubing for weldments
- Importing SolidWorks file into ANSYS
- Seeing stress concentrations and deformations of frame
- Adapt design to improve performance
- Complete many iterations

Rules

- Must be followed perfectly or technical inspection will result in failure
- Restrict design but also allow for some decisions to be made for us
- There are 20 pages of rules specifically for the frame of the BAJA

Smart Design

- Design in a way that creates the least amount of merging errors when modifying frame design
- Create a design that mimics the way the frame will be built in real life allowing for the final design to act as a schematic
- Recognizing that the front suspension mounting structure, seat mounting, and engine mounts experience the amount of stress during impacts allows for us to design in a way that will accommodate it.

Our Interaction

Within the Team as a Whole

- FRAME design depends on the designs of the other sub teams, DRIVE, FRONT, REAR
- Ideas for different suspensions cause need for ideas for different designs
- Adaptations of FRAME designs to accommodate the developing vehicle

Within the Vehicle

- FRAME connects each design to create the final BAJA
- Protects the driver
- Mounting points for suspension , motor, and drive train

Goals

Before Build

- Mastery of SolidWorks and ANSYS
- Use iterations to find the best tubing size
- Develop a factor of safety for the frame and ensure it will hold up during competition
- Mastery of the rules
- Fundraise ~ \$22,000 to build a dream BAJA

By Final Design Build

- Ability to build and test a completely new FRAME design in SolidWorks / ANSYS within 6 hours
- Realize mounting points for each component based on other sub-teams final designs
- Final FRAME design gained by many testing iterations and improvements

Fundraising

Funding Sources

- GoFundMe Page
- Corporations (Honda, Toyota etc.)
- Small Businesses (Gaged CVT, Primo's etc.)
- Personal contacts

Why Fundraise?

• Without enough fundraising the entire project will fail. If we cannot allocate the costs to create a basic BAJA then we will not go to competition.

References

•[1] - Baja SAE Collegiate Design Series, Baja SAE Rules – 2018

