Hozhoni Garden Device

Ahmad Alkhezzi, Mike Marner, Saad Alajmi, Khaled Alanezi, Mobarak Alqenaei

Team 13

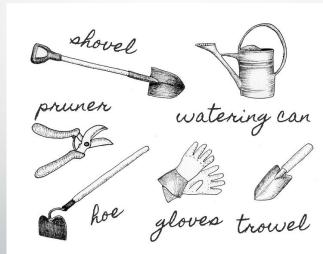
Introduction

TO: Uphold the values and mission statement of our client

Fig 1: Hozhoni Foundation logo

BY: Developing a device for people with disabilities to use in a garden setting.

Project Problem


Current Problems:

The Current devices at The Hozhoni Foundation are basic and not comfortable for the people with disabilities

Team Mission:

Create a Garden Device:

- 1. Comfortable
- 2. Easy to use
- 3. Safe

Project Requirements

Open-endedness of problem statement meant team spent extra time creating list of requirements.

- User safety
- User Comfort
- Low manufacturing cost
- Accomplish at least 1 <u>common</u> gardening task

Each requirement was then quantified into more traditional engineering terms

Project Specifications

Table 1: Engineering Requirements

Engineering requirement	Target	Rationale		
Minimum edge thickness	= > 0.25 Inches	To allow for effective grabbing of larger objects		
Design's weight	< = 25lbs	To allow for ease of lifting and moving it around		
Reach	5 feet	To maximize on the reaching out distance between the user and items		
Maximum noise	< = 60 decibels	To avoid disturbance while in use		
Cost of manufacturing	<=\$400	To allow for affordability and reduced maintenance costs		
Maximum dimensions for the design	2ft by 3	For effective storage		
Least possible force	< = 5lbs	To allow for ease of use		
Assembly time	< = 5mins	To reduce complication and waste of time		

Design Solution

Goal: Create a final Design that satisfies the mentioned needs

Final Device:

Two components:

- 1. Main Device
- 2. Stand

Fig 2: Main Device

Fig. 3: Stand

DfD- Hozhoni **6**Gardening – 13
04/28/2017

Design Solution

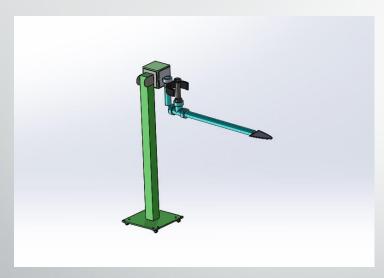


Fig 4 : Final Design Created by SolidWorks

Fig 5: Main Device attached on Stand

Ahmad Alkhezzi

DfD- Hozhoni **7**Gardening – 13
04/28/2017

Additional Alternative Designs

As an extra effort the team decided to build "easy to make" devices that can be used by the people that are at the Hozhoni Foundation

Fig 6: Long-Reach Rake

Fig 7: Long-Reach Digger

Manufacturing

Manufacturing Procedure:

- Most of the project is made of wood.
- Moveable stand.
- More free angle.
- Arm support and pads.
- Painting.

Fig 5: Main Device attached on Stand

Manufacturing

Manufacturing Procedure:

- Easy to build and made.
- Light weight.
- Comfortable Handle.
- Arm support.
- Safety.

Fig 6: Long-Reach Rake

Fig 8: Arm-Support

Fig 7: Long-Reach Digger
DfD- Hozhoni

DfD- Hozhoni Gardening – 13 04/28/2017

Final Product Testing

Testing Procedure:

- Area measurements.
- Choosing different costumers.
 - Testing and taking notes.

Fig 9 : Garden 1

Height: 25.5 in Length: 59 in

Fig 10: Garden 2

Max Height: 23.5 in

Midpoint: 55 in DfD-Hozhoni 11

Gardening – 13

04/28/2017

Final Product Testing

Fig's 11,12,13 : Final Product Testing

DfD- Hozhoni Gardening – 13 04/28/2016

Testing Proof

Budget

The given budget is \$1500.

Product	Cost	
Alpha prototype (Cardboard)	\$5	
Beta Prototype (PVC)	\$30	
Primary Devices	\$225	
Total	\$260	

14 DfD- Hozhoni Gardening – 13 04/28/2017

Saad Alajmi

Bill Of Materials (items that we used)

Product	Quantity	Cost	Provider
Fiberboard	1	\$10.48	Home Depot
1.38in*1.38in Wood Cube	1	\$5.46	Home Depot
2 in*2in*35in redwood Square end	1	\$4.67	HomeCo
2 in. Soft Rubber Swivel Plate Caster	4	\$17.92	Home Depot
5/16in*4in Power lag Screw	1	\$0.59	Home Depot
1-1/4 in Flat head screw (5 pieces)	4	\$6.72	Home Depot
1in PVC T shape	2	\$6.43	Home Depot
Crutcheze Pads	1	\$29.99	Amazon
Crutcheze Replacement Parts	1	\$10.70	Amazon
Garden Tools	3	\$17.39	HomeCo
Gorilla Glue	1	\$6.77	Home Depot
3/4in * 35in wood shaft.	2	\$17.56	HomeCo
1/2 in * 35 in wood shaft	2	\$14.42	HomeCo
2-1/2in Soft Rubber Swivel Plate Caster	2	\$13.74	Home Depot
18in*18in1816in cardboard box	1	\$2.16	Home Depot
1/8in*4in STD Screwdriver	1	\$4.49	Home Depot
6in Duct Clamp	1	\$3.87	Home Depot
4in PVC Drain Coupling	1	\$5.36	Home Depot
1in PVC Lock * 1in MDP Adapter	1	\$2.87	Home Depot
3/4in PVC Running trap	1	\$2.79	Home Depot
1-1/4*2 in PVC pipe	1	\$1.74	Home Depot
1-1/4*1 in PVC Bushing	1	\$3.61	Home Depot
Painter's Touch Paint	2	\$9.74	Home Depot
Total		\$208.47	

Conclusion

- Team Goal.
- Project Requirements.
- Problems that we faced.

References

- [1] "Hozhoni foundation dignity through opportunity," in Hozhoni.com. [Online]. Available: http://www.hozhoni.com/. Accessed: Sep. 9, 2016.
- [2] Dr. Sarah Oman, "Assistive Device for Hozhoni Gardening," in *BBLearn*, 2016. [Online]. Available: https://bblearn.nau.edu/bbcswebdav/pid-4686009-dt-content-rid-37760902_1/courses/1167-NAU00-ME-476C-SEC001-2176.CONTENT/D.pdf. Accessed: Aug. 27, 2016.
- [3] "Carry on gardening, thrive's top tips and tools for easier gardening and gardening with a disability," in *Thrive*, 2016. [Online]. Available: http://www.carryongardening.org.uk/. Accessed: Sep. 17, 2016.
- [4] "Index: G," in DailymailUK. [Online]. Available: http://www.dailymail.co.uk/ushome/index.html. Accessed: Sep. 19, 2016.
- [5] "Browse: disability gardening," in AliExpress, Aliexpress, 2010. [Online]. Available: http://www.aliexpress.com/. Accessed: Sep. 17, 2016.
- [6] "Torque Calculation," Torque and Equilibrium. [Online]. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/torq2.html. [Accessed: 18-Nov-2016
- [7] MJ; Moloni, K; Kelly, TF; Ruoff, RS (2000). "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load". Science. 287 (5453): 637–640.
- [8] Iancoli, Douglas, Physics for Scientists & Engineers Third Edition (2000). Upper Saddle River: Prentice Hall.
- [9] Pauline T, The theory of the rise of sap in Trees: Some Historical and Conceptual Remarks; in Physics in Perspective vol 15 (2013) p 320-358
- [10] Min-Feng Y, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000). "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load". Science. **287** (5453): 637–640. Bibcode:2000Sci...287..637Y, doi:10.1126/science.287.5453.637, PMID 10649994.
- [11] George E. Dieter, Mechanical Metallurgy (1988). McGraw-Hill, UK
- [12] R. A. Serway and R. J. Beichner, Physics for scientists and engineers with modern physics, 5th ed. Fort Worth, TX: Saunders College, 2003.
- [13] D. Halliday, J. Walker, and R. Resnick, Fundamentals of physics extended 10E with WileyPlus card, Tenth ed. United States: John Wiley & Sons, 2013.
- [14] Zhang, X., Guo, Q., Xu, Y. et al. Agric Res (2016) 5: 236. doi:10.1007/s40003-016-0209-7
- 15] StockByM, "Home depot inventory checker," 2015. [Online]. Available: http://stockbyme.com/stock-check/homedepot. Accessed: Nov. 24, 2016.

Questions?

