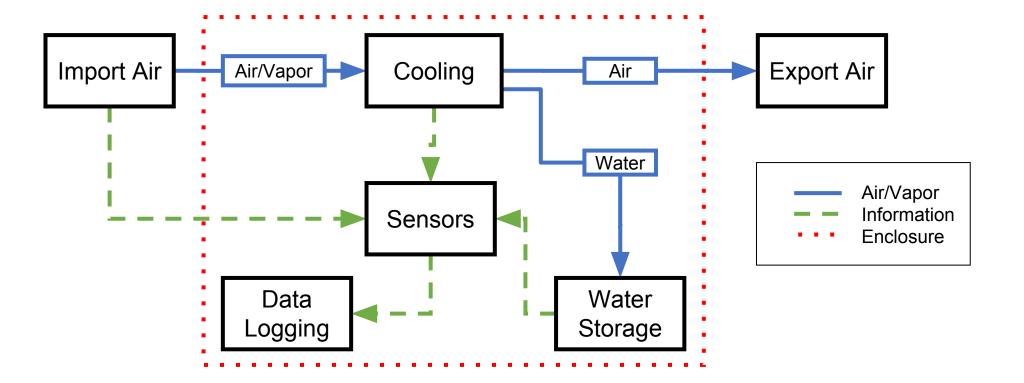
Atmospheric Vapor Extraction Device

Concept Generation and Design

Adnan Alhashim, Nathan Allred, Essa Alowis Travis Butterly, Andy McPhail, Nate Ogbasellasie

October 19, 2015


Overview

- Introduction
- Functional Diagram
- Criteria
- Analytical Hierarchy Process
- Relative Importance of Criteria
- Relative Importance Factors and Weights
- Concept Generation
- Decision Matrix
- Progress Plan
- Conclusion

Introduction

- Mr. Chris Allender wants a device that measures the effectiveness of extracting water from air
- This device should have a maximum cost of \$1,000 and also be portable enough for one person to transport
- The device must measure the atmospheric conditions and water produced

Functional Diagram

Criteria

Power Source

- Size
- Weight
- Initial Cost
- Running Cost
- Reliability
- Ease of Use

Analytical Hierarchy Process

Judgement Numerical			Power Source						
Judgement of Preference				Size	Weight	Initial Cost	Running	Reliability	Ease of Use
Extremely	9	-					Cost		
preferred Very strongly			Size	1	1/3	1/5	1/5	1/7	5
preferred	7		Weight	3	1	1/5	1/5	1/7	3
Strongly preferred	5		Initial Cost	5	5	1	3	3	5
Moderately preferred	3		Running Cost	5	5	1/3	1	1/3	3
Equally preferred	1	-	Reliability	7	7	1/3	3	1	3
			Ease of Use	1/5	1/3	1/5	1/3	1/3	1

Normalized Criteria

Power Source								
	Size	Weight	Initial Cost	Running Cost	Reliability	Ease of Use	Rel. Weight	
Size	0.047	0.018	0.088	0.026	0.029	0.250	8	
Weight	0.142	0.054	0.088	0.026	0.029	0.150	8	
Initial Cost	0.236	0.268	0.441	0.388	0.606	0.250	35	
Running Cost	0.236	0.268	0.147	0.129	0.067	0.150	17	
Reliability	0.330	0.375	0.147	0.388	0.202	0.150	27	
Ease of Use	0.009	0.018	0.088	0.043	0.067	0.050	5	

Relative Weights

Power Source				
size	12			
weight	16			
initial cost	27			
running cost	12			
reliability	21			
ease of use	12			
	100			

Sensors/Data Logger				
cost	13			
reliability	29			
accuracy	52			
ease of use	6			
	100			

Relative Weights

Compressor				
initial cost 19				
running cost	14			
reliability	29			
size	19			
refrigerant type	19			
	100			

Condenser				
Cost	42			
Efficiency (drip rate)	27			
Size	15			
Weight	16			
	100			

Concept Generation - Power Source

Source: bombayharbor.com

Source: batteryspace.com

Source: wastedspacer.weebly.com

Source: gajitz.com

Source: small-generator.com

Decision Matrix - Power Source

Performance Level	Value
Perfect	10
Excellent	9
Very Good	8
Good	7
Satisfactory	6
Adequate	5
Tolerable	4
Poor	3
Very Poor	2
Inadequate	1
Useless	0

	Wind	Solar panels	Generator	Outlet	Battery
Size	2.8	4.8	4.3	8.5	7.2
Weight	3.0	4.2	2.6	8.0	5.8
Initial Cost	4.2	4.2	4.3	8.0	5.5
Running Cost	6.5	7.5	3.3	5.8	6.0
Reliability	4.0	5.5	6.1	6.7	5.0
Ease of Use	3.3	4.8	5.4	8.0	7.5

Decision Matrix - Power Source

	Wind	Solar Panels	Generator	Outlet	Battery
Size	0.33	0.57	0.51	1.02	0.87
Weight	0.48	0.68	0.40	1.28	0.92
Initial cost	1.15	1.15	1.15	2.16	1.49
Running cost	0.78	0.90	0.39	0.69	0.72
Reliability	0.84	1.16	1.26	1.42	1.05
Ease of use	0.39	0.57	0.63	0.96	0.90
Total	3.97	5.02	4.34	7.53	5.95

Decision Matrix - Compressor

	DC Mini Compressor	DanFoss Mix	150W DC Tiny	Pro-Lift x3
Initial Cost	3.2	5.2	3.2	8.4
Running Cost	4.6	6.2	3.6	5.2
Reliability	5.6	6.6	4.4	3.4
Size	8	5	6.6	5.4
Refrigerant Type	5.6	6	5.2	0.6

Decision Matrix - Compressor

	DC Mini Compressor	DanFoss Mix	150W DC Tiny	Pro-Lift x3
Initial Cost	0.6	1.0	0.6	1.6
Running Cost	0.6	0.9	0.5	0.7
Reliability	1.6	1.9	1.3	1.0
Size	1.6	1.0	1.3	1.1
Refrigerant Type	1.0	1.1	0.9	0.1
Total	5.5	5.9	4.6	4.5

Decision Matrix Results

Components	Winning Model
Condenser	Plate Heat Exchanger
Evaporator	Plain coil design
Power Source	Outlet
Compressor	DanFoss Mix Refrigeration compressor
Sensors/Data Logger	Arduino based

Project Plan

	completed in progress coming	Weeks															
A	Tasks	1	2	Э	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Problem Definition and Project Plan																
1.1	Need Statem ent																
1.2	Project Goals																
1.2.1	Objectives																
1.2.2	Constraints																
	Quality Function Deployment																
	Engineering Requirements																
1.2.3.2	CustomerRequirements																<u></u>
1.3	State Of The Art	s															
2	Concept Generation and Selection																
2.1	Functional Diagram							4									
2.2	concept generation																
2.3	criteria selection																
2.3.1	criteria w eights																
2.4	Individual component selection																
2.4.1	filter through components																
2.5	Drawings																
2.6	Decision Matrix																
2.7	presentation preperation																
з	Proof of Concept Demonstrations																
3.1	Prototype assembly																
3.1.1	Test 1 design analysis data													1			
4	Project Proposal																
4.1	Economic analysis																
4.2	Proposal																
	Tasks Due Date																
	Problem Definition and Project Plan Presentations				21-Sep												
	Concept Generation and Selection Presentations	n							19-Oct								
	Proof of Concept Demonstrations												16-Nov				
	Project Proposal Presentations																7-Dec
	Final Report																7-Dec

Conclusion

- The Functional Diagram shows what features are needed
- Criteria are listed and ranked to show what is desired
- The different options are ranked based on the criteria
- Creating reliable and consistent data was top priority in a portable environment
- A refrigeration cycle is best to condense water out of the air
- The relative weights of the criteria allowed ranking of component importance

References

[1] Lee, Kang, and Ronald Wysk. "Miniature BLDC Refrigeration Compressor." (2011): 7. Web. 27 Oct. 2011. http://www.appliancedesign.com/ext/resources/AM/Home/Files/PDFs/aspen_9-28-2011.pdf.

[2] Glover, William. "Selecting Evaporators for Process Applications." 8 (2004). Web. 9 Dec. 2004. http://www.lcicorp.com/assets/documents/CE_Evap_Selection.pdf>.