Atmospheric Water Extraction Device

Midpoint Review Presentation Team 10

Adnan Alhashim, Nathan Allred, Essa Alowis Travis Butterly, Andy McPhail, Nate Ogbasellasie

March 8, 2016

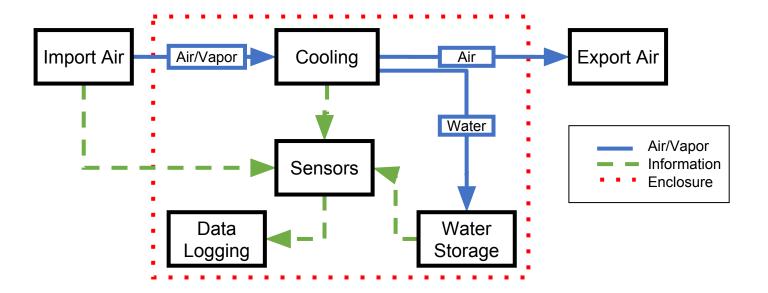
Overview

- Introduction
- Needs and goals
- Electronics
- Lid
- Frame
- Bill of Materials
- Conclusion

Need Statement

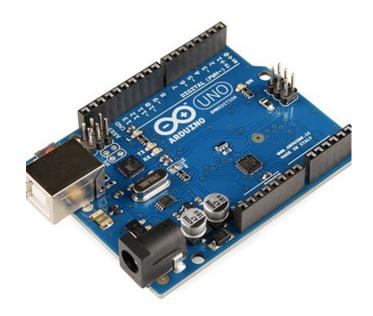
There is not enough research to determine if extracting water from air is a viable option in arid environments.

Project Goal


Create an atmospheric vapor extraction device to collect 2 liters of water per day and researching optimal operating conditions.

Objectives/ Constraints

- Collect Water
- Portable
- Inexpensive


- Data Logging
- Production (<\$1000)
- Power Usage
- Power Source (110V)

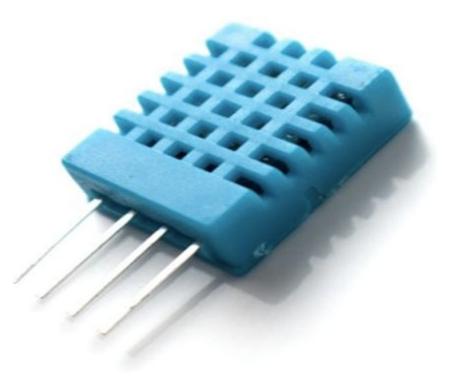
Functional Diagram

Arduino

- The arduino is used to control the major components of this project
- The components include:
 - DHT11
 - Pump
 - Fans
 - Liquid Level Sensor

SD Card Module

- The Arduino is capable of showing data, but does not store it
- Used to store data onto an SD drive
- SD drive is removable and portable
- Utilizes a 2GB SD card


Real Time Clock Module

- RTC is an important component for arduino
- Establishes a clock with in arduino
- With RTC, the arduino can tell what time and day the data is collected
- Also used with the pump to tell it when to begin pumping

DHT11

- 2 DHT11 sensors
 - Ambient air inlet
 - Dehydrated air exit
- Collects Data and stores it onto an SD drive
- Also tells the fan when to stop and how much air should be pushed through the inlet

Fan

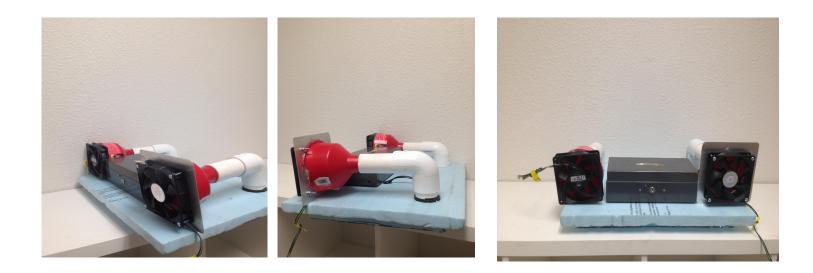
- 2 fans used for the project
- One fan pushes air through the inlet
- Other fan pulls the dehydrated air through exhaust
- Speed is determined by the inlet humidity

Lid and housing

Lid is made of Polystyrene (R5) and cut with (vertical band saw)

R5 Polystyrene Foam Board

Box cutter



Lid and housing

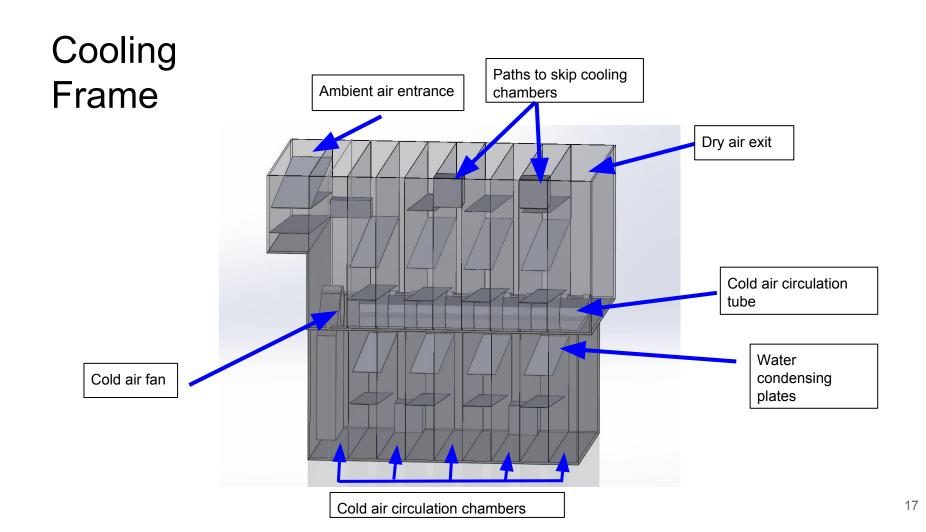
- Handles are screwed into the lid
- holes drilled for inlet/outlet
- Funnel to concentrate the airflow
- Pipes to direct the airflow inlet and outlet
- Sensors place in the pipes
- Box for holding electronics

Whole lid

Pump

- Using a Peristaltic liquid pump
- At a specific time during the day, arduino will tell pump to begin pumping
- Once the liquid level sensor maxes out or is at a constant below max the pump will reverse
- Used to move water to a reservoir

Liquid Level Sensor


- Used to measure the amount of water collected
- Water is pumped into a pipe with known diameter and height via the sensor
- Water is pumped out the other end to a reservoir

Frame

Four main parts of frame

- Vertical plates
- Inserts
- Square connectors
- Tube

Frame (manufacturing)

- The vertical plates, inserts and pump box were cut with tin snips and electric metal shears.
- Stainless steel tube had holes milled in it
- square inserts were cut to size with a vertical band saw

Frame

Bill of Materials

Part #	Part Name	Qty.	Price
1	Portable Cooler	1	\$169
2	Aluminum Sheet	20 ft ²	\$37
3	Arduino	1	\$70
4	Fan (3 pack)	1	\$12
5	Styrofoam Insulating Lid	1	\$45
6	Pipe (PVC 1.5in diameter)	1	\$7
7	Stainless Steel Pipe (2in diameter)	2 ft	\$37
8	2GB Micro SD Card	1	\$8
9	Aluminum square tubing 1"x1"	1	\$20
10	Dremel bits (3-pack)	3	\$11
11	Python Airline Tubing	1	\$5
12	Jardin Plastic Air Valve Connectors	1	\$5
13	eTape Standard Liquid Level Sensor	1	\$30
14	Plastic Air Pump Check Valves	1	\$4
15	Peristaltic Liquid Pump	1	\$24
16	Relays x3	1	\$4
17	Real Time Clock Module	1	\$8.99
18	Ethernet Shield	1	\$47.90
19	DHT11 x 4	1	\$7.50
20	Arduino w/ SD slot	1	\$50
21	Optocouplers x10	1	\$14
22	2 Y Adapters for female connectors	1	\$5
23	4 pin connectors (Female)	1	\$5
			Total: \$626.39

Conclusion

- Our goal is to create an atmospheric water extraction device that will collect 2 liters of water and log the atmospheric data
- Progress
 - Frame
 - Lid
 - Electronics
- Possible concerns are heat losses through holes in the lid and frame
- We plan on starting to test our device after spring break

References

- "SD Card Reader Module." Geeetech.com. N.p., n.d. Web.
- "Arduino." *Wikipedia*. Wikimedia Foundation, 06 Mar. 2016. Web. 05 Mar. 2016.
- "Kingduino Compatible DS1302 Real Time Clock Module with Battery." *HobbyKing Store*. N.p., n.d. Web. 07 Mar. 2016.
- "DHT11." Amazon.com. N.p., n.d. Web. 05 Mar. 2016.
- "Cooler Master Blade Master." Amazon.com. N.p., n.d. Web. 05 Mar. 2016.
- "ZJchao Peristaltic Liquid Pump." *Amazon.com*. N.p., n.d. Web. 06 Mar. 2016.
- "ETape Standard Liquid Level Sensor, 12-inch." Parallax.com. N.p., n.d. Web. 07 Mar. 2016.

Questions?