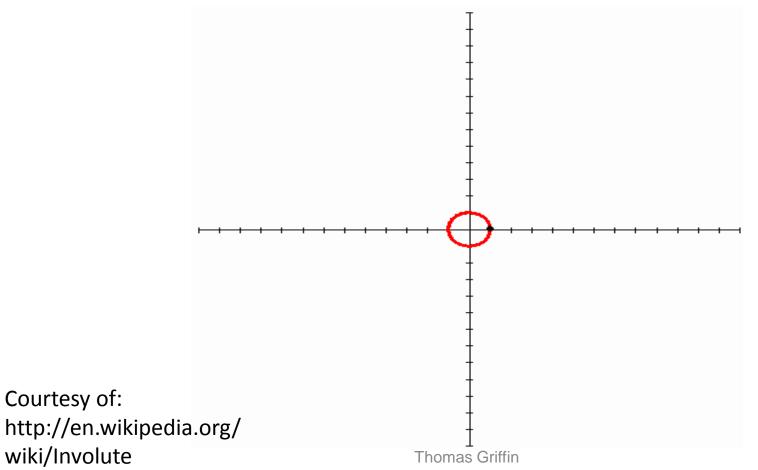
Ultra Low Cost Solar Water Heater

Concept Generation and Selection

10/29/13

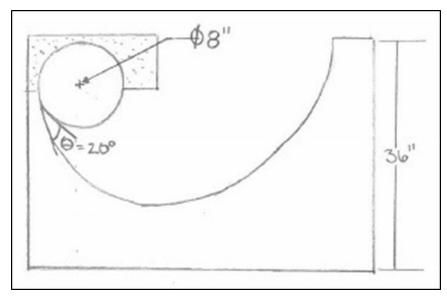
Saleh Alsadiq, Matt Beckham, Austin Chott, Thomas Griffin, Chris Heine

Overview


- Collector Designs
- Circulation Designs
- Integration
- Decision Matrix
- Timeline
- Conclusion

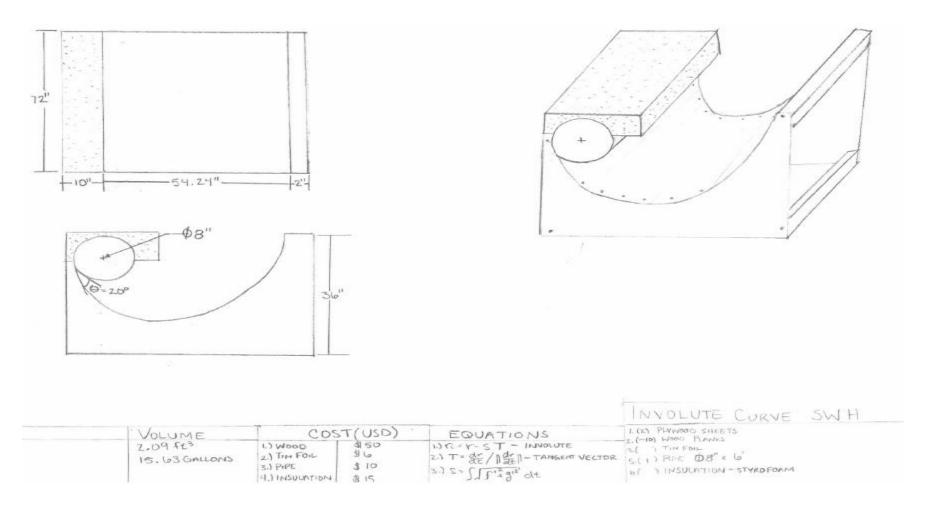
Collector Concepts

- Involute Collector
- Flat Plate Collector
- Bread Box Collector


Involute Collector

Involute Curve Animation

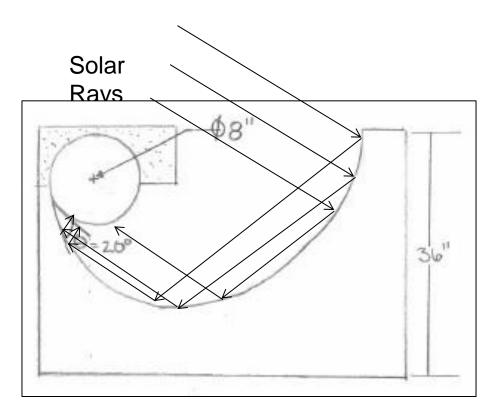
Involute Collector Continued


 Involute shape allows for all the solar radiation to be directed to absorber

Involute Curve Collector

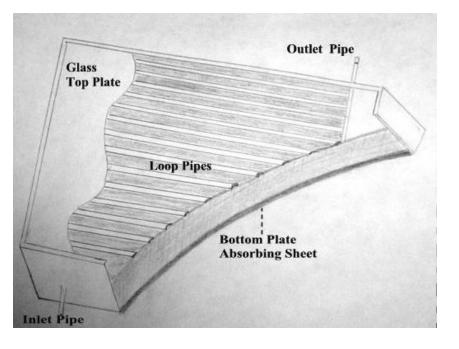
Design Drawings

Involute Curve Collector Design



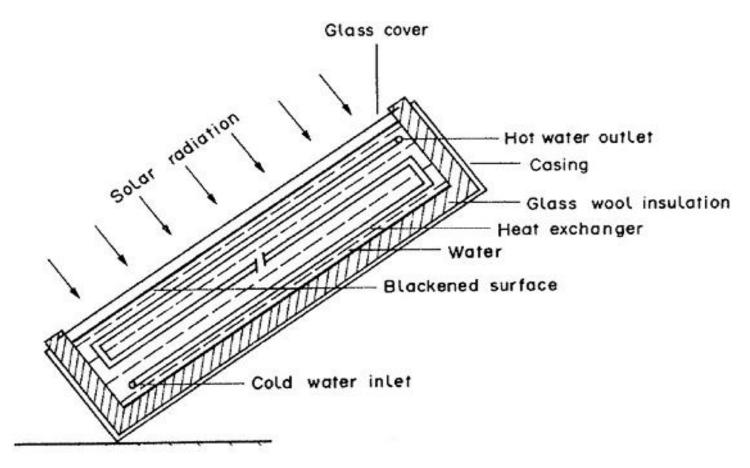
Design Drawing Continued

- Design is made of cost effective materials
- Should be easily constructed with do it yourself knowledge
- Insulated air trap improves efficiency

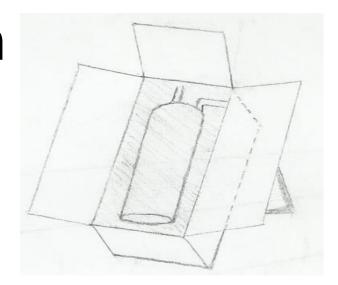

Design Functionality

Involute Curve Radiation Path

Flat Plate Collector


Flat Plate Collector

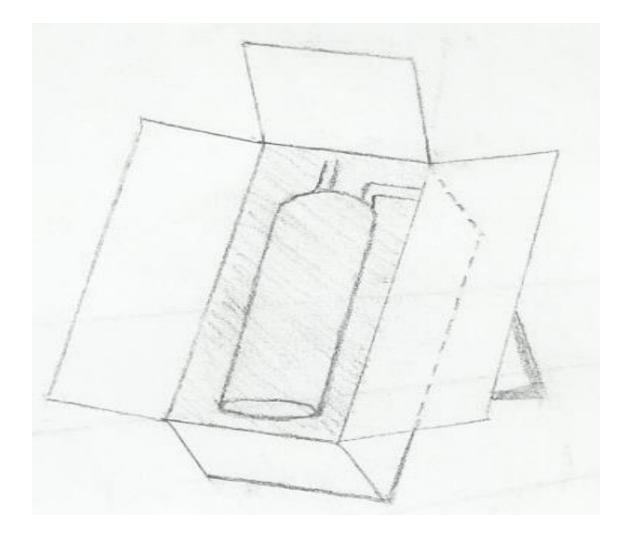
- Black pipes or flat background absorb radiation
- Possibly modular design
- Active or passive circulation


Design Variations

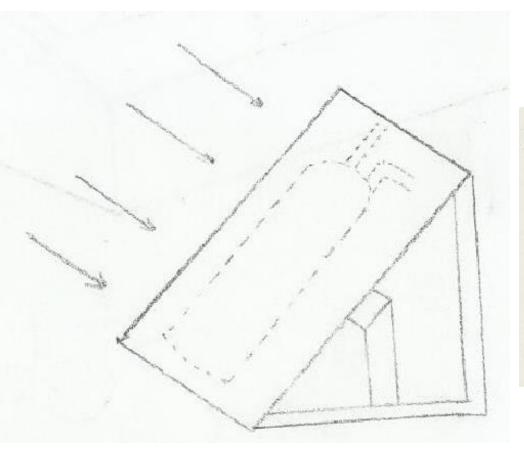
Flat Plate Collector Schematic

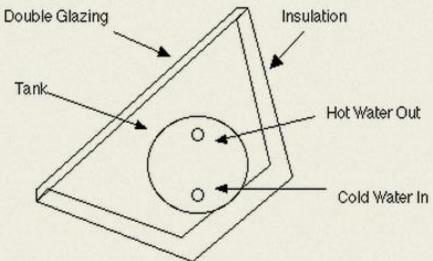
Bread Box Collector

Bread-Box Design



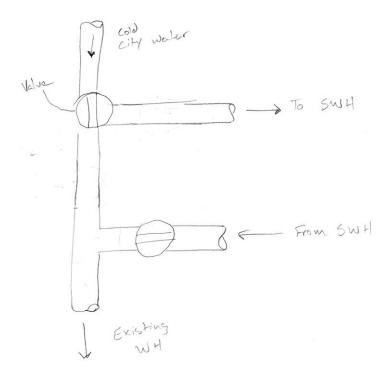
- Large black water tank
- Tank sits inside a fully insulated box
- Dual pane glass sits on top to capture solar radiation


Bread-Box Design


- Angled fins sit around three sides to deflect more light into the collector
- Water pipes run cold water in at the bottom of the tank and hot water out of the top

Bread Box Collector

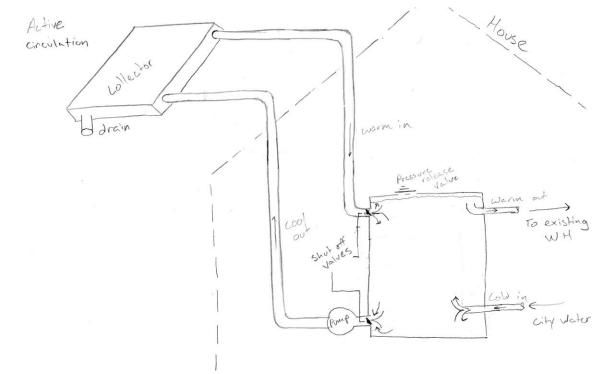
Bread Box Collector Side View



Circulation

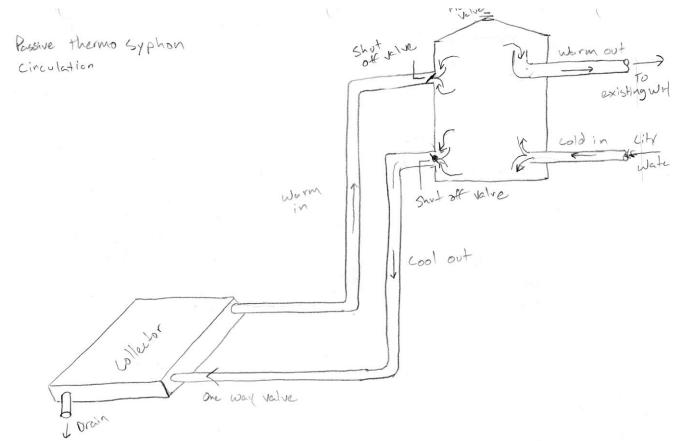
- Integration
- Active Circulation
- Passive Circulation
- Bread Box Circulation

Integration Into Water Heater


Integration Pipe Schematic

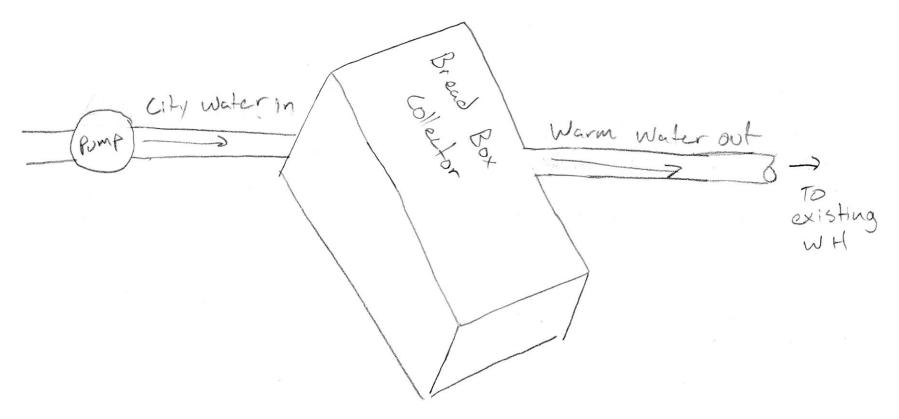
• Operator can choose to circulate water through SWH before Integration with home water heater or not at all.

Active Circulation


Active Circulation System

 Pumps water at the most efficient rate to absorb the maximum amount of sunlight.

Passive Circulation


Passive Circulation System

• Thermosyphoning is used to circulate water

Bread Box Circulation

Bread Box Circulation System

City water pressure circulates water within collector as it is used.

Decision Matrix

	Weight	Involute (Active)	Involute (passive)	Parabolic (Active)	Parabolic (passive)	Flat plate (open /active)	Flat plate (closed /active)	Flat plate (open /passive)	Flat plate (closed /passive)	Bread Box
Absorbtion	9	9	9	3	3	3	9	3	3	9
Area	9	9	9	9	9	3	3	3	3	3
Cost	9	3	3	3	3	1	1	9	3	3
Buildable	5	1	1	3	3	9	3	9	3	9
System Size	3	9	9	9	9	3	3	3	3	1
	Raw	221	221	177	177	117	141	189	105	183
	Rank	1	1	5	5	8	7	3	9	4

Timeline

Gantt Chart

GAN	roject	\mathbf{i}	7	2013	#7		ngine(Submit Propos					Preser
	Name	Begin date	End date	September	October	November	December	January	February	March	April	
Research		9/2/13	10/15/13									
Problem Formulation and Project Plan		9/24/13	10/8/13									
Problem Formulation/Project Plan Presentation		10/9/13	10/9/13									
Identify Key T	echnologies and Approaches	10/16/13	11/15/13									
Prepare Cond	cept Generation and Selection	10/9/13	10/28/13									
Concept Gen	eration and Selection Presentation	10/29/13	10/29/13			•						
Engineering /	Analysis	10/29/13	11/19/13									
Engineering /	Analysis Presentation	11/20/13	11/20/13			. ÷						
Prepare Prop	osal	11/20/13	12/2/13				 _					
Submit Propo	osal	12/3/13	12/3/13				÷					
Build Compo	nents	12/3/13	2/3/14									
Analyze Perfo	rmance	12/3/13	2/17/14									
Build Prototyp	be	2/18/14	3/7/14									
Prototype Ana	alysis	3/10/14	4/17/14									Ł.
Presentation	at P3 Expo	4/18/14	4/18/14									•

Conclusion

- Involute collector shape utilizes high percentage of collected light
- Flat plate proven method of capture
- Bread Box is a simple, self contained system
- Active circulation is an expensive with high efficiency
- Passive circulation is a cheap circulation system yet sacrifices efficiency
- Involute, flat plate, and bread box collectors are the best options
- Team remains on set schedule

References

- M. Raisul Islam, K. Sumathy and S. Ullah Khan, "Solar water heating systems and their market trends," *Renewable and Sustainable Energy Reviews*, vol. 17, pp. 1-25, 1, 2013.
- U.S. Department of Energy (DOE). (2005). *Residential Energy Consumption Survey 2005*. Washington, DC: Energy Information Administration. http://www.eia.doe.gov/emeu/recs/. Accessed October 2013.
- Energy Information Administration (EIA). (2005). Office of Energy Markets and End Use, Forms EIA-457 A-G of the 2005 Residential Energy Consumption Survey. Washington, DC: EIA.
- American Society of Heating and Air-Conditioning Engineers (ASHRAE). (1987). *Methods of Testing TO DETERMINE THE SOLAR PERFORMANCE OF SOLAR DOMESTIC WATER HEATING SYSTEMS*. Atlanta, GA: ASHREA Standard- 95.
- American Society of Heating and Air-Conditioning Engineers (ASHRAE). (1987). *Methods of Testing to Determine the Performance of Solar Collectors*. Atlanta, GA: ASHREA Standard- 93.
- M. Raisul Islam, K. Sumathy, Samee Ullah Kahn. (2012). *Solar water heating systems and their market trends*. Atlanta, GA: Renewable and Sustainable Energy Reviews. http://www.elsevier.com/locate/rser/. Accessed October 2013.
- Database of State Incentives for Renewables and Efficiency (DSIRE). (2012). Arizona Incentives/Policies for Renewables and Efficiency. Raleigh, NC: North Carolina State University. http://www.dsireusa.org/incentives/index.cfm?re=0&ee=0&spv=0&st=0&srp=1&state=AZ/. Accessed October 2013.
- U.S. Department of Energy (DOE). (2012). *Building Codes and Regulations for Solar Water Heaters*. Washington, DC: U.S. Department of Energy. http://energy.gov/energysaver/articles/building-codes-and-regulations-solar-water-heating-systems/. Accessed October 2013.
- U.S. Department of Energy (DOE). (2012). *Building Energy Codes Program*. Washington, DC: U.S. Department of Energy. http://www.energycodes.gov/adoption/states/. Accessed October 2013.
- Energy Protection Agency (EPA). (2013). *P3:People, Prosperity, and the Planet Student Design Competition for Sustainability*. Washington, DC: EPA. http://www.epa.gov/P3/. Accessed October 2013