Separation Connector Improvement

Final Design Review

Team 19: Koll Christianson Luis Herrera Shaun Shultz

Amelia Fuller Zheng Lian

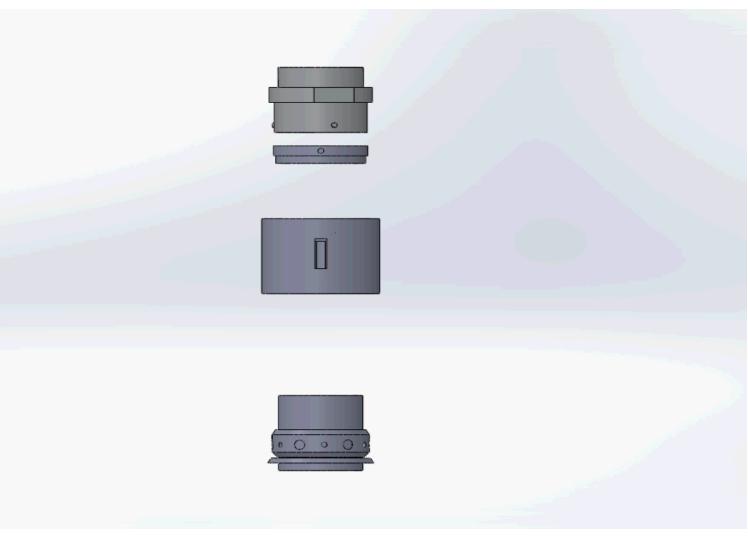
Overview

- Problem Statement
- What is a separation connector?
- Constraints/Specifications
- Final Design
- Design Analysis
 - -Stress
 - -Static
 - -Dynamic
- Material Analysis
- Timeline

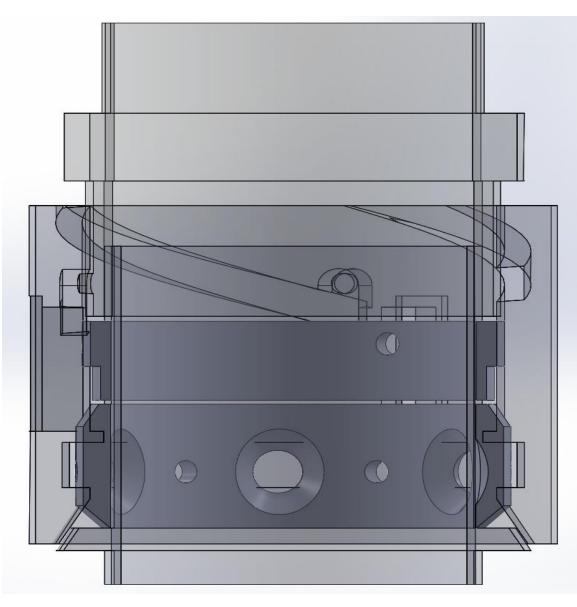
Problem Statement

 The goal for this project is to design and prototype a perfectly reliable, inexpensive, and easily manufacturable separation connector

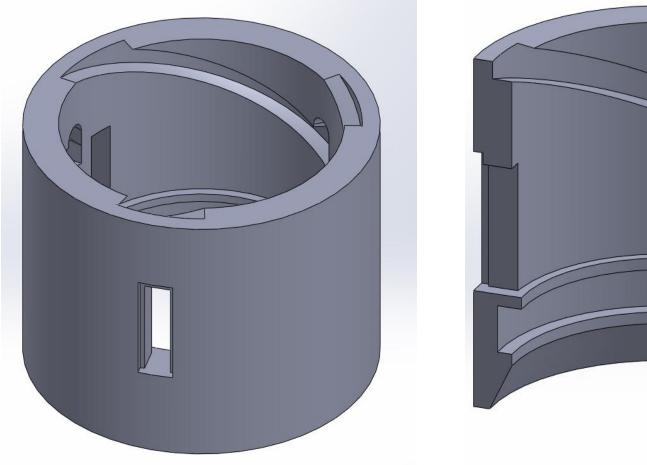
What is a Separation Connector?

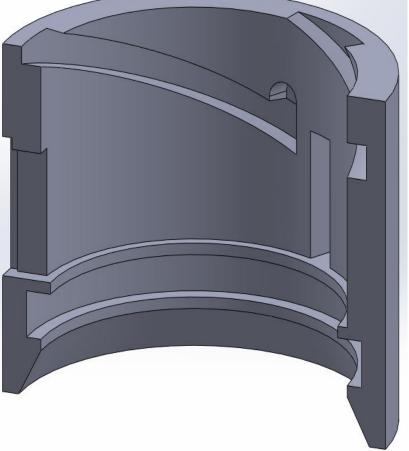

Constraints

- No greater than 25% larger than current design
- Weigh less than or equal to the current design
- Material cannot out-gas in a vacuum
- Must not de-mate prematurely
- Male end of the connector must remain unchanged

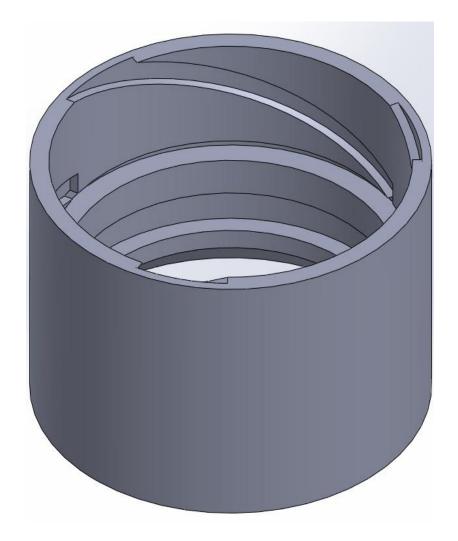

Specifications

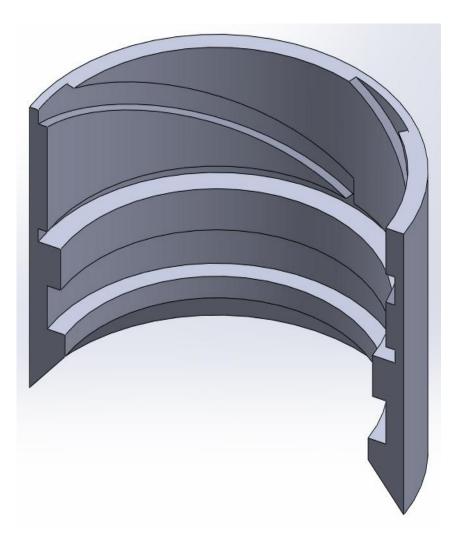
- 10-30 lbf Static de-mate
- 200 lbf Dynamic de-mate
- Survive in a temperature gradient of -34°C 71°C
- Withstand a static acceleration of 15 G-Force
- Drop test
- Vibration test


Final Design

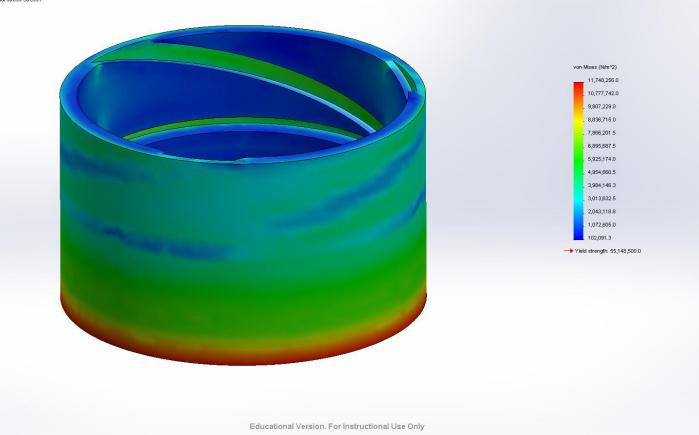


Final Design



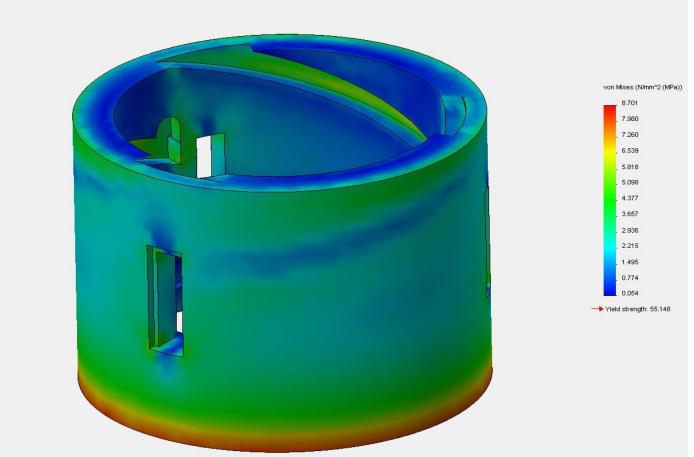

Coupling Solution #1

Coupling Solution #2

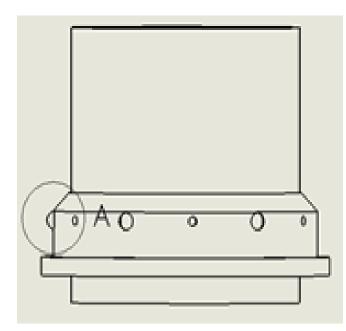


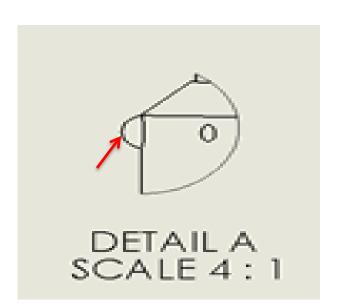
Parts List for Analysis

- Ball Bearing Design
 - Springs for Ball Bearings
 - Male End
 - Inner Female Mate
 - Outer Shell
 - Ball Bearings
 - Plate
 - Spring for plate


Stress Analysis - Design #1

Model name: Atached ball bearing design 2 Study name: Study 1 Plot type: Static nodal stress Stress1


Stress Analysis - Design #2


Model name: Atached ball bearing design Study name: Study 2 Plot type: Static nodal stress Stress1

Static Analysis

- Six Ball Bearings Spaced Evenly
- Force in the X-Direction is 16.67 lbf.
- Force in the Y-Direction is 5 lbf

Material Analysis

	Stainless Steel	Aluminum 6061	Aluminum 7075	Abs plastic		
Tensile Yield Strength (kpsi)	31.2	40	73	6.1		
Fatigue Strength (kpsi)	35	14	23	11		
Brinell Hardness	123	95	150	х		
Modulus of Elasticity (kpsi)	28000	10000	10400	310		

Schedule Update

		2012	PreRe	eport 1 1		#33	Report 2	PreRe	PreReport 3-Engineering Analysis sis nal Present			
Ime		Week 39 9/23/12	Week 40 9/30/12	Week 41 10/7/12	Week 42 10/14/12	Week 43	Week 44	Week 45	Week 46	Week 47	Week 48	Week 4
Contact Mary Roger (Client		9/23/12	9/30/12	10/7/12	10/14/12	10/21/12	10/20/12	11/4/12	11/11/12	11/10/12	11/23/12	12/2/12
Meet with client								-			-	
Sample Design CAD Drawing			_									
Work on and update Website							_		_			
Presentation 1			• 1									
Report 1			•									
Meet with Client-sample design			-									
Brainstorm Designs			=									
Select Design		1940 - 1940 - 1941					-		-			
Presentation 2 Concept Generation & Selection						.	1					
Report 2							•					
Analyze Design							_	_	_	_	-	
 Client review of design analysis 							-					
Presentation 3 - Engineering Analysis								• 2				
Report 3-Engineering Analysis								•				
Speak w/professor for aid in calculations											_	
Choose/Discuss Final design with Client									8			
• Update CAD drawing/Finalize Dimensions								E			_	
 Client review of finalization 								E				
Final Design Review/Project Proposal								E				
Final Presentation	<u></u>											
Project Proposal												

Conclusion

- Defined Constraints and Specifications
- Final Design
- Two Solutions for Coupling Design
- Effects of Loads on Connector
- Calculated Forces on Springs and Ball Bearings
- Material Analysis
- Timeline

References

- "Amphenol Tri-Start Subminiature Cylindrical Connectors." *Powell Electronics*. Powell Electronics, n.d. Web. 4 Oct 2012.
 http://www.powell.com/Amphenol/D38999/D38999catalog.pdf
- "A World of Interconnect Solutions." *Glenair*. Glenair, 2012. Web. 4 Oct 2012.
 http://www.glenair.com/interconnects/mildtl38999/>.

References

- R. C. Hibbeler (2010). *Engineering Mechanics: Statics*. Upper Saddle River, NJ: Pearson Prentice Hall.
- Richard G Budynas and J. Keinth Nisbett (2011).
 Shigley's Mechanical Engineering Design. 9th ed. New York: McGraw-Hill.
- Timothy A. Philpot (2011). *Mechanics of Materials*. 2nd ed. Missouri: John Wiley & Sons, Inc..

Questions?