40 QUART COOLER DESIGN

SENIOR DESIGN PROJECT

Dominic Albano · Dirk Prather · Danny Miller · Federico Martolini · Bander Almazroua

Department of Mechanical Engineering Northern Arizona University Flagstaff, AZ 86001

April 26, 2013

OVERVIEW

- Needs Identification
- Goal & Scope
- Constraints
- Engineering Process
 - Latch Design
 - Hull Design
 - TestingResults

Simulation • **Final Design** • Latch • Assembly **Cost Analysis** • **Project Conclusions** • **References and** • Acknowledgements

NEEDS IDENTIFICATION

- Mold quality
- Durability
- Ice retention
 - Latches
 - Gasket
- Widened range of function

GOAL & SCOPE

Goal:

Develop a cooler with an internal volume of 40 quarts that offers reliability and performance. The final product must meet the highest standards in the industry while maintaining a manufacturer's suggested retail price (MSRP) of no more than \$199.99

Scope:

- Rotational & Injection molds are costly to prototype
 - CAD focused project
 - Produced affordable prototypes
 - Temperature testing
 - Computer simulations

CONSTRAINTS

Cost

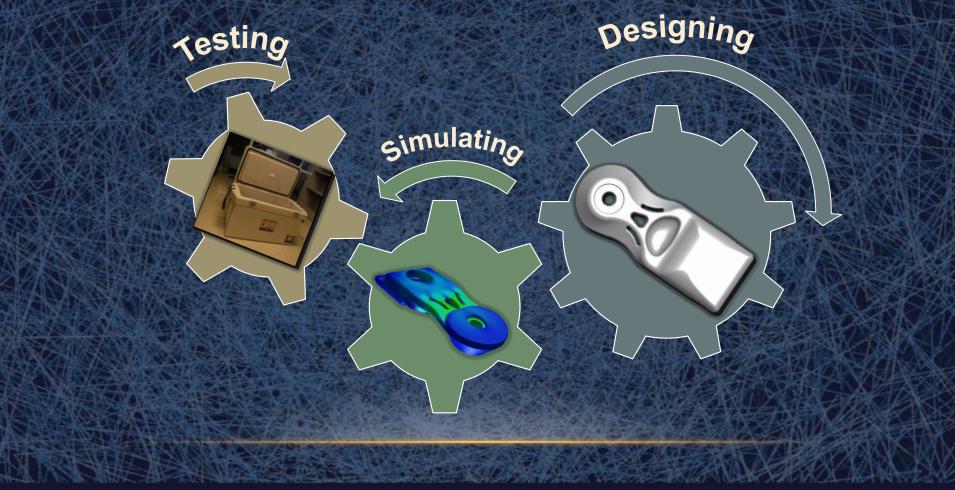
MSRP of no more than \$ 199.99

<u>Geometry</u>

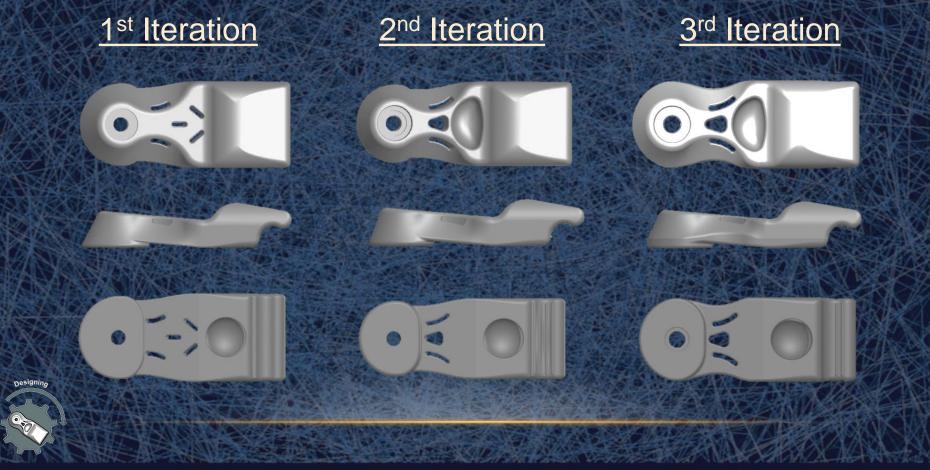
- Internal volume of 40 quarts
- Nest into existing coolers
- Dimensioned for common goods

Weight

۰

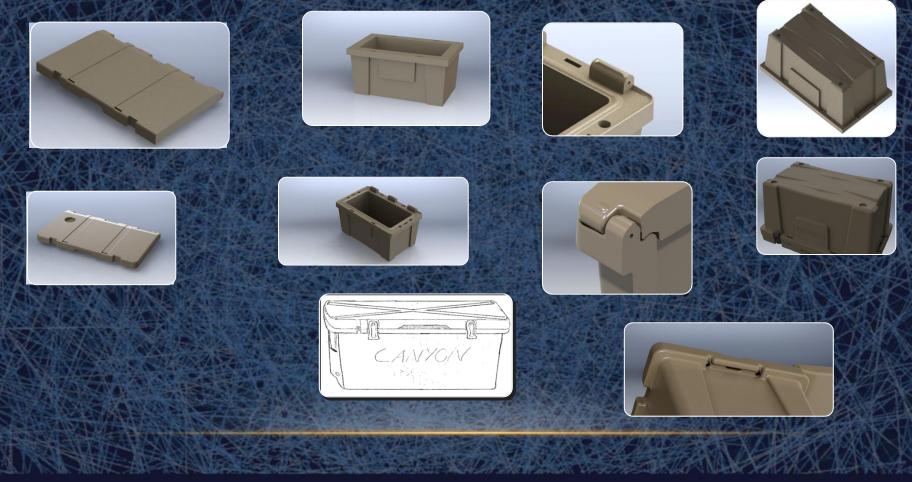

•

- Maximum dead weight of 20 lbs.
- Includes weight assist features


Durability

- Resist warping
- Impermeable to debris and water
- **Function**
 - Improved ice retention
 - Offer integrated features

ENGINEERING PROCESS



ENGINEERING PROCESS - LATCH

Dirk Prather

ENGINEERING PROCESS

Dirk Prather

ENGINEERING PROCESS - TESTING

8 T-type thermocouples
Placed on top, bottom, back, and side walls, both inside and outside
National Instruments 9213 DAQ
3 experiments performed
3rd and final test produced best

results

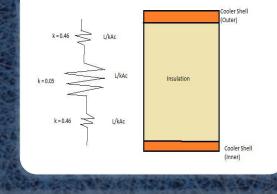
ENGINEERING PROCESS • TESTING

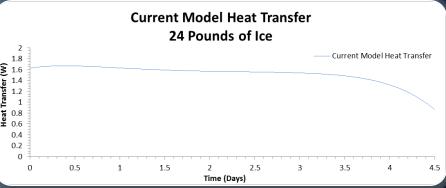
Temperature of Selected Walls

24 Pounds of Ice 25 Inside Bottom 20 Outside Bottom Inside Back femperature (C) Outside Back 15 Inside Side Outside Side Inside Top Outside Top Ambient 5 0.5 1.5 3.5 4.5 Time (days)^{2.5} 3

Experiment started at ambient conditions Ice added shortly after start of test Sharp decrease in internal temperatures Internal temperatures increased on fourth day after the ice had melted

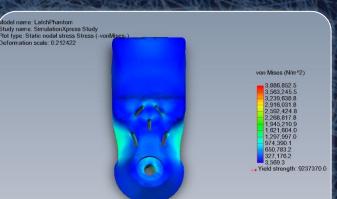
Dirk Prather

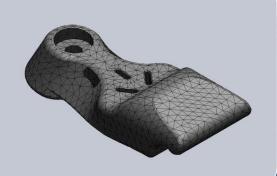

10


ENGINEERING PROCESS - RESULTS

€

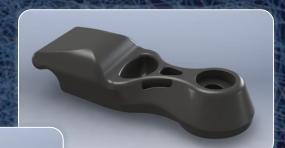
1-D heat plane wall Boundary conditions from • experimental data Thermal resistance circuit Comparison of thermal resistances Integration reveals total heat gain of 0.15 W

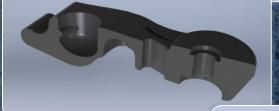

Dirk Prather

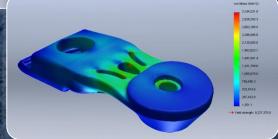


ENGINEERING PROCESS - SIMULATION

Stress map generation
Accounted for mesh dependency
Multiple configurations
Function information
Form and fit by RAPID prototyping




simulating


Dominic Albano

FINAL DESIGN - LATCH

- EPDM rubber (40-50 shore)
 - Weather resistant
 - Consistent performance
 - Rough finish
 - Resists high stress
 - Allows for functional stretching
- Ergonomic
- High latching force
- Backwards compatible

Dominic Albano

FINAL DESIGN - LATCH

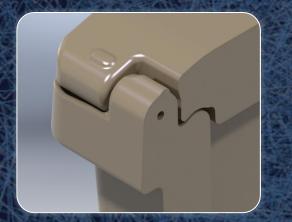
SolidWorks Assembly Four part files

• Lid

•

•

•


- Body
- Two Latches
 Blueprints for rotational and injection molding

FINAL DESIGN - HINGE

Hinge Section View

Primary Open Position

Secondary Open Position

Daniel Miller

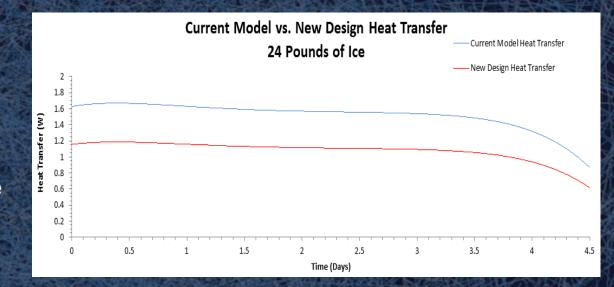
FINAL DESIGN - LIP FEATURES

FINAL DESIGN - HINGE

- Four holes function as feet inserts and PE foam injection ports
- Rubber feet offer consistent grip
- Warp prevention
- Movable when tilted
- Minimizes heat transfer

FINAL DESIGN - VIRTUAL TOUR

Daniel Miller


COST ANALYSIS

Material	Unit Cost (\$)	Quantity	Total Cost (\$)	Notes
Plastic handle	0.98	2	1.96	Dynamic handle component
1/4 in. diameter nylon rope	0.13 per ft.	4 ft.	0.52	Dynamic handle component
Drain plug	1.45	1	1.45	
3/16 in. Trifold aluminum rivet	0.14	2	0.28	Latch component
Nylon shoulder washers	0.02	2	0.04	Latch component (WS-0402-0201-0354)
Insulating PVC gasket	4.77 for 35 ft.	6 ft.	0.82	¼ in. x ¾ in. (PVC-PSA-1)
Plastic latch knob	0.25	2	0.5	Latch component
Flat head screws	0.09	2	0.18	Latch component
Rubber foot	0.85	4	3.38	
1/4 in. Diameter steel hinge pin	3.45	26 in.	3.45	
HDPE plastic	ТВА	17.9 lbs.	ТВА	Cooler hull, lid & body
Polyurethane foam	ТВА	2.26 lbs.	ТВА	Insulation, lid & body
EPDM rubber	ТВА	0.07 lbs.	ТВА	Latch
	Component Cost		12.58	
		Target Cost	66.70	
	Manufactu	iring Budget	54.12	

Dominic Albano

PERFORMANCE VERIFICATION

- Heat transfer improvement Boundary conditions from experimental data
 - Comparison of thermal resistances
- Improvement of 29%
- Integration reveals average heat gain of 0.11 W (compared to 0.15 from previous model)

CONCLUSION

Cost

MSRP of no more than \$ 199.99

Geometry

- Internal volume of 40 quarts
- Nest into existing coolers
- Dimensioned for common goods

Weight

- Maximum dead weight of 20 lbs.
- Includes weight assist features

Durability

- Resist warping
- Impermeable to debris and water
- **Function**
 - Improved ice retention
 - Offer integrated features

REFERENCES & ACKNOWLEDGMENTS

"BATTALION T Handle Latch, Black, H 5 1/8 In." Grainger. N.p., n.d. Web. 6 Dec. 2012. < http://www.grainger.com/Grainger/BATTALION-T-Handle-Latch-1XPA8>.

"Buy Engel Coolers." Engel Coolers. N.p., n.d. Web. 6 Dec. 2012. < http://www.buyengelcoolers.com/>.

Castello, Jayson. "The Last Cooler You Ever Need to Buy." *Canyon Coolers*. N.p., n.d. Web. 6 Dec. 2012. http://canyoncoolers.com/index.php?main_page=index. "EL-USB-2." *Lascar Electronics*. N.p., n.d. Web. 6 Dec. 2012.

<http://www.lascarelectronics.com/temperaturedatalogger.php?datalogger=102>.
Figliola, R. Beasley, D. Theory and Design for Mechanical Measurment, 5th edition. November 2010.

Incorpera, F. DeWitt, D. Bergman, T. Lavine, A. Fundamentals of Heat and Mass Transfer, 7th edition. April 2011.

"MatWeb, Your Source for Materials Information." MatWeb. N.p., n.d. Web. 6 Dec. 2012. < http://www.matweb.com/>.

Mraz, Stephen J. "Putting The Right Spin On Rotational-Molding Designs." Machine Design. Fawcett Design Inc., 18 May 2000. Web. 6 Dec. 2012.

"SolidWorks Design." SolidWorks Corp. Dassault Systèmes, n.d. Web. 6 Dec. 2012. < http://www.solidworks.com/>.

"Welcome to Mityvac® Automotive & Vacuum-Related Tools & Equipment." Mityvac. N.p., n.d. Web. 06 Dec. 2012.

"Welcome to T-H Marine." T-H Marine. N.p., n.d. Web. 6 Dec. 2012. http://www.thmarine.com/

Foamtapes, . N.p.. Web. 23 Apr 2013. ">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3,Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3&Free3&Free1>">http://www.foamtapes.net/Default.aspx?tabid=84&List=0&txtSearch=*&CategoryID=27&Level=1&SortField=Free3&Free

Dr. Brent Nelson. "" Conversation about numerical simulations"." 20 2 2013. Speech.

Willie, Dr. David. "" Advice about numerical heat transfer simulation in 1-D." 3 2013. Speech.

Dominic Albano

QUESTIONS?

