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Abstract—Emerging Internet of Things (IoT) provides con-
nectivity to a wide range of mobile nodes including indoor
wireless users, pedestrian, ground robotics, vehicles, and flying
objects. Such decentralized network require rethinking user-
centric communication protocols which accommodate extremely
dynamic environments of autonomous nodes. The authors re-
cently proposed a predictive routing algorithm, which enables
a delay-optimal communication through incorporating network
topology prediction into the Dijkstra’s shortest path algorithm.
In this work, we extend the proposed solution to jointly optimize
the end-to-end latency and total transmission power. Further, we
develop a ground robotics platform in order to study the utility of
the proposed algorithm in real-world applications. The simulation
results which verified by the test platform, confirm the superiority
of the proposed algorithm compared to the conventional shortest
path algorithms by improving the delay and power consumption
by a factor of 10% to 15%.

I. INTRODUCTION

Internet of Things is an emerging technology to provide
connectivity for a wide range of mobile nodes to realize
smart cities [1]. The idea is to integrate furnish everyday
objects with embedded control units and integrated them into
a connected network with ubiquitous access [2], [3]. This
large-scale network encircles a wide range of heterogeneous
nodes with different levels of autonomy, mobility, storage and
data communication requirements, which demands for more
efficient Machine to Machine (M2M) communications [4].

In this works, we focus on developing optimized commu-
nication protocols appropriate for large-scale networks which
include freely-moving nodes with probabilistic but predictable
motion trajectories. Adaptive communication is a long-lasting
paradigm studies from many different perspectives. The ob-
jective of a typical adaptive communication approach is to
tune communication parameters or make smarter decisions at
different layers of the communication protocol (e.g. packet
forwarding in network layer) such that a desired performance
metric (e.g. data throughput, transmission delay, age of infor-
mation, network connectivity, etc.) is optimized [5]–[8].

Majority of the previously reported network optimization
frameworks take into account the current network situation
in the optimization process. This is a careless ignorance
of predictive information that is currently available using
advanced machine learning algorithms. For instance, selecting
a communication link which maximized the instantaneous
performance metric at the current time but is subject to link
loss during the transmission session is extremely inefficient
[9], [10]. This issue becomes more challenging in flying ad-
hoc networks (FANET), where network parameters constantly
change due to dynamic network topology [11].

Recently, the idea of incorporating predicted network topol-
ogy into communication protocols is introduced in order to
optimize the end-to-end delay in Unmanned Aerial Vehicles
(UAV) networks [12], [13]. However, these works either rely
on GPS information, or consider only delay optimization. In
this work, we plan to extend this idea to jointly optimize
the end-to-end delay and the total transmission power, since
both influenced by the network topology. Further, to demon-
strate the applicability of the proposed algorithm in real-
world applications, we develop a test and evaluation platform
based on autonomously controlled ground robotics. We choose
ground robots for their motion stability and predictability [14].
However, the idea is general and applicable to other mobile
objects such as drones, small satellites and airplanes [15].

The rest of this paper is organized as follows. In section
II, the system model and the utilized mobility model are
presented. Section III elaborates on the proposed predictive
routing algorithm. In section IV, the test and evaluation
platform is presented. Finally, simulation results are provided
in section V, followed by concluding remarks in section VI.

II. NETWORK MOBILITY MODEL

Consider a network of freely moving objects that com-
municate with high bitrate through a queued communication
platform. An example is a network of UAVs that exchange
video information for border patrolling. The purpose of a
routing algorithm is to find an end-to-end communication
path from the source to the destination such that a desired
performance metric is optimized. Typical performance metrics
including channel rate, transmission power, and transmission
delay usually depend on the pairwise distances between the
nodes at each communication link. In a queue-less systems
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Fig. 1: Utility of predictive routing in finding optimal paths
for dynamic networks.



with light traffic regime, the propagation delay is negligible
and hence the network topology does not significantly change
during a short transmission session. However, in a queued
system with heavy traffic regime, network topology can change
significantly, while a data packet is waiting in a transmission
buffer in the intermediate nodes during his journey from the
source to destination. Thereby, the optimal path, if found by
the source node based on the initial network topology using
a typical shortest path algorithm, may not remain optimal.
An illustrative example is shown in Fig. 1, where the blue
and red circles, respectively show the original and the updated
positions of the nodes (after motions shown by dashed green
arrows). A conventional algorithm would determine (1-2-3-5)
as the optimal path from source node 1 to destination 5 (rep-
resented by blue arrows) based on the original positions (blue
circles), whereas the proposed predictive routing algorithm
selects the path (1-4-5) (represented by red arrows) taking into
account predicted network topology change, while the packet
is waiting in the transmission buffer of node 2.

Here, the main idea is to utilize prediction algorithms and
incorporate the predicted network topologies into the optimal
path selection algorithm. Before elaborating on the details of
the proposed algorithm, we present the mobility model used
in this work.

The network is composed of N nodes uniformly distributed
in a two-dimensional squared grid. Therefore, the initial
node positions ~li(0)=[xi(0), yi(0)] ∼ U(−L,L) follow a
Uniform distribution within the predefined range (−L,L).
Edges between nodes represent bi-way communication links
in terms of a contact graph, where existence of each link
following an i.i.d. Bernoulli distribution with sparsity level
s, i.e. Pr(eij = 1) = 1− Pr(eij = 0) = s.

The edge metrics wij(t) are based on the previously
set up contact graph and the distances between the nodes
dij(t), where wij(t) = wji(t). Initial velocities ~vi(0) =

[v
(x)
i (0) v

(y)
i (0)] and acceleration vectors ~ai = [a

(x)
i a

(y)
i ]

are randomly generated using uniform distributions within a
predefined range.

The motion trajectories can be simply obtained using
Durbin’s curve equations in terms of a discrete state transition
model as follows:{

~si(k + 1) = A~si(k) +B~ai(k) + ~wi(k),

~oi(k) = γi(k)C~si(k) + ~zi(k),
(1)

where we have:

~si(k) =
[
xi(k) yi(k) v

(x)
i (k) v

(y)
i (k)

]T
, (state vector)

~ai(k) =
[
a
(x)
i (k) a

(y)
i (k)

]T
, (input vector)

~oi(k) =
[
o
(x)
i (k) o

(y)
i (k)

]T
, (observation vector)

A =

[
~I2×2 dt~I2×2
~02×2 ~I2×2

]
, B =

[
~02×2 ~I2×2

]
, C =

[
~I2×2 ~02×2

]T
,

~wi(k) ∼ N (~0, ~Ri), ~zi(k) ∼ N (~0, ~Qi). (2)

Here k represents the discrete time point kdt for an arbitrar-
ily chosen time step dt. Also, ~wi(k) and ~zi(k) are zero mean

Gaussian distributed random vectors of covariances Ri and
Qi that respectively represent the system and observation noise
terms. Finally, γi(k) is a Bernoulli distributed random variable
Pr(γi(k) = 1) = λ to capture object tracking success. The
optimal estimation of the node locations when measurement is
available (γi(k) = 1) as well as the optimal online prediction
of locations when the measurement is absent (γi(k) = 0) for
known input vector ~ai can be obtained using Kalman filtering
with intermittent observation [16].

From motion trajectories we can determine actual node
locations ~li(t) = [xi(t) yi(t)] and we assume that the lo-
cation estimates and predictions ~̂li(t) = [x̂i(t) ŷi(t)] for all
neighbor nodes are available to each node ni using a proper
tracking system, where we include the prediction error term
~ei(t) =

~̂
li(t) − ~li(t). Here we take a realistic consideration

that the prediction certainty declines over time. In other words,
we have ei(t) ∼ N (0, σ2(t)I2×2), where the prediction noise
variance σ2 increases over time as

σ2(t) = σ2
0 + αt, (3)

where α is a predefined discount factor to capture the rise in
localization uncertainty. Lastly, to model queuing delays, we
assign a random waiting time to each node, wi(t) ∼ U(0,W ).
Likewise, each node has an estimate of other node’s waiting
time as ŵi(t) = wi(t)+ewi(t), where ewi(t) ∼ N (µw, σ

2
w) is

the error measurement for the waiting time, which has variance
σ2
w.
Path from source to destination is determined based on the

predicted locations and waiting times, whereas the actual end-
to-end objective function calculations are made based on the
actual locations and waiting times.

III. PREDICTIVE ROUTING ALGORITHMS

The predictive algorithm is a modification of the well-
known conventional Dijskstra’s shortest path algorithm [17].
The algorithm is efficient and is the fundamental core of most
shortest path algorithms. However, for scenarios where the
edge metrics are time-varying, the conventional version is not
appropriate, especially for queued communications.

In our network model, we use both conventional and predic-
tive routing , respectively using initial and predicted location
information to find the shortest path from the source node to
the destination. The optimization goal is find the optimal path
Popt, which maximizes the function in (4), where d(P) and
p(P) represent the end-to-end delay and the total transmission
power for path P . Then, a desired importance factor γ is used
to balance between the two objective functions.

f(P) = γd(P) + (1− γ)p(P) (4)

The proposed predictive routing algorithm starts from the
source node at time 0 and finds the next intermediate node in
the path by including the predicted locations and estimating
when the packet would reach each of the possible intermediate
nodes. On this basis, it select the best intermediate node
according to the lowest objective function and updates the
topology at the time, the packet is ready for transmission in the
intermediate node. This process repeats for the intermediate
node, excluding previously visited nodes, until we reach the



destination. Consequently, we obtain the path which minimizes
the multi-objective function. The following is the edge update
procedure.

In a general formulation, we can consider edge weights
as wij(t) = f(dij(t)) + gij(t), where f(dij(t)) mimics the
distance-related terms as can be the propagation delay and
gij(t) represents other terms, for example the waiting delay. In
this paper, the goal is to minimize the transmission delay and
power, represented by f() in (4). To optimize the power, noting
that transmission power is proportional to distance squared, we
use d2ij(t) as the surrogate of power in selecting the optimal
path. To optimize the end-to-end delay, we consider an edge
metrics wij(t) that represents the delays associated with the
edge eij accounting for time delays for a packet when it
reaches node i denoted by ti until the epoch it is delivered to
node j, denoted by tj . This time is composed by the waiting
time in transit buffer of node i at time ti, denoted by wi(ti)
and the actual propagation time. The propagation time for a
packet that leaves node ni at time ti + wi and reaches the
mobile node j, denoted by pij(ti+wi) is calculated by solving
the following equations:{

dij = |l̂j(ti + ŵi + pij(ti + ŵi))− li(ti + ŵi)|2,
pij(ti + ŵi) = dij/c,

(5)

where the first equations characterizes the predicted distance
between node ni (when the packet leaves this node at time
ti + wi) and node nj (when the packet reaches this node at
time pij(ti +wi)). The second equations relates this distance
to the propagation time pij(ti + wi) using the wave propa-
gation phenomenon with the speed of light c. The operator
|~x|2 =

√
x21 + x22 is the second norm of vector ~x = [x1x2].

Note that (5) may require numerical methods to solve the
nonlinear equation, since l̂j(t) is the solution of (1) and in
general is not linear. However, noting the fact that propagation
time is negligible compared to waiting times, we can use the
convenience of pij = 0 in (5), thereby the end-to-end delay is
the accumulated waiting times through the path.

Once, we solve (5) with or without the simplifying assump-
tion, the edge metrics are determined as

wij(ti) = wi + pij(ti + wi), tj = ti + wij . (6)

The total transmission delay of a K-hop path P =
(ni1 , ni2 , . . . niK ) is calculated as:

d(P) =
K−1∑
k=1

wikik+1
(tik) =

K−1∑
k=1

wik + pikik+1
(tik + wik)

(7)

Likewise, the power can be represented by

p(P) =
K−1∑
k=1

d2ikik+1
(8)

The following is the summary of the proposed algorithm.
We observe that the objective function in Algorithm 1 is the

combination of the end-to-end delay and power along.Also,
note that the predicted node locations l̂j(t) and estimated
waiting times ŵi(t) are used to find the optimal intermediate

Algorithm 1: Optimal shortest path algorithm
Data: N : number of nodes, ns: source, nd: destination,

G = (V,Eij(t)), ~li(t), l̂i(t), wi(t), ŵi(t) c
Result: P: optimal path, obj(P): path objective function,

d(P): path delay, p(P): path power
(initialization):
{V isited} ← {ns}; tns

= 0;
{Unvisited} ← V \ {ns}; tn =∞∀n ∈ {Unvisited};
ni ← ns;
(finding optimal path:)
while nd /∈ {V isited} do

for nj ∈ {Unvisited} do
if eij = 1 then

update wij(ti) using (6);
update dij using (5);
update objij using wij(ti) and dij in (4);
tj = ti + wij(ti);
dsj = dsi + dij ;
objsj = objsi + objij ;

{V isited} ← {V isited} ∪ {ni};
{Unvisited} ← V \ {ni};
update next node: ni ← argmin

j∈{Unvisited}
{objsj} ;

Previous(nj)=ni;

(form the optimal path:)
P = {nd}; n = nd;
while n 6= ns do

n← Previous(n);
P ← n ∪ P

(calculate delay:)
t=0; dist=0; obj=0;
for n ∈ P do

i = n; j = next(n);
calculate dij using (5) by substituting l̂j(t) with lj(t)
and ŵi(t) with wi(t);

update wij(t) using (5) and (6);
update objij using wij(ti) and dij in (4);
t← t+ wij(t);
dist← d+ dij ;
obj ← obj + objij ;

d(P) = t;
p(P) = p(P) + d2ij ;
f(P) = γd(P) + (1− γ)p(P);

nodes in the path, while actual node locations lj(t) and
node delays wi(t) are used to calculate the actual delay
and power metrics. In the case of linear motions, we have
B = 0 in (1) and the state transition equations are reduced
to ~li(t+ 1) = ~li(t) + dt~vi+noise, which further simplifies the
calculations by linearizing (5).

IV. TEST AND EVALUATION PLATFORM DESIGN

In order to test the practicality of the developed Predictive
Routing algorithm in practical Dynamic Networks, we develop
a test and evaluation platform using ground robots. The main
goal is to assess the superiority of the proposed algorithm
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Fig. 2: Block diagram of the test and evaluation platform.
Green color represents the external modules.

in finding optimal paths in real scenarios compared to con-
ventional shortest path algorithms. In order to validate the
credibility of the obtained simulation results, we compare the
actual end-to-end distances for an end-to-end communication
extracted from the captured video against the numerical values
obtained by processing the planned motion trajectories. Fig. 2
illustrates the block diagram of the proposed system.

The system consists of three main modules including
computer-based control unit (CBCU), localization unit (LU),
and 5 ground robots. The ground robots are three-wheel car
platform equipped with two electric motors, a LiDAR based
localization module, and a control and wireless communication
module based on Raspberry pi 3 Model B.

The control unit is developed in MATLAB environment
with a graphic user interface (GUI) which includes the
following modules: i) path planing module (PPU) in order
to program the robots motion trajectories according to the
probability distributions presented in section II, ii) command
and control unit (CCU) in order to convert the planned motion
trajectories as well as the communication parameters into a
sequence of control commands, iii) a bi-way communication
module in order to send the control commands to the ground
robots and receive the relevant measurements from the robots,
iv) topology prediction module in order to predict network
topology based on the localization information, and v) a
predictive routing algorithm in order to find the optimal path
from the source to the destination, as detailed in section III.

Finally, we note that the localization module includes two
different approaches based on QR imaging and LiDAR system,
as detailed in sections IV-B and IV-C.

A. Communication Protocol
The information exchange occurs between the CBCU and

the robots through WiFi connectivity and using TCP/IP pro-
tocol. We select TCP/IP over WiFi (IEE 802.11 family)
connectivity as opposed to other candidates such as ZigBee
protocol (based on IEEE 802.15) for the implementation
convenience and also its capability of exchanging high data
rates. In order to simulate the waiting times at intermediate
nodes, we program the nodes to hold data-packets for a pre-
programmed time before forwarding to the next node. In
order to facilitate information exchange among the robots and
CBCU, we propose to use the following template for data
packets. Note that TCP/IP includes built-in per-link routing,
framing and integrity check, but include relevant fields in our
packet format to make it independent from the underlying
communication protocol and make it appropriate for Ad-hoc
routing as well.

TABLE I: Communication Protocol: Unified Packet Format

Field Values: Options
Start Flag Fixed value: 01111110
Source Id Unique source node ID
Destination Id Unique destination node ID
Command Options: Localization Info, Control

command, Data Packet, ...
Length Length of the payload data
Payload Data Measurement information, motion

trajectory information, ...
CheckSum Module-256 addition
End Flag Fixed value: 01111110

The Source and Destination fields include uniques IDs of
the source and destination nodes. We assign ID=1,2,. . . ,5
to the 5 robots, ID=0 to CBCU, and ID=6 to localization
module. Start and Stop Flags with constant patterns are used to
mark the beginning and end of the packet. The fields Length
and CheckSum are used for additional integrity check. The
Source and Destination fields define the two ends of a per-
link communications, and it is changed per link based on the
optimal path determined by the predictive routing algorithm.
This information is programmed in terms of routing tables
in robots at the beginning of a transmission session. The
Command filed defines the type of the packet including i) path
planning command, ii) delay programming, ii) routing update
command, iii) datapacket, and iv) localization measurement.
The Payload data has a variable length and its content depends
on the command. For instance, the payload data includes the
velocity and initial directions of robots for a path planning
command. Details of commands and payload data are omitted
here for the sake of brevity.

B. QR-Code Based Identification and Localization
In this project, we use Quick Response (QR) code for

both identification and localization purposes. QR codes are
extensions of bar-codes into matrix format and can be used
for image-based identification. Here, we attach a unique QR
code printout on the upper side of each robot, representing its
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Fig. 3: Image based identification/localization based on QR
codes. (a): the localization module, (b): sample QR code, (c):
sample localization information.

unique ID. A central camera pointing downwards is used 3
meters above the field level to locate the robots as shown in
Fig. 3a.

We use the Zxing: zebra crossing package developed in
Python programming language to identify and locate the
objects labeled with QR codes. This package provides accurate
readings for three corner points of QR codes (Fig. 3c). The
dimensions of the coverage area is fixed (5m× 5m), and the
exact position of the camera are known. Even without these
information, relative distances between labeled objects can be
easily found with high accuracy by scaling the distances in the
captured images (video frames). If the actual distance between
the QR points 0 and 1 in a QR label is d01 and the program
output is Point 0: (x0, y0) and Point 1:(x1, y1), the distance
between any arbitrary readings (xi, yi) and (xj , yj) is:

dij = d01

√
(xi − xj)2 + (yi − yj)2
(x0 − x1)2 + (y0 − y1)2

(9)

The QR readings can also be used to determine the ori-
entation of each labeled object with respect to a reference
direction. For instance if Points 0 and 2 are aligned with the

reference direction (horizontal direction in Fig .3b), the relative
angle θ is calculated as follows:

θ = tan−1[(y2 − y0)/(x2 − x0)] (10)

The obtained information is shared with other robots and the
CBCU for predicting future locations and executing predictive
routing algorithm. Note that only one central camera is used
to reduce the implementation cost, but a distributed version
can be implemented if one camera is deployed by each robot.

C. LiDAR-based Localization Method
The QR-based imaging provides accurate localization for

both centralized and distributed methods. However, it requires
high-resolution camera and image processing which increases
the implementation cost. To implement low-cost solution, we
plan to use laser based localization, as depicted in Fig. 4.
In this approach, a reference rod is located in the center of
the field. Also, a controllable turret with LiDAR transmitter
and detector of type Benewake TFMINI Micro LiDAR Module
mounted on the robot’s body. The LiDAR module rotates a full
circle using an embedded servo motor in order to detect and
locate the reference rod. The strength of the reflected light as
well as the angular phase, which maximizes the signal strength
provides an accurate estimate of the robots location. Each
robot share its location information with other robots as well
as the CBCU in order to realize predictive communications.
Note that similar to the QR-based localization, this approach is
centralized, but it is easily extend-able to centralized method if
the LiDAR transceiver keep track of all surrounding objects.
This approach can be integrated with QR-based imaging to
realize a fully distributed joint identification and localization
method. The accuracy of utilized LiDAR transceiver is the
range of few millimeters within the localization 30cm to 12m.

Fig. 4: LiDAR localization based on wireless networks.

Finally, Fig. 5 shows different building blocks of each robot.

V. EXPERIMENTAL RESULTS

In this section, we provide simulations results as well as
the practical tests in order to verify the optimality of the
proposed predictive routing algorithm as well as the utility
of the developed test and evaluation platform.

A. Experimental Setup
The objective of the practical test is to program robots

such that they follow a pre-planned motion paths. The motion
trajectory of each node is determined by its initial posi-
tion, orientation, and velocity. These parameters are randomly



Fig. 5: Block diagram of the designed Robotic vehicle.

generated by the CBCU in the initialization phase using
probability distributions discussed in section II and sent as
a set of control commands to robots using the wireless
communication module. Also, waiting time for each robot
is randomly generated and programmed. The robots are pro-
grammed to send packets based on the determined optimal
path all the way to the final destination. Each node once
receives a packet, holds it according to its programmed waiting
time and relays it to the next node. Transmit, receive and
waiting modes are indicated by three LEDs for easy visu-
alization. This framework can be used to verify the optimality
of the developed predictive routing algorithm based on the
collected localization information in real-world applications.
In order to confirm the accurate operation of different steps
(path planning, robot programming, routing, and waiting time
enforcement), we develop a simple scenario where two robots
exchange a data packet 5 times back and forth under different
scenarios, and we compare the experimental values of the link
lengths during each transmission phase (obtained from the
captured video) with mathematically calculated values (based
on the programmed parameters). The results are shown in
Fig. 6. The transmission power in this figure is calculated as∑|C|

j=1 dijij+1 , where C = {i1, i2, . . . , i|C|} is the selected path
which includes the ordered set of |C| nodes. The error between
the analytically derived and practically obtained values for
total power consumption across 20 scenarios is less than
1%, which ensures the accuracy of the subsequent simulation
results.

B. Simulation Results
For testing the performance of the predictive routing proto-

col, the path planning module first generates random network
topologies by defining initial positions ~li(t), initial velocities,
and the acceleration profile for each nodes based on distribu-
tions presented in section II. The robots are programmed with
path-planning parameters along with the randomly generated
waiting time.

Different simulation scenarios include investigating the im-
pact of different network parameters including i) the number of
nodes, ii) the average node velocity and iii) the average waiting
time. In particular, we are interested to see the improvement
of the delay and power consumption performance for the
proposed method compared to the Dijkstra’s shortest path
algorithm. The idea is to identify the optimal path using the

Fig. 6: Comparison of expected transmission power with the
experimental values.

predicted locations and estimated waiting times and quantify
the objective function with the actual node motions and
waiting times.

Fig. 7 shows the effect of the number of nodes in the
efficiency of the method proposed. It is observable that as
number of nodes in the network increases, the optimal al-
gorithm exhibits a higher performance improvement in terms
of delay and power utilization compared to the conventional
algorithm. The reason is that, more decision making are taken
place for a larger network, and thereby there is larger margin
between the two algorithms. Further, the network topology
change is more extreme for larger networks, simply because
it takes a longer time for a packet to reach the destination.
For a network of 50 nodes, the performance of the optimal
method shows about 10% improvement. For a larger network,
this improvement is expected to rise.

Fig. 7: The performance improvement (in percentage) by
using predictive routing compared to conventional shortest
path method. Objective function, the end-to-end delay and the
power consumption show improvement consistently.

Next, the objective function for both methods regarding the
average waiting time has been evaluated. Simulation results,
as shown in Fig. 8, suggest higher performance gain for the
optimal algorithm when the average waiting times are longer.



As we increase the waiting time for each node, topology
changes are more severe and we obtain higher gains by
predicting network topology. Therefore, substantial benefits
can be obtained for queued networks with heavy traffic mode.

Fig. 8: Objective function for the proposed and the conven-
tional Dijkstras shortest path algorithms based on the average
node waiting time.

Lastly, we test the performance gain with respect to the
average node velocity. For more dynamic networks, where
the node velocities are higher, the optimal method improves
compared to the conventional, as shown in Fig. 9. The reason
is that for higher node velocities the network topology is
evolving rapidly and consequently, the proposed algorithm
shows a better performance. For this reason, the proposed
algorithm is well suited to FANET with fast-flying objects.

Fig. 9: Objective function for the proposed and the conven-
tional Dijkstras shortest path algorithms based on the average
node velocity.

VI. CONCLUSIONS

In this paper, an optimal routing method based on Dijkstra’s
shortest path algorithm is proposed for UAV networks by in-
corporating predicted network topology into the path selection
criterion. Using a multi-objective function, we were able to

jointly optimize the end-to-end delay and the transmission
power. In order to mimic the real-world prediction uncertainty,
we let the prediction error rise over time. We condiucted pre-
liminary tests on ground robots to showcase the optimality and
applicability of the proposed method in real-world application.
Simulation results conform an improvement of about 10% for
moderate network sizes. The performance gain increases for
larger networks, larger average waiting time and higher node
velocities.

This method can be viewed as a primary step towards
developing predictive communications and we envision that
much larger gains can be obtained by incorporating predic-
tive network topology into different layers of communication
protocols.
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