
Technological Feasibility Report

Date: October 23, 2020

Team Name: SongBird

Project Sponsor: Paul Flikkema

Team’s Faculty Mentor: Andrew Abraham

Team Members: Kevin Imlay, Daniel Mercado, Yasmin Vega-Nuno, Anqi Wang

Table of Contents

Introduction 3

Technological Challenges 5

Technology Analysis 6
Audio Storage 6
Audio Analysis 9
Desktop Application 12
Matlab Compatibility 15
Wireless Communication 18
Trivial Solutions 20

Technology Integration 22

Conclusion 23

Works Cited 24

Page 1

1 Introduction

Birds play an essential role in the health and development of many ecosystems
around the world. Pest insect populations are regulated by bird predation,
dead animals are disposed of by bird scavenging, and plant seeds rely on birds
for distribution and priming for sprouting. For example, in India, vultures are
responsible for an estimated $34 billion worth of clean-up of cow carcasses,
which in turn reduces the spread of rabies in feral dog populations [1]. In
Sweden, it is estimated that it will cost $9,400 per hectare for human seed
dispersal services if the Earasian Jay were to disappear from their oak forests
[2].

Humans rely on bird populations to help with agriculture as well. A study by
Arizona State University and Humboldt State University showed a correlation
between bird predation on pest-insects and crop productivity of $310 per
hectare per year [3]. Despite this extreme importance of birds, the scientific
community still has numerous questions surrounding the behavior of birds
and the ways that they communicate. Questions such as where birds eat and
nest, how they move from area to area, and how they communicate with each
other remain unanswered. Possibly more importantly, it is not known how
these behaviors are changing in response to sound pollution, contact with
humans, and climate change.

Currently, scientists are using monitoring systems to collect data for their
research into these questions. Monitoring systems such as kits of microphones
and recorders for in-person monitoring, or remote recording tools such as the
AudioMoth, are either costly and difficult to use or are poorly documented and
don’t allow for customizations to suit their uses. Our client, Dr. Paul Flikkema,
a professor at Northern Arizona University, is developing a cheap and
easy-to-use sensor system for recording bird vocalizations. Dr. Flikkema has
decided on the hardware for the system and needs us to develop the
accompanying software to create a vital tool for bird monitoring.

We are developing BiVo, a front-end-back-end system for recording bird
vocalizations. BiVo will be open-source and modular for easy modification and
addition of functionality. The sensors will be capable of streaming audio and

Page 2

saving recordings for later retrieval and the desktop application will be able to
operate alone or interface with Matlab for easy data analysis.

BiVo will allow scientists to deploy low-cost and open-source sensors to
gather data on bird vocalizations. With this data, scientists will be able to
conduct meaningful research towards our understanding of birds and their
behaviors.

In this report, we will discuss some of the technological challenges we see as
being major hurdles and some possible alternatives for solving these
challenges.

Page 3

2 Technological Challenges

BiVo has to take use of the Thunderboard EFM32GG12 board, a development
board that incorporates two microphones, and be compatible with Matlab.
Below are the major technological challenges we foresee the SongBird team
will need to overcome in the creation of our product. Each challenge is
accompanied by a brief description.

2.1 Audio Storage
We will need to store audio recordings on the sensor for later retrieval during
stand-alone operation. This storage should be able to hold enough audio to
allow for at least a day of stand-alone operation.

2.2 Audio Analysis
We will need to analyze the captured audio to determine if the audio contains
bird vocalization. This analysis needs to happen in real time as recording is
taking place so that the device does not need to stop recording during analysis.

2.3 Desktop Application
We will need a desktop application that is capable of receiving streamed data,
downloading data, and manipulating the sensor and its settings. This
application will need to be compatible with Matlab, but can stand alone.

2.4 Matlab Compatibility
We will need to integrate the system with Matlab, Dr.Flikkema’s choice of
statistical software, for easy transfer of data for analysis.

2.5 Wireless Communication
We will need to analyze what wireless technology is suitable for our wireless
communication between the sensor and desktop application.

Page 4

3 Technology Analysis

In this section, we will discuss each technological challenge in more detail,
present the possible methods for approaching the challenge, and rank the
options by feasibility of implementation. We also include our next steps in
determining the feasibility of these solutions.

3.1 Audio Storage
To allow the sensor to run on its own the sensor needs to be capable of saving
audio that contains bird vocalizations. To do this, the sensor will need to save
audio to some sort of Flash memory.

3.1.1 Desired Characteristics
Ease of Implementation - The difficulty of implementing the memory
module into the project.

Storage Capacity - How much data can be stored on the alternative in
question.

Driver Support - Do the alternatives have drivers to support their
implementation.

Cost - The cost of supplemental memory may influence our decision on which
alternative we may pick.

Power Consumption - The amount of power needed to supply energy to the
device.

3.1.2 Possible Solutions
On Board Flash - The on board Flash memory capacity on the board is 1024
kB. Flash was developed by Fujio Masuoka, a Toshiba electrical engineer, who
patented the idea in 1981 and released the first Flash chips in 1987. Flash
memory is used for data storage and does not need a power source to retain
that information.

SPI Flash - An SPI Flash module is a memory module that is interfaced over
SPI (Serial Peripheral Interface), a bus protocol for accessing Flash memory

Page 5

which was developed by Motorola in the mid 1980s. It is used for different
purposes such as storing data files and code.

SD card - An SD card, or a secure digital card, is a small and removable storage
device that was first introduced by the SD Card Association. This type of
memory module is commonly used to store large amounts of data from mobile
devices such as cameras and smartphones.

3.1.3 Analysis
The alternatives above will be analyzed by considering the ease of
implementation, the amount of data that can be stored, whether or not there is
driver support for the alternative, how expensive the device is, and how
energy efficient the devices are.

On Board Flash - The on-board Flash is an enticing option because the Flash
is integrated onto the Thunderboard EFM32GG12; in other words, that means
there is no extra cost on our end. Because the Flash is on the board, it is easier
to implement and there is driver support. Power consumption is the lowest
out of the alternatives, the specs are as follows: 80μA/MHz EM0 Active current
and 1.9μA EM2 Deep Sleep current. Although, the drawback is that the storage
capacity of the Flash is quite small at approximately 25.6 seconds of audio.

SPI Flash - SPI Flash is generally a low cost device ranging from a couple of
cents to a few dollars. A benefit of SPI Flash is that it is able to store more
audio than the on board Flash by being capable of holding a few minutes of
audio, which is better than a couple of seconds. SPI Flash usually has a power
consumption in the range of μA or lower mA, which is a bit more than the on
board Flash, but it is still more efficient than the SD card. The ease of
implementation is quite low; our client advised us that extra memory modules
are a complex matter. Although, Simplicity Studio has an SPI Driver to handle
the situation.

SD Card - The SD card is able to store a significant amount of data (GB range),
more than both SPI Flash and the on board memory. Like the SPI Flash, our
client advised us about the complexity of implementing supplementary

Page 6

memory, but Simplicity Studio has a SDIO driver to handle the situation. A
drawback of implementing an SD card is that it is the most expensive option
out of the alternatives ranging from a few dollars up to $30.00 and up. In
addition, the SD card has the highest power consumption of the two
alternatives ranging in the mA and even up to 100 mA.

3.1.4 Chosen Approach

Having these details in mind, consider Table 1, where the ideas are visualized
in a table and the alternatives are ranked for each factor from Low to High. The
exception is driver support, which is a Yes or No value.

On Board Flash SPI Flash SD Card

Ease of
Implementation

5 3 3

Storage Capacity 1 2 5

Driver Support 5 5 5

Cost 5 4 3

Power
Consumption

5 3 2

Total 21 17 18

Table 1. Comparison table of the ease of implementation, storage capacity, driver support,
cost, and power consumption for the onboard memory, SPI Flash, and SD card.

From our analysis, we’ve decided that not adding an additional QSPI Flash or
SD card module is our best option. While this is not ideal, power consumption
is a major consideration and would take additional considerations from a
hardware standpoint. Additional factors with high importance are ease of
implementation and cost. As can be noted from Table 1, the onboard flash
ranks the highest in the power consumption, ease of implementation, and cost
categories. Therefore, while an SPI flash and SD card module rank higher in
memory, the above three important factors take priority leaving us with
on-board memory triumphing over the other alternatives. Nonetheless, we

Page 7

will keep the option of adding an SD card module as a secondary option and
revisit it in the future if time allows.

3.1.5 Proving Feasibility
Moving forward, we will continue to assess if the on-board Flash is suitable for
our needs at the moment. We made assumptions that the on-board Flash
would be used solely for audio storage, but it is likely a portion of this will be
reserved for other purposes.

We will create demonstrations showing our capabilities to read and write to
the on-board Flash such as directly recording and saving audio, and playing it
back on a computer.

3.2 Audio Analysis
Our sensor will need to analyze audio as it is being captured to determine if
the audio contains bird vocalizations. This analysis will tell the sensor if it
needs to store the audio or delete it. One of the major challenges of this
analysis is that it needs to take place in the limited space and processing
power of the Micro Controller Unit in our sensor. Another major challenge is
that analysis must happen fast enough that it keeps up with the incoming
audio samples.

3.2.1 Desired Characteristics
Lightweight - Needs to be small in code size and not be processor intensive on
the microcontroller.

Ease of Implementation - Should be easy to implement/extract the needed
code and use within the rest of the system.

Documentation - Should have complete and detailed documentation.

3.2.2 Possible Solutions
Aubio - Aubio is a C/Python library for listening and detecting events in audio.
It provides analysis tools that are common and useful for basic audio analysis.
Aubio was created by a team in 2003 and was maintained by that team until
2018. Since then, it appears the library has been maintained by 19

Page 8

contributors in Github with the most recent contribution July 2, 2020. We
found this option while searching Github for audio analysis tools in C.

LibXtract - LibXtract is a C/C++ library for audio feature extraction. It was
created by Jamie Bullock in 2012 with the purpose of creating a lightweight
and simple tool that does not perform calculations any more than necessary. It
appears that main development ended in 2014 and has since been maintained
by 6 contributors, with the most recent contribution July 16, 2019. We found
this option when googling open source audio analysis tools in C.

Custom Code - We can create custom code from scratch made specifically for
this project. We discussed this idea when finding a lack of C-based and open
source audio analysis tools.

3.2.3 Analysis
Our abilities to perform preliminary testing for feasibility for this challenge is
impractical without having the hardware the code will be running on. Due to
this, our analysis is based solely on research and reasoning. As we get our
hands on the hardware we will be using, we may find we have ranked these
alternatives incorrectly.

Aubio - Since we can only use C code in our environment, it is possible the
useful tools can’t be used if they are in Python. There is also no clear design
choice for making it lightweight and takes a total of 1.8 MB on disk, which can
also be a major issue. Aubio does provide documentation but it is fairly
limited.

LibXtract - It is designed to be lightweight and portable, and is designed to
remove redundant calculations. However, LibXtract is 1.9 MB on disk, which
can be a major issue. Also, half the library is in C++, meaning there is a good
chance important functionality would not be able to be used. Documentation
is also very limited for this library.

Custom Code - Creating custom code has the downside of adding more time
for implementation, but allows for designing code that is optimized for the
sensor’s needs. We would also be able to create very extensive documentation
for this code fairly easily.

Page 9

3.2.4 Chosen Approach

With all of this in mind, we have evaluated each of the alternatives against the
desired attributes. Each evaluation is ranked on a scale of 1 to 5, with 5 being
the best. Our table describing this is below in Table 2.

Aubio LibXtract Custom Code

Lightweight 1 3 5

Ease of
Implementation

2 2 2

Documentation 3 1 5

Total 7 6 12

Table 2. Comparison table of the lightweightedness, ease of implementation, and
documentation of Aubio, LibXtract, and custom code.

From our analysis, we’ve decided creating custom code from scratch is the
best option. We had ranked custom code the same as the other alternatives
because the documentation for them is lacking and would require us to read
the code and possibly update it to match our needs. Custom code creation will
allow us to make it tailored to the system’s restrictions and to create in-depth
documentation.

3.2.5 Proving Feasibility
Moving forward, this will be our greatest challenge and will require significant
work and testing to overcome. We will continue to test the feasibility of
writing our own code by creating a demonstration where the hardware board
will perform real-time simple audio analysis and output the result of that
status to a computer for viewing. These analyses may include fourier
transforms, spectrogram generations, and frequency analysis.

3.3 Desktop Application
We will need a command line interface (CLI) capable of interacting with the
sensor. This CLI will ultimately need to be able to connect to the board and
view its data, delete its data, download the data, review its status, and

Page 10

manipulate that status. To create such a CLI, we will need to look into which
language best suits our needs.

3.3.1 Desired Characteristics
Ease of implementation - This will determine how difficult it is in
implementing the command line interface with a language.

Portability - How easy it is to install the application on multiple types of
computer systems.

Libraries - Language libraries that support the functionality of the
application.

Documentation - How well documented the language is and how readable
that documentation is.

3.3.2 Possible Solutions
Python - Python is a general purpose programming language known for its
ease of use and its readability. We considered using Python as a language
option while searching forms discussing languages used for command line
interfaces. Python was created by Guido van Rossum in 1991 with the aim of
creating a highly-readable object-oriented language. Since then, Python has
been adopted by many industries including those in science and engineering.

Node JS - Node JS is a cross-platform environment used to run JavaScript
outside a web browser. We considered using Node JS while searching forms
discussing languages used for command line interfaces. Node JS was created
by Ryan Dahl in 2009 and is typically used for web development, command
line utilities, and real time applications due to its event-driven, non-blocking
I/O model.

C++ - C++ is a general purpose programming language with many low-level
capabilities. We considered using C++ while searching forms discussing
languages used for command line interfaces. C++ was created by Bjarne
Stroustrup in 1985, and is considered an extension of the C programming
language. This language can be used for operating systems, compilers, and
web browsers.

Page 11

3.3.3 Analysis

Each of the alternative options discussed above were analyzed for ease of use,
portability, support libraries, and documentation. Ease of implementation was
determined by our knowledge and prior experiences with these languages.
Portability was determined by researching how runtime environments work
and our prior knowledge of these languages. Libraries was determined by
researching the language references, language websites, and Github.
Documentation was determined by researching the language references.

Python - Python is very easy to use both syntactically and logically. Because
Python runs on top of a runtime environment, it is highly portable. There are
numerous libraries provided both by Python itself and developers on Github.
The documentation for Python and its libraries is excellent. Two of our
members have a steady foundation of Python, one who has experience from
five years using Python for classes and personal projects, and the other having
used it for about two years in both classes and projects. One member has
learned the language on their own with less experience in comparison with
the two above, and one other member has not taken any courses with Python
and as such, has no experience in the language.

Node JS - JavaScript is easy to use but does have some oddities, particularly
with counter intuitive logical comparisons and confusing scope rules. Because
Node JS acts as a runtime environment that the JavaScript runs on top of,
Node JS code is highly portable. Node JS and LavaScript are a bit lacking in
libraries for command line interfaces, and okay documentation is limited or
unclear at times. Two members have a steady foundation in Javascript with
one member having had a five month internship using Javascript, and the
other having learned Javascript for a year and a half through courses. Two
other members have less experience with the language than the two above,
one member has used the language in one class and in a current project, and
the other member has used the language in one class and sparingly in a
second class.

C++ - C++ allows for detailed control over the program, but because of this,
makes implementation a bit more difficult. C++ is very portable but requires
compilation to the specific system it's being run on. There are limited libraries
for C++, and the available documentation is difficult to read and sometimes

Page 12

nonexistent for some libraries (or at least very difficult to find). Two members
of the group have a steady foundation in C++, one having used it since two
years ago in classes and projects, and the other having one year of experience
through classes. Two members do not have experience with C++, but have
experience with the language’s predecessor, C. One member has learned the
language through courses for a year and a half, and the other has learned the
language for almost a year and a half, but does not have the same steady
foundation.

3.3.4 Chosen Approach

With all of this in mind, we have evaluated each of the alternatives against the
desired attributes. Each evaluation is ranked on a scale of 1 to 5, with 5 being
the best. Our table describing this is below in Table 3.

Python Node JS C++

Ease of
Implementation

4 4 2

Portability 5 5 4

Libraries 5 4 3

Documentation 5 3 3

Total 19 16 12

Table 3. Comparison table of the ease of implementation, portability, available libraries, and
documentation of Python, Node JS, and C++.

From our analysis, we’ve decided that Python is the best choice of
programming language to build our desktop application in. Python provides
many excellent libraries for the functionalities that we need, is easy to learn,
and is very portable because it is interpreted in its run time environment.
Node JS, like Python, is highly portable because it is interpreted in its runtime
environment. Node JS is a bit lacking with documentation and doesn’t provide
nearly as many useful libraries as Python does. C++ is a bit more difficult to
use than Python and Node JS, giving it a lower score in ease of implementation.
While there are libraries that are common with C++, many are poorly

Page 13

documented or very out of date. C++ also has the disadvantage of having to
compile on every machine it runs on, making it less portable than Python and
Node JS.

3.3.5 Proving Feasibility
Moving forward, our plans for testing the use of Python is to create a
demonstration for sending and receiving data from the board. We will use
Python’s serial communication library (pySerial) to send the command line
input to the board over a USB connection, and to receive the echo of the
command line input from the board. This will ensure that we are able to set up
a connection between the two.

3.4 Matlab Compatibility
Our desktop application will need to either be compatible or integrated with
Matlab. This will allow users to perform advanced analysis of the sound data
collected from the sensors.

3.4.1 Desired Characteristics
Ease of Implementation - It should be easy to perform the functionality
needed from the platform/language.

Flexibility - There should be flexibility in capabilities and ability to add
features.

3.4.2 Possible Solutions
Matlab Based Solution - Matlab provides functionality to call libraries in
other languages within the Matlab environment. This interface is compatible
with calling C, C++, MEX, Java, Python, .NET, and COM. Many structures within
these languages can also be used directly within Matlab. This solution was
found while looking through Matlab’s Help Center website.

Library Based Solution - Matlab also provides libraries to call Matlab within
another language’s environment. These libraries are compatible with C, C++,
Java, Python, Fortran, and COM. This can help add Matlab functionality to the
desktop application. This solution was found while looking through Matlab’s
Help Center website.

Page 14

Indirect Compatibility - To make our desktop application indirectly
compatible with Matlab, we would have to make sure any files we want to
transfer between them are compatible formats. This would not require any
real integration with Matlab but would make it possible to use with Matlab
and other languages such as R. This solution was thought up during a
discussion about design considerations.

3.4.3 Analysis
Each of the alternatives were evaluated for ease of use by implementing a
simple test program to make sure the environments can, in fact, call each
other. For the flexibility characteristic, design ideas were drafted and reasoned
to assess the advantages and disadvantages.

Matlab Based Solution - Calling libraries from other languages has some
major advantages. This would allow us to write a stand alone application and
build on top of it within Matlab. Matlab also provides a GUI builder, giving us
the option to create a GUI within Matlab that can control the desktop
application. This solution also has the benefit of being able to easily add more
Matlab functionality because it is within Matlab. A disadvantage to this
approach is that we would need to create two components to the desktop
application: one for the actual control and communication with the sensor
and a second one for functioning within Matlab.

Library Based Solution - Calling matlab functionalities from within another
language environment has the advantage of creating one application to
perform both Matlab and control and communication functionalities. This
does have a disadvantage for flexibility and ease of implementation, where
adding Matlab functionality requires changing the application code instead of
working directly in Matlab for functionality. We also would have to find
additional support for adding a GUI if desired.

Indirect Compatibility - Creating our application to export files compatible
with Matlab has the advantage of leaving all Matlab functionality within
Matlab. This makes for a simple solution for compatibility, but has the
disadvantage of adding complexity to usage. We would also still need to find
additional support for adding a GUI if desired.

Page 15

3.4.4 Chosen Approach
With all of this in mind, we have evaluated each of the alternatives against the
desired attributes. Each evaluation is ranked on a scale of 1 to 5, with 5 being
the best. Our table describing this is below in Table 4.

Matlab Based
Solution

Library Based
Solution

Indirect
Compatibility

Ease of
Implementation

4 4 5

Flexibility 5 3 2

Total 9 7 7

Table 4. Comparison table of the ease of implementation and flexibility of the Matlab based
solution, library based solution, and indirect compatibility solution.

From our analysis, we’ve decided that the Matlab based solution is the best
option. While the indirect compatibility approach was the easiest to
implement, it provides little flexibility with the addition of features. The
library based solution had the same ease of implementation as the Matlab
based solution, but falls short in flexibility for the same reasons the indirect
compatibility approach does. The Matlab based solution provides excellent
flexibility with addition of Matlab features and is only marginally more
difficult to implement than not using Matlab at all.

3.4.5 Proving Feasibility
Moving forward, we will continue to test the feasibility of the Matlab based
solution. Testing will consist of writing test libraries and running them
through Matlab’s external language interface to import dummy data and
manipulate dummy settings on a simulated sensor. A simplistic GUI will also
be included to test the feasibility of the GUI creation system within Matlab.

3.5 Wireless Communication
In order to make our wireless transmission more stable, more convenient and
faster, so we will discuss the wireless technology used by this voice collection
device.

Page 16

3.5.1 Desired Characteristics
Ease of Implementation - The difficulty of implementing the wireless module
into the project.

Large range of connections - It should be suitable for a wide range of
connections.

High Security - We need a secure wireless communication method that can
better protect project data privacy.

Low Power Consumption - It should be power saving and low energy
consumption

Real-time transmission - The collected audio data should be transmitted in
real time

Fast data transmission - It should transfer data quickly.

3.5.2 Possible Solutions
Wi-Fi - It is a wireless local area network technology created based on the
IEEE802.11 standard. The coverage of Wi-Fi technology is generally within
100 meters, the technology is more complex, the transmission rate can reach
54Mbps, the working frequency band is 2.4GHz, and the transmission power is
less than 100mW. Compared with Bluetooth wireless communication, the data
security performance is relatively poor. [4]

Bluetooth - Bluetooth is a short-range wireless communication technology. It
uses 2.4~2.485GHZUHF radio wave ISM in the frequency band. Bluetooth
wireless technology has high complexity, fast device networking, only 10
seconds; high integration and reliability; transmission rate is generally 1Mbps;
low cost, relatively simple installation. [4]

Zigbee - ZigBee wireless communication technology is a low-power local area
network protocol based on the IEEE802.15.4 standard.

ZigBee technology was developed to meet the needs of industrial automation,
and has the characteristics of simple layout, anti-interference, reliable
transmission, convenient use, and low cost. The communication distance is
extended to 10 meters. From the opening distance to a few hundred meters, it
can reach about 50 meters in indoor scenes. [4]

Page 17

3.5.3 Chosen Approach
With all of this in mind, we have evaluated each of the alternatives against the
desired attributes. Each evaluation is ranked on a scale of 1 to 5, with 5 being
the best. Our table describing this is below in Table 5.

Wi-Fi Bluetooth Zigbee

Ease of Implementation 3 5 1

Large range of connections 5 2 3

High Security 1 4 5

Low Power Consumption 1 3 5

Real-time transmission 4 4 2

Fast data transmission 5 4 2

Total 19 22 18

Table 5. Comparison table of the ease of implementation, strong stability, high safety, low
power consumption, real-time transmission and fast data transmission based Wi-Fi,

Bluetooth and Zigbee.

From our analysis, we’ve decided that Bluetooth is the best option. While the
indirect compatibility approach was the easiest to implement, it provides a
small range of connection. Although Zigbee does very well in the part of Low
Power Consumption and High Safety, it is hard to implement and it also has
some disadvantages in real-time and fast data transmission. The most serious
problems of Wi-Fi are the low security of data and high power consumption.
The Bluetooth provides excellent performance in high security, real-time and
fast data transmission.

3.5.4 Proving Feasibility
Moving forward, our plan to test Bluetooth usage is to demonstrate how to
transfer the received data to a desktop application. We will use Bluetooth to

Page 18

transmit the collected data to the desktop application in real time via a
wireless connection. This will ensure that we can establish a connection
between the two.

3.6 Trivial Solutions
We need to discuss the technology that is required in the project, but has no
other alternatives based on our environmental requirements. This section will
feature multiple technologies explaining what the technology is and why we
do not have multiple alternatives for them.

3.6.1 Development Board
The type of board we are using for this project is the keystone into why the
Trivial Solutions section exists, we have a predetermined board from
Dr.Flikkema named the Thunderboard EFM32GG12. This board contains two
PDM microphones, EFM32 Giant Gecko 12 Microcontroller , and lastly flash
memory that is about 1024kb of storage. This was chosen by Dr.Flikkema
based on the microcontroller being powerful for a microcontroller as well as
having microphones on board as well as his own research into
microcontrollers that fit the requirements of this project.

3.6.2 Microphones
The microphones are also a trivial solution because of them being installed on
the board itself. This however is not a limitation considering the connection is
directly to the microcontroller making it easy to analyze and stream whenever
necessary. This also allows us to be able to grab and save data easier without
having to get any drivers that are not supported by the board allowing for
easier integration with the rest of the project.

3.6.3 Wired Communication
The Thunderboard EFM32GG12 has a debugging capability that connects itself
to a computer using a micro USB port on the board. This can be used to
maintain a serial communication that has a format of 115200 bps, 8 bits, no
parity, and 1 stop bit. Knowing this exact format helps us integrate a
communication from the user interface to the board with ease or from the
board to the user interface to send commands to the board. Since this is

Page 19

installed and supported by the Thunderboard we do not need to worry about
any alternatives for the serial communication on the boards side. On the user
interface side there is a Python library that supports serial communication
called pySerial, this is supported by the Python Software Foundation allowing
us to ensure that this will work correctly with the user interface itself

considering it is written in Python.

Page 20

4 Technology Integration

All of the technology choices discussed in this document will have to work
together to create the whole system. In this section, we will look at how each
of these technologies will be integrated with each other. Below we have
provided a flowchart to help visualize how each technology will fit into the
system (Figure 1).

Figure 1. Flow chart showing how the technological choices fit together to create the
system.

Following is an ordered list of operations describing the flowchart in Figure 5.

1. Audio Analysis gathers the recorded audio using the Thunderboard
microphone and analyzes the sound to make sure that it contains bird
vocalizations. This will be done using our own custom algorithm that is
optimized for working within the constraints of the sensor’s hardware.

2. The analyzed audio will then be passed to either the Python command
line interface for audio streaming, or stored in the Flash storage
supplied by the board using the serial wired connection or wireless
connection.

3. The Python CLI will communicate with the sensor to gather the data
saved in the audio storage, accept streamed data from the sensor, and
manipulate the settings and state of the sensor. The CLI can also be
called by Matlab to enhance the end-user’s experience, or it can be used
stand-alone.

4. The Matlab GUI will be built on top of the Python CLI and can download
the incoming data within the Python CLI. This gives the user a GUI for
downloading and streaming data from the sensor, and manipulating the
sensor’s state and settings.

Page 21

5 Conclusion

Birds play a very important role in ecosystems around the world. Without
birds, many plants and animals would not survive and ecosystems would fall
apart. Consequently, it is imperative to learn more about the behaviors of birds
and how human interactions are influencing them.

Currently, scientists use sound recording devices to track what birds are
where. The sensors can be expensive and cumbersome, or they are cheap and
inflexible. We are designing BiVo to solve this issue. BiVo will be cheap and
flexible to allow the user much more control over what the sensor does.

There are many technological challenges that we will need to overcome in the
creation of BiVo. The most challenging of these are storage for saving
recordings, analyzing the audio so we only save data with bird vocalizations, a
desktop application that can manage the BiVo sensors, and Matlab
compatibility to give users the ability for advanced analyses. These challenges
may have many solutions, so we have analyzed each one and picked what we
believe will suit our project best. Each of our decisions are listed below.

● Audio analysis will be done using our own custom code because it
allows for the most flexibility and compatibility with the sensor’s board.

● Audio storage will be done primarily with the on-board Flash memory
because adding additional storage can complicate the software and
hardware design. We will revisit this in the future.

● The desktop application will be developed in Python because Python
provides great resources to help with development and is highly
portable.

● A GUI will be built in Matlab connecting the Python application’s
functionality to Matlab’s environment.

Our analysis shows clear advantages for the technologies we have chosen to
use. These analyses are mostly preliminary, and it is possible we will find our
choices will not work. Moving forward, our next step is to create several
demonstrations to test that our chosen technologies work well together and
are able to fulfill the requirements in completion.

Page 22

6 Works Cited

1. Peisley, R. K., Saunders, M. E., Robinson, W. A., & Luck, G. W. (2017). The role
of avian scavengers in the breakdown of carcasses in pastoral
landscapes. Emu-Austral Ornithology, 117(1), 68-77.

2. Hougner, C., Colding, J., & Söderqvist, T. (2006). Economic valuation of a seed
dispersal service in the Stockholm National Urban Park, Sweden.
Ecological economics, 59(3), 364-374.

3. Johnson, M. D., Kellermann, J. L., & Stercho, A. M. (2010). Pest reduction
services by birds in shade and sun coffee in Jamaica. Animal
conservation, 13(2), 140-147.

4. Jotrin, https://www.jotrin.jp/technology/details/types-of-wireless-
communication-modules.

Page 23

Female Eastern Bluebird in Flagstaff, AZ. Imlay, K. 2017.

Page 24

