

Glacies Indicium

Software Design Document

Version 2

2/14/2021

Project Sponsors

Dr. Heather Lynch

Dr. Mark Salvatore

Helen Eifert

Brian Szutu

Team Members

Beck Bohnker

Joe Carter

Kassandra Coxen

Logan Garrett

Zach Spielberger

Faculty Mentor

Andrew Abraham

1 Introduction ... 3

2 Implementation Overview... 5

3 Architectural Overview.. 6

3.1 Introduction .. 6

3.2 Database Backend .. 7

3.3 Terracotta Server .. 7

3.4 Terracotta Client & Custom Leaflet Map .. 8

4 Module and Interface Descriptions .. 8

4.1 Preprocessing .. 8

4.2 Backend Module ... 13

4.3 User Interface .. 14

5 Implementation Plan .. 18

6 Conclusion ... 19

1 Introduction

Antarctica is one of the last great unexplored wildernesses. It is the coldest place on Earth,

larger by area than both Europe and Australia, and bordered on all sides by at least a

thousand kilometers of icy Southern Ocean. Because of its harsh climate, Antarctica

remains extremely inaccessible to researchers. Study of this frigid desert continent has

the potential to significantly expand our understanding of the scientific and geological

processes that govern the formation of rocky planets on Earth, but the environmental

conditions prevent researchers from conducting many studies there. However, as satellite

imagery technology has developed, it has greatly facilitated our ability to study this

tough and remote environment.

We are Team Glacies Indicium, and our clients are Dr. Mark Salvatore and Dr. Heather

Lynch who are from Northern Arizona University and Stony Brook University,

respectively. They are planetary and ecological scientists who are trying to learn more

about Antarctic geology and currently have a dataset of more than 60,000 high-resolution

satellite images of Antarctica, which they want to use to document and study Antarctica’s

physical properties and surface composition. These images have an initial accuracy

where each pixel is ~10 m x 10 m in the real world and each cover about a hectare of land.

They have hired our team to build a web-based visualization tool, which will greatly

reduce the difficulty of studying and interacting with large amounts of the data. The

rationale for our product revolves around the fact that when this information is easy to

obtain and interact with, the potential for new discoveries increases. Our product will be

geared towards members of the scientific community that may not have a lot of computer

experience, so we in turn want to deliver a product that allows scientists access to this

satellite data in a way that is as fast, easy, and intuitive as possible.

Our clients search for new insights into Antarctic geology by using Graphical Information

Systems (GIS) software to examine satellite images, specifically in the form of a raster

image, also called a GeoTiff or tiff after the file extension used for them: .tif. To illustrate

what a raster image is, consider a normal digital image on your computer, which is made

up of three bands: a red band, a green band, and a blue band. These three bands are added

together to produce the full range of colors, resulting in a typical RGB digital image. A

raster image, though, is not limited to a specific number of bands, and can also map these

bands to places on the earth using geographical coordinates.

Some of the raster images our clients work with only have eight bands representing

different ranges of the electromagnetic spectrum, but some images may have more. This

is because as humans, we only see a small range of light in this spectrum, but we can still

collect data from other ranges of the spectrum. Our clients have done mathematical

modeling and analysis where they run the raw spectral data through processing which

filters out atmospheric anomalies to compute and derive bands of data representing

geological data, such as presence of snow, shadows, and ice, and even identifying certain

rock types. Using GIS software like Google Earth and ArcGIS, they can display these

different wavelengths or landscape data and map them to their location on Earth. Using

different combinations of the spectral wavelengths, they can visualize what it would look

like to the human eye, or they can view single or multiple bands of landscape data.

This analysis is valuable to the community, as well as to the world, because building our

geological understanding of Antarctica, a continent that experiences some of the most

extreme climate conditions on Earth, allows us to formulate scientific projections about

other geological and environmental processes in other areas of the planet. In some cases,

for example, these studies can showcase how Antarctica is not being as affected by

climate change as other regions in the world. Currently, this research process is hindered

by technological barriers that we aim to solve. Our clients are examining these multi-

layered satellite images layer-by-layer, one image at a time, which can individually

visualize about 5 km2. The first problem is that it is easy for a scientist to examine one

image, which in size can be about 2 GBs, but it is difficult to interact with the data on the

continental level as it can take up multiple petabytes. Ideally, a geologist would want to

visualize a map of a larger region, as this would give them greater insights to drive future

field expeditions as well as a new perspective of the data on the continental level.

Furthermore, the main challenge is that geologists do not have a means to filter the entire

dataset by features such as geological rock type. If they did it would allow researchers to

skip the remote sensing steps and move straight to the geological analysis and further

broaden the type of scientists who can work with satellite imagery therefore removing

the requirement for experience with remote sensing.

2 Implementation Overview

This is where our team comes in: we have been hired to build a web application that

allows scientists everywhere to explore this collection of satellite data, by visualizing the

raster data in an interactive web map. The tool will allow users to individually toggle as

many as three layers of data in each satellite image, providing access to a wide range of

information including wavelength reflectance, rock type, and presence of snow, ice, or

shadow. The tool aims to greatly improve the user’s workflow efficiency and ease of

access to the geological data by implementing a Graphical User Interface (GUI) that

equips the user to view and filter the data based on geographical region and various

geological attributes. Finally, the most important feature our product will provide is the

ability to filter data by actual geology, which the current technologies our clients work

with do not satisfy on the continental level. The belief is that such an application will

facilitate the global scientific study of Antarctica by making this vast trove of data

interactive and easily accessible to scientists working in institutions across the globe.

This web application must be able to retrieve and display images raster data by the

second and display a progress bar for load times longer than a few seconds. Python will

be used to implement this project along with specific libraries like Terracotta, which

provide a framework for raster images to be stored in a database and returned to the user

as PNGs, single band RGB- or greyscale-based raster images, to display onto the map.

Our current solution vision incorporates this process and is shown below in Figure 1.

3 Architectural Overview

3.1 Introduction

The architecture for this project will be divided into three different parts consisting of the

database backend, the Terracotta server that acts as the connection between the backend

and the front end, as well as the Terracotta Client and the Leaflet map graphical user

interface. The figure below depicts a model of this complete architecture and how the

components will connect.

Figure 1 - Complete architectural overview of the website.

3.2 Database Backend

The backend for this project will consist of a MySQL database that will be used to store

the several hundred raster images that will be presented to the user on the front end.

Figure 2 below provides an overview of how the database will be constructed using

different tables for higher and lower resolution images to increase the overall

performance in the application.

Figure 2 - Current database model separating the images into different resolution tables.

3.3 Terracotta Server

The Terracotta Server is the first script to be run before the user’s webpage is loaded. The

server will preprocess the data and create the necessary bands before the map is fully

loaded. After the files have been preprocessed and separated into individual bands and

potentially downsampled, the resulting PNG images will be sent to the Terracotta client

to display onto the map. The biggest benefit of using Terracotta is that it acts as a base

which is already able to display raster images to a map. This allows us to build off of

Terracotta to provide the functionality our client is looking for in terms of filtering large

amounts of raster data.

3.4 Terracotta Client & Custom Leaflet Map

After the data has been preprocessed and organized in the database, it will be sent to the

Terracotta client to display as an interactive map. The Terracotta client will receive the

individual band names, along with the keys used in the file name structure and present

it onto the user interface. The user will then be able to click on each band name to display

certain regions within the map. The map will also be heavily customized for this project

in order to deliver a better projection of Antarctica. Currently, Leaflet uses a Web-

Mercator projection of Earth, which makes Antarctica a rectangular shape and hard to

view on a map. In order to present a better user experience, this projection will be

changed to Polar Stereographic which will present a map that is better suited for this

project due to being centered on Antarctica.

4 Module and Interface Descriptions

4.1 Preprocessing

The preprocessing module’s primary goal is the organization of the input data our client

gives us. Currently, we will receive 100-200 multiband tiffs that are composed of the

reflectance data and geological data that we have described previously. However, the

base that we are using to display tiffs to the user, Terracotta, can only ingest single band

images. Additionally, a single tiff image can cover a relatively small area. We also have a

regional nested hierarchy that the tiffs need to be organized into. Therefore, the

preprocessing module is responsible for splitting each tiff up by band, keying the

information by region and band via the file name, and combining smaller, adjacent tiffs

into mosaics, which are merges of two or more images to form one larger continuous one.

This last point is particularly important as one of our key problems we are trying to solve

for our client is speeding up the pace at which they can gleam patterns from such a large

dataset.

Figure 3 - Preprocessing class diagram illustrating how the mosaics will be associated with their

respective bands and regions.

As you can see from Figure 3 the end goal of this module is to have a series of mosaics

that represent distinct regions in Antarctica. Due to the constraints of the base we are

using, each regional mosaic needs to be a single band of raster data.

Regions Class

The regions class will look through the clients input directory of tiff files and create a tree

structure from the naming convention we have agreed upon. For reference, each single

image fits in up to four subregions. The first encompasses all the Northern Victoria Land

which can be thought of as the parent node A in Figure 4 below. This first region will

eventually have multiple child subregions (for the purposes up to the Alpha Prototype

we will only be working with one: The Dry Valleys). The Dry Valleys can then be divided

up again and those subregions have subregions. For this purpose, we have agreed upon

the following file naming convention for input tiffs from our client:

region1_region2_region3_region4_date_catID.tif.

Each subsequent region will be a more deeply nested node on the tree. This may seem

complicated but by accomplishing this now it will allow our clients to further expand the

input data after the course of this project. For further preprocessing, this tree structure

will be created but for use on the front end a version that will be written in JSON will be

generated to aid in the display of this list of nested regions on the frontend.

Figure 4 - Regions hierarchy diagram.

Regions Class Fields

This class will only have one field that is necessary and that is the input directory of the

source data our clients are giving to us. Using the naming convention described above

we will be able to generate nodes in the tree based on what name a tiff falls. For example,

the reading of

NorthernVictoriaLand_DryValleys_AsgardRange_MtNewall.tif &

NorthernVictoriaLand_DryValleys_AsgardRange_RoundMountain.tif

would result in the creation of the tree structure shown in Figure 5.

Regions Class Methods

The Regions class only has one public method and that is to generate the hierarchy that

has been already described.

Bands Class

The bands class’ main goal is to split up the multi-band tiff file. The class follows the

procedure of Regions generation and takes in the same input directory of source files that

Figure 5 - Naming convention hierarchy diagram.

the previous class did. The class works its way through each tiff outputting the single-

band tiff in its’ corresponding band folder

i.e., The reflectance1 band for each tif gets put in the reflectance1 directory, the snow band

in the snow directory, etc.

Bands Class Fields

The Bands class has one primary field, and it is a list of the band names. This will be easily

identifiable by our client should they need to change the number of bands the data will

have as it is relatively variable. We are expecting to be working with less than a dozen

bands.

Bands Class Methods

The Bands class has one primary method which is the split method. It will split off the

specific band of the tiff file into the respective folder of the same name.

Mosaics Class

The Mosaics class will use the output of the previous class’ work to create single-band

mosaics of each specific subregion. The current plan is to go through each newly filled

band folder and for each node in the tree create mosaics with the corresponding region

name in the correct place in the file name.

i.e., All reflectance1 tiffs with NorthernVictoriaLand in the region1 placeholder will be

merged into a NorthernVictoriaLand_reflectance1 mosaic and repeating for every

subregion, and every band. These mosaics can then be requested by the user through the

frontend and exporting components of the application.

Mosaics Class Fields

The Mosaics class will take in the newly generated single band tiffs as well as the tree

hierarchy.

Mosaics Class Methods

The most basic of methods will be the make method which takes in a subregion name,

and a subregion level corresponding to the depth in the tree and will be called in a single-

band directory. The make method will match tiffs that have corresponding subregion

names at the correct part of the file name corresponding to a specific level in the tree.

. i.e., All single-band tiffs that have NorthernVictoriaLand before the first underscore will

be made into a mosaic placed into the 0depth folder. Each subsequent depth folder will

have more mosaics as there are nodes in the tree.

4.2 Backend Module

The backend module for our project is used mostly at the start of deployment. Its main

job is to ensure that Terracotta starts up correctly on a web page and allows the user to

choose either to start over with a new data set or restate from a pre-existing server. If the

user chooses to start with a new database, they will need to be able to identify their new

database and run the preprocessing module on that database. Whereas, if an existing set

of data is used, then the prepossessing would already be done.

Figure 6 - Server startup diagram that illustrates how the server can be started in two different

ways – through a new database or an existing database.

This diagram in Figure 6 shows that there are two different ways the server can be started

up. On the left side, there is a new database that has never been used before and it takes

more steps to get it online. Whereas on the right with a pre-existing, all it takes is selection

of the previous database.

4.3 User Interface

The user interface module will be primarily responsible for modifying the Terracotta user

interface and adding new functionality such as a nested view of all the available regions.

This module will handle any interaction from the user and will modify the interface as

needed or send information to the database backend to retrieve new information. The

UML class diagram can be seen below which will create a progress bar, create the region

dropdown list and listen for event changes such as a click or scroll within the map.

Figure 7 - UserInterface class diagram detailing the methods datatypes this module will require.

UserInterface Class

The public interface for the front end of the application is the UserInterface class which

also serves as an entry point to the RegionList class. The UserInterface class is also

responsible for handling any event changes to the input forms within the application as

well.

UserInterface Class Fields

The UserInterface Class does not contain any class fields as it is only responsible for

listening to event changes within the page and retrieving needed information from the

Terracotta Server and Client.

UserInterface Class Methods

In order to provide functionality to the user several class methods will be used to listen

for changes within the page. These changes will be detected and handled by the

updateResultsPage, updateSearchResults, and updateDataSetList methods.

When the user changes a region from the region dropdown menu, the updateSearchResults

method will be called and will render a new map of the selected region back to the user.

This will also update the dropdown menu through the updateDataSetList method to make

the selected region text bold to notify the user of what is currently being displayed on the

map.

The updateDataSetList method is used to change what regions are displayed on the user

interface. This method will also determine the current page the user has selected via the

pagination form below the dropdown menu.

The last method, exportMap is responsible for listening to a click on the “export map”

button on the user interface and take a screenshot of the current map and save it locally

to the user’s machine. Leaflet has several plugins available to capture screenshots, which

will be used to provide this functionality to the user.

RegionList Class

The RegionList class is primarily responsible for getting the available regions from the

dataset and parsing the information in order to display a dropdown menu of the regions

within the user interface.

RegionList Class Fields

Currently, only two fields are necessary in this class which are the public jsonFilePath and

the private jsonData fields. The jsonFilePath field is a string to let the class know where to

locate and open the JSON file. The jsonData field will be stored as a JavaScript Object

Notation (JSON) object with data from the JSON file which allows for the front end to

quickly parse the list of regions to display.

RegionList Class Methods

In order to determine the available regions, the JSON file must be opened first before

parsing which will happen within the openJsonFile method. This method will open the

JSON file specified within the class and will use the setJsonData method to initialize the

jsonData field to be the data from the open JSON file.

After the JSON file has been opened and the jsonData field is initialized, the parseJsonData

method will be called to iterate over each region. Every region found within the

parseJsonData method will pass the data to the createDropdownList method which will be

used to create the main menu and an input element for each region using the

createNewInputElementMethod.

5 Implementation Plan

The outline of our team’s implementation plan is detailed below in Figure 8, which

depicts our plan for the remaining tasks in the semester. Currently, our team is divided

into two separate teams who are working on early development for the Terracotta

backend and the technical writing for written assignments. After the Software Design

document is finished, the team will be focused on finishing the early prototype for the

second design review along with testing the current implementation to ensure the

programs stability and effectiveness at delivering the best possible solution. The final

projects for the team are to implement needed changes from the software testing and the

second design review to present the final project in both the third design review as well

as in the capstone project poster at the end of the semester before the completed project

is delivered to the clients.

Figure 8 Current team schedule up until delivery of Alpha Prototype, red line represents current

day.

6 Conclusion

The hostile Antarctic environment presents a unique set of challenges to scientists

trying to understand it. We aim to build an application that helps scientists and

explorers in organizations around the world unravel the mysteries of this largely

undiscovered frontier, expanding not only our understanding of our own planet, but

also our knowledge of other planets that seem potentially inhospitable. Overall, the

benefit of our product is that it provides ease of access to the large amount of data used

to map Antarctica, expanding the catalog of available area for

research, and further enabling scientists to gain a better understanding of the region.

Our application will present the scientific community with an interactive map of

Antarctica, and an interface through which researchers can view and analyze a large

and diverse set of raw and derived satellite imagery. The bands of data for each

image will be viewable either as single bands in a binary color scale or interpolated

together as RGB channels for geological differentiation. Imagery and location data

will also be exportable for use in offline contexts.

The purpose of this document has been to establish how our team plans to implement

this interactive map of Antarctica. By implementing our application according to the

requirements set forth herein, we will ensure that the goals we set for ourselves as a

team are aligned with the goals of our client and that achieving these goals will make

everyone content at the conclusion of the project.

In summary, this project will allow geologists to view and filter geological data at the

continental level in hopes of uncovering discoveries that will lead to new expeditions in

the region. To give a short update of current process, our team is currently receiving

access to the pipeline of images our client has for us to work with and work on both the

preprocessing pipeline and user interface is well into production.

