

Glacies Indicium

 

Final Report

Version 1

04/19/2021

 

Project Sponsors

Dr. Heather Lynch

Dr. Mark Salvatore

Helen Eifert

Brian Szutu

Team Members

Beck Bohnker

Joe Carter

Kassandra Coxen

Logan Garrett

Zach Spielberger

Faculty Mentor

Andrew Abraham

Contents

1 Introduction ... 3

2 Process Overview ... 5

3 Requirements ... 6

4 Architecture and Implementation .. 7

4.1 System Overview .. 7

4.2 Preprocessing .. 9

4.3 Terracotta Server & Client ... 10

4.4 Custom Leaflet Map Visualization ... 11

5 Testing ... 12

6 Project Timeline .. 13

7 Future Work .. 15

8 Conclusion .. 16

9 Glossary .. 17

Acronyms: .. 18

Appendix A: Development Environment and Toolchain .. 19

Toolchain ... 19

Setup ... 20

Production Cycle .. 22

1 Introduction

Antarctica is one of the last great unexplored wildernesses. It is the coldest place on Earth, larger in

area than both Europe and Australia, and bordered on all sides by at least a thousand kilometers of icy

Southern Ocean. The study of this icy desert has the potential to significantly expand our

understanding of the Earth’s systems, but the environmental conditions pertaining to the harsh climate

cause Antarctica to remain extremely inaccessible. However, as satellite imagery technology has

developed, it has facilitated our ability to study this tough and remote environment.

Our clients are Dr. Mark Salvatore and Dr. Heather Lynch who are planetary and geological researchers

from Northern Arizona University and Stony Brook University, respectively. They are working

towards analyzing more than 60,000 high-resolution satellite images of Antarctica, which they want to

use to document and study Antarctica’s physical properties and surface composition. They have hired

our team to build a web-based visualization tool, which will greatly reduce the difficulty of studying

and interacting with such a large amount of data. Our product was created with the intent that

members of the scientific community may not have a lot of computer experience, so we have aimed to

deliver a product that allows scientists to access this satellite data in a way that is simple, intuitive, and

fast.

Figure 1: Full extent of Antarctica

The research our clients are conducting involves searching for new insights into Antarctic geology by

using Graphical Information Systems (GIS) software to examine satellite images, specifically in the

form of a raster image, also called a GeoTIFF or TIFF, after the file extension used for the images: .tiff.

To illustrate what a raster image is, consider that an ordinary digital image on your computer is just a

composition of three layers or bands: a red band, green band, and blue band. These three bands are

added together to produce the full range of colors that we see. As illustrated in Figure 2 above, a raster

image, is not limited to a specific number of bands and can contain data for wavelengths of light that

are outside of our visible range. Raster images can also include bands created from processing the raw

spectral values using mathematical formulas, resulting in derived bands that represent geological

qualities, such as presence of ice or certain rock types. Furthermore, a special type of raster images,

known as GeoTIFFs, can contain metadata that includes the coordinates of the geolocation for that

image. Analysis of these raster images allows researchers to draw scientific conclusions about the

environment and geological composition of Antarctica.

Currently, our clients’ research and analysis process are hindered by technological barriers, which our

product aims to resolve. They are able to view only a single image and a single band at a time. Not only

does it take longer to view the data this way, but it would be much more intuitive to view the data on

a larger scale to quickly understand where individual images are from and to easily identify

geographical relationships between them.

Because some of the most extreme weather conditions on Earth take place in Antarctica, research of

this continent allows us to formulate scientific projections about the geological and environmental

Figure 2: Range of light visible to the human eye, which can be separated into bands and stored in raster

images. Values in raster images can also come from outside of the relatively small range of human-visible

light.

phenomenon occurring in other areas of the world as well. Scientific advancement in some of the

world’s most important areas of study like climate change, energy, and resource consumption, are

made possible by contributions from planetary and ecological research of Antarctica. Thus, a

visualization tool for the large amount of satellite data for this continent will make this data more

accessible, promote study of the area, and benefit not only the scientific community, but the entire

world.

2 Process Overview

Our team started our project with the understanding that everyone staying up to date on important

developments was deeply important to our success. Our plan to accomplish this included

communicating with our clients, mentor, and other members of our team at least once a week. Each

semester we scheduled a weekly meeting with our clients and another with our mentor. We also had

either one or two meetings a week with just our team, this way all updates were common knowledge

for everyone working on the project. When there was something too important to wait for the next

meeting, our team had a Discord server that could be used to communicate with other members of

the team. Other forms of communication with our clients and mentor including writing multiple

papers documenting the progress of the project and emailing back and forth. These started with us

gathering requirements and eventually lead to how we planned on testing the alpha prototype.

We needed a place to share our code base from, as well as the documents we were collaborating on,

so we utilized two different software platforms to help us work together easily and virtually. Our

code based was stored on GitHub, which allowed each member to have access to the codebase on

their own machines. The rule we established with our GitHub repository required another member of

the team confirming that a push or commit request would not break the whole project before it was

merged with the main branch. Then, for each document we created, Microsoft Teams allowed us to

create the PowerPoints and Word documents that were delivered throughout development. This

solution made it possible for our team to collaborate on the project in real time and provided a

solution that worked well for us.

We each took on different roles within the team. Joe became our team lead; it was his job to delegate

work, make sure we all knew about deadlines, and to run our team meetings. Kassandra was our

reporter, which meant that she oversaw keeping meeting time records. Beck was the customer

communicator, so it was their job to relay all important information to our customer. They were also

responsible for asking the clients for any needed data. Logan took on the role of quality assurance.

His job was to manage our GitHub repository. Finally, Zach considered software implementations

and compatibility as the team’s architect.

3 Requirements

In the first phase of the project, we focused on understanding our clients’ problem and their need for

a software solution through weekly meetings. This process of requirements acquisition involved back

and forth dialogue to establish common understanding of their work and end goals. In addition, we

worked to develop the different types of functional and non-functional requirements of our

envisioned solution, which we then outlined in the Requirements Specification Document, that was

approved by our clients.

In the Requirements Specification document, we outlined functional, performance, environmental,

and domain requirements that we had developed from conversations with our clients. Our team and

our clients agreed that the minimum viable product would be an interactive, web-based map

visualization of the satellite images that our clients would provide us with.

The first set of requirements involves manipulating the GeoTIFF data given to us by our clients to

ensure compatibility with Terracotta, the framework we used to display to a webpage. This is done in

our preprocessing system. This system is responsible for ingesting coordinate and regional hierarchy

data. Once this information is in the system needs to take the Tiffs so it can rename and create

mosaics them by region. Lastly, it takes the mosaics and breaks them down by band, so they can be

ingested into Terracotta.

The next set of requirements apply to the web application. The interactive map needs to be populated

with raster images and needs the ability navigate by zooming in and out. It also needs the query by

specific information such as: spectral band, date, and location. Another key requirement that needed

to be implemented was exporting the currently displayed raster image.

4 Architecture and Implementation

4.1 System Overview

Our application was created with the goals of providing a simple and fast large-scale visualization of

satellite images for geologists to use for their research and analysis. It is essential that our application

can handle large amounts of data while still ensuring a quality and efficient performance for the user.

The architecture for this project is divided into two key components connected by the open-source

tile server, Terracotta. The back-end component contains our preprocessing module, the GeoTIFF

dataset, and the MySQL server that are generated using Terracotta’s ingestion process. The front-end

component utilizes JavaScript, NodeJS, and the JavaScript library, Leaflet, to produce a customized,

interactive graphical user interface. As shown in Figure 3 above, these two components are connected

using a Terracotta server that facilitates communication between the database and the client, so that

the map visualization is populated with our data.

Figure 3: Architectural overview diagram to illustrate flow of data through components

Figure 4 shown above outlines the main goals of each component within the system. Our system was

built around the use of Terracotta, as it provides the framework for ingesting raster data, keying the

data and producing a database, and serving it to the front-end in a format that can be quickly

accessed. This would allow us to focus on the development of the other two components and

guarantee our key requirements would be met.

We aimed to prioritize the preprocessing module, as one of the major challenges we anticipated was

ensuring quality performance and load times within the application, knowing that our clients are

working with over 1 petabyte of raster data in total. While this application would likely not be able to

visualize that much data at once, we aimed to have a quality performance for at least 200 images,

which can be around 400 gigabytes of data or more. Terracotta helps with ingestion and optimization

of the images to ensure quick and seamless tiling within the application. This process involves

correlating each raster to the region it belongs to, organizing the files into a regional hierarchy,

creating a mosaic for each region, and splitting the mosaics by band to produce single-band regional

GeoTIFFs that Terracotta can ingest. The preprocessing module helps to ensure integration of the

components, proper data flow through the components, and functionality of front-end features that

rely on proper formatting and organization of the data.

The front-end component works to quickly deliver a large-scale visualization of the satellite images

that is easy to use and understand. Our product is intended for use by scientists who may not be

educated in using typical geological visualization software, so the graphical user interface needed to

be simple and straightforward to allow any type of researcher to quickly analyze and draw

conclusions from the data. Key features of the front-end are a graphical user interface that allows the

Figure 4: Outline of purpose and goals for each component of the system

user to navigate through the data, including filtering the data by band and region. This component

also works to meet our clients’ requirement of providing an exporting feature to make the source data

more accessible to the scientific community.

In a typical use case, our clients would run the preprocessing module on their raw data to produce

the regional hierarchy of single-band mosaics. They would then be able to use Terracotta to ingest the

mosaics, which optimizes the data and keys each file in a MySQL database, and start a Terracotta

server. Once the data has been served and checked for errors, the product could be deployed, and

anyone would be able to access the application via the web and interact with that data.

4.2 Preprocessing

The main goal of our preprocessing module is to organize and reformat the data given to us by our

client to make it usable in a web-based map application. To accomplish this, each image needs to be

matched to its corresponding region so that the images can be organized by region and regional

mosaics can be generated. Then, the images need to be split by band to produce single-band images

that Terracotta can ingest and serve to the front-end. Lastly, the images need to be renamed to allow

for keying of the regions and bands in creation of the database. This entire process is illustrated

below in Figure 5.

This module first identifies which region each image belongs to using a haversine formula, which

finds the shortest great-circle distance between two points on Earth. For our case, the two points are

the center of each image and the centers of each region, as provided to us by our clients in a CSV file

that we converted to JSON called all_regions.json. Comparing these results, we determine the

Figure 5: Steps in the Preprocessing module

region an image based on which pair has the shortest calculated haversine distance. This allows us to

then create the regional hierarchy similar to the structure in Figure 6, shown below.

Once the regional hierarchy has been created, mosaics, or compositions of multiple images, are created

for each region. In creating the mosaics, we aimed to reduce load time and increase performance on

the front-end, as there are less images to retrieve and load for each region. Then, as previously

explained, the mosaics are split by band to produce single-band images, since Terracotta cannot ingest

multi-band GeoTIFFs. It is during this step that our client has the option of downsampling the images

should their file size be relatively large, which is a feature added to help maintain performance for their

large quantity of data, should larger datasets cause poor front-end performance or long runtimes.

When this process is complete, the file names are renamed to include the region and band. This allows

Terracotta to key the images in the database properly to help facilitate filtering on the front-end. It also

is crucial to the exporting feature that they are named according to this convention, as the front-end

traces back to the source images using the file name.

4.3 Terracotta Server & Client

The Terracotta Server is the first script to be run before the user’s webpage is loaded. The server will

optimize the data and create the MySQL database using band and region keys included in the filename

structure. The PNG images resulting from this process will be sent to the Terracotta client to display in

the interactive map. The biggest benefit of using Terracotta is that it provides the framework to serve

Figure 6: Regional hierarchy file organization structure

the images to the front-end client and create a completely functional base map visualization, leaving

the majority of the development on the front-end for customization of the graphical user interface.

4.4 Custom Leaflet Map Visualization

On the front-end, we added a dropdown list for the available bands and a region list with search bar

to select the region of interest. The user is also able to change the colormap to help show areas of

geological interest or contrasting values more clearly. Layer info is provided as well, to include

information about the data being shown, including a summarized version of the metadata. Upon

exporting, the images currently in view are retrieved based on the active band and region keys, and a

GeoTiff of that region is provided as a download. Each of these features is accomplished through

JavaScript, NodeJS, or Leaflet, and given accurately preprocessed images, these features are standard

in web applications, so their implementation is straightforward for the most part. However, the front-

end is inherently dependent on Terracotta, so modifying these features any further would require an

understanding of Terracotta functions as well.

Through development of this project, we have arrived at a final product that meets the requirements

and needs of our clients and serves as a strong first deployment of this tool. From the beginning of

development to now, we have made modifications to how we implemented these features, mainly due

to changes made to work with Terracotta. Initially, our design included Terracotta, but was more

complex. After uncovering how powerful of a tool Terracotta is, we were able to work with it to develop

simpler solutions to the hurdles we faced. One example of this is in exporting, as we initially were

going to use a Google Drive implementation to provide downloads to source images. However, this

would require maintenance of a copy of the source images on Google Drive apart from the actual source

images being used for the application. Instead, we used Terracotta’s method of keying and the file

naming convention created for that process to trace back to the images, which is a much more

centralized and straightforward solution.

While Terracotta made it possible to have a fully functional application ready by deployment time,

using it for our application did have downfalls. One major aspect of our interface that we aimed to

correct was the projection the map interface used. It currently uses Web Mercator projection, which is

the standard for web-based maps. However, because our data is centered on Antarctica, and the Web

Mercator projection distorts areas near the poles, it would be more intuitive to use a Polar Stereographic

projection. This change was not able to be implemented prior to deployment, as Terracotta relies on

packages based on Web Mercator, and thus, changing the projection would require extensive

modifications to Terracotta. This, as well as other features we feel would improve the application, are

discussed further in Future Work.

5 Testing

To ensure that our project meets our clients’ base requirements and allow for expanding the database

of source images our application visualizes, our specific software testing plan focuses on verifying the

applications functionality, performance, and scalability. For each type of testing, we chose the most

intuitive test plan for each component by working through our design from the bottom-up and

implementing tests through software and libraries that are effortless to incorporate with the software

components we have used in our implementation.

With the focus of our testing plan being on the preprocessing module, we aimed to bridge the

connection between physical scientists and programming, by providing a preprocessing module that

is easy to understand and execute. Through unit testing, we ensured functionality of base requirements

for the preprocessing module, with the main goal of guaranteeing that this data will be able to be

efficiently served to the front-end application with no errors or loss of data. On the processing side of

the front-end, unit tests also helped to validate that this data is accessible by the visualization interface.

Through this process, specifically, we were able to discover from the front-end that the preprocessing

module was not able to generate all the regional mosaics for lower subregions and resolved this

through minor changes in the mosaic generation.

The preprocessing and frontend module are connected seamlessly using the tile server Terracotta,

which is why we created our software design with it as a main component. However, through our

integration testing plan, we verified that the integrity of our data is preserved as it flows from

preprocessing module to Terracotta to the front-end application.

Finally, usability testing was incorporated to confirm not only that we are meeting the requirements

for a minimum viable product set forth by our clients, but more importantly, that our product provides

a useful solution to their problem. Usability testing mainly confirmed our clients’ overall satisfaction

with the product, but it also revealed some extra components that could be incorporated in the future

to further improve the design.

6 Project Timeline

The first few milestones of our project included working towards gaining a deeper understanding of

our clients and their goals, researching how to best implement our solution, and specifying our

findings in documentation for our clients to approve. This process aimed to reduce critical errors later

in development and ensure that our product would meet our client’s requirements. At the start, we

created a Team Standards document to outline team expectations and ways to reduce and manage

team conflict, should it be necessary in the future. For example, this document included expected

response times, our attendance policy, and what each member’s role was within the team.

Conversations about these concepts through development of this document were crucial to the

overall success of our project as it clarified expectations for each member of the team from the

beginning.

Next, we worked to complete our Technology Feasibility document, which involved determining if

our project was even possible to accomplish within the time frame we were given. To accomplish

this, we broke down the requirements given to us by our clients and researched possible solutions for

each of them considering our time constraints. Upon completion of this step in the development

process, our team had created a general outline of our system and a rough schedule for design and

implementation. We were able to move on the next step of implementation: understanding how

different requirements might connect with each other.

Using a top-down approach, we worked from the general outline we had previously developed to

detail more specific requirements. We broke our project down into domain, functional, performance,

and environmental requirements using key information provided to us by our clients over the course

of numerous regular meetings. Feedback from our clients on research conducted while working on

our Technology Feasibility document allowed us to accomplish this and thus create our

Requirements Specification document.

For our Technical Prototype, we were able to show others how far into our project we had gotten

before holiday break. This presentation reviewed the work we had completed leading up to our

complete software design and outlined our plan for implementation. This demonstration worked to

gain feedback from our peers about our design and ensure that we would be ready to begin

implementation when returning.

Implementation began with completely developing and finalizing the components related to our

three major components: preprocessing system, user interface development, and data download.

Each one of these was accomplished by different subsections of our team. Logan and Joe worked

primarily on the preprocessing system, which takes in a folder of GeoTiffs given to us by our clients

and returns a folder full of mosaics broken down by region and band. Zach worked on our user

interface by making modifications to Terracotta’s front-end to reflect our project’s requirements.

Kassandra and Beck were responsible for finding a solution to data exporting, which was

accomplished by retrieving the stored GeoTiffs within Terracotta using the keys and filenames

created in preprocessing and creating a corresponding download link for the source data.

After getting all the modules working independently, the next major step was to integrate them all

together. This was accomplished by taking the mosaics created during preprocessing and testing

them with Terracotta. After starting the server, functionality could then be examined through the

front-end in the application, including functionality of the exporting feature.

After troubleshooting issues as they occurred, and working towards a product that seemed

completely functional, we began testing to guarantee each component was working, even in the event

of boundary cases and erroneous conditions. This was accomplished in three different steps: unit,

integration, and usability. Unit testing was done on each method in each module, ensuring that

everything worked correctly on its own. Integration testing was done on the application, this way

when our clients when to use it there were not any problems for them to run into. Usability testing

involved letting actual end users work with the application, this let us know what needed to change

so user had a more enjoyable time working with our project.

7 Future Work

Our project serves as a prototype and minimum viable product upon delivery, and therefore has

room to grow into the ideal tool for our clients. Through requirements acquisition and usability

testing, we have identified a few specific features that would further improve our product.

Firstly, it would be most intuitive for the map visualization to use a Polar Stereographic projection, as

the map would then be centered on our area of interest, the continent of Antarctica. Our current

implementation is based upon the open-source tile server Terracotta, which uses the Web Mercator

projection, a projection used in applications like Google Maps that is centered on the equator, and as

a result, exaggerates areas near the poles. The use of Terracotta was essential to our product, as it

provided the framework to ingest, serve, and visualize large amounts of raster images quickly,

allowing us to focus on development of the preprocessing and frontend modules. We initially set out

to change the projection for the initial deployment, however, through the development process, we

became aware that Terracotta was extensively based on Web Mercator, and even utilized other

packages and libraries based on this projection as well. Thus, changing the projection would require

significant modification to Terracotta, which was not possible given our time constraints.

While not a requirement for a minimum viable product, we aimed to provide the option to view a

RGB composition of the red, green, and blue single band layers. This feature would allow researchers

to view a standard satellite image of how the Earth would look from above, in the range of color that

we would see naturally. However, the bands served to the frontend needed to be split to single-band

images as Terracotta converts the single-band raster images to a PNG format for use in the map

application. PNG is the standard for web images and viewing the images in this format ensures

quality performance of the application and reasonable load times with relatively large raster files.

Because the images are in this format, however, forming an RGB composition on the front-end is not

simple. One option for this would be to layer them on top of each other on the front-end by

modifying the module in Terracotta responsible for creating Leaflet raster layers, but this may result

in a visualization that is not a true RGB interpolation. Thus, the other option for this would be to

create an RGB composition in the preprocessing step, but again, we were not able to implement a

solution to this due to time constraints.

Lastly, our clients felt it would be helpful to be able to have the tool calculate statistics on the values

within the raster images themselves. One feature that would result from this is the ability to query

the images based on geological statistics. Essentially, this would mean for the user, that they would

be able to search for geological components, and the images with a specified probability of containing

those components would be displayed. It would also be beneficial to generate a statistical geological

composition summary of a selected region. This would require significant amounts of further

development and was not included in the requirements specification because of this. However, it

would transform our application from a visualization tool to a scientific analysis tool, and therefore,

greatly increase the power and possible applications for it.

8 Conclusion

The hostile Antarctic environment presents a unique set of challenges to scientists trying to

understand it. We aim to build an application that helps scientists and explorers in organizations

around the world unravel the mysteries of this largely undiscovered frontier, expanding not only our

understanding of our own planet, but also our knowledge of other planets that seem potentially

inhospitable. Overall, the benefit of our product is that it provides ease of access to the large amount

of data used to map Antarctica, expanding the catalog of available area

for research, and further enabling scientists to gain a better understanding of the region. 

Our application will present the scientific community with an interactive map of Antarctica, and an

interface through which researchers can view and analyze a large and diverse set of raw and

derived satellite imagery. The bands of data for each image will be viewable either as single bands in a

binary color scale or interpolated together as RGB channels for geological differentiation. Imagery and

location data will also be exportable for use in offline contexts. 

In summary, this project will allow geologists to view and filter geological data at the

continental level in hopes of uncovering discoveries that will lead to new expeditions in the region.

Overall, we were able to confirm functionality of base requirements necessary for acceptance and

meet our goal of providing an easy, simple, and efficient way for our clients to navigate their data

and further their study of the Antarctic.

9 Glossary

• Haversine distance: great-circle distance between two points on a sphere; used to find the

shortest distance between two points on Earth

• mosaic: composition of multiple images to form one single, cohesive image

• projection: type of method used to flatten the surface of the Earth in order to represent its

geography on a single plane

• raster image: representation of an image as a rectangular grid of pixels, with the color values

at each pixel stored in a matrix structure.

• RGB interpolation: refers to the process of specifying the color space for an image as RGB

(red-green-blue) which is the most common as it represents the color space visible to humans

• XYZ tile: a single cell in a grid created for a map interface which helps with placing images on

the map at the proper coordinate location, navigating through the map, and rendering images

at different zoom levels

Acronyms:

• PNG: Portable Network Graphic; standard image format for the web

• GeoTIFF/TIFF: file type used for raster images that contain geographical information

Appendix A: Development Environment and Toolchain

An incoming capstone team will want to familiarize themselves with the type of data their client is

working with as well as confirm capabilities of viewing the data in a visualization software like

ArcGIS. Understand that raster files are images made up of layers called bands and these bands can

represent wavelengths, which can combine to make an RGB image, or modeled data like presence of

snow or ice.

Most of our development was done on Linux but the product functions as planned on Windows.

There aren’t hard requirements in terms of hardware requirements besides being a functioning

computer but know that once you are serving with a dataset of greater than a few dozen resource

usage will begin to rise.

Toolchain

Preprocessing Script

• Primary languages used: Python

• Libraries used:

o pathlib: for accessing local file directories

o uuid: for generating random ids for each raster image without having to worry about

conflicting names

o json: used for writing and reading JSON data from local files.

o emoji: used for printing UTF-8 emojis to the terminal when finished.

o os: used for creating and removing temporary files during the preprocessing script.

User Interface

• Primary languages used: HTML, CSS, JavaScript, jQuery as they are fundamental for building

any web application and jQuery provides cleaner functions that vanilla JavaScript.

• Libraries used:

o Halfmoon CSS: for providing HTML structures such as a side bar and navbar using the

same format as Bootstrap but with extra functionality such as dark mode.

o Leaflet: for creating the interactive map that the raster images are displayed on.

o NodeJs: used for creating unit tests for the front-end module.

Backend-Frontend Integration

• Library used:

o Terracotta: Terracotta provides a simple way to ingest a large set of raster images and

quickly deploy them onto an interactive map using Leaflet.

Setup

This setup process has been tested on both Linux/Unix systems as well as Windows to provide easier

access to the application.

• First, install Python which can be found at: https://www.python.org/downloads/.

• Next, install Anaconda to run Terracotta which can be found at:

https://www.anaconda.com/products/individual.

o After this is installed verify that it installed properly by first opening the program.

▪ Windows: Click Start, search, or select Anaconda Prompt from the menu.

▪ macOs: Cmd+Space to open Spotlight Search and type “Navigator” to open the

program.

▪ Linux-Ubuntu: Open the Dash by clicking the upper left Ubuntu icon, then type

“terminal”

o After Anaconda is open, run the command conda list. If Anaconda is installed and

working, this will display a list of installed packages and their versions.

• After Anaconda is installed, run the below commands to install GDAL and rasterio which are

used for reprojecting the raster images.

>> conda install -c conda-forge gdal

>> gdalinfo –version

If GDAL was installed properly, the above command should output the current version

of GDAL.

>> conda install -c conda-forge gdal

• The next step is to install Git to clone the current repository for this project which contains the

preprocessing script and the user interface. Git can be installed using the following link:

https://git-scm.com/downloads

o Then verify Git is installed by running the command

https://www.python.org/downloads/
https://git-scm.com/downloads

▪ >> git –version

o If the current version of git is reported back to you, clone the repository from this link

https://github.com/mlgarrett/glacies-indicium by using the command:

▪ >> git clone https://github.com/mlgarrett/glacies-indicium

• After the repository finishes downloading, change into the repository directory and create the

Terracotta environment using the following commands:

o >> cd glacies-indicium

o >> conda env create -f environment.yml

• After the environment is created, activate the Terracotta environment by running the

following command:

o >> conda activate terracotta

• The next step is to run the preprocessing module on a set of raster images which will generate

the necessary single band images for the Terracotta client. The preprocessing script requires

that a path to raster images is provided when ran otherwise it will not work properly. An

example of this command can be seen below:

o >> python raster-prep.py -d <input folder path> [OPTIONS]

The optional command -r or –-remove_image_border can be appended to the command

above which will remove the borders around the raster images. As we discussed in client

meetings, the no data values will mask real data in the raster images unless this is accounted for

in the clients processing pipeline. Otherwise use the remove image flag as seen below:
o >> python raster-prep.py -d <input folder path> -r

• After the preprocessing module is finished, the next step is to optimize the raster images and

ingest them using Terracotta. More information about this command and other Terracotta

commands can be found at this link, https://terracotta-python.readthedocs.io/en/latest/cli-

commands/serve.html. Using Anaconda in the Terracotta environment in the root directory

run the following command:
o >> terracotta optimize-

rasters terracotta\client\static\mosaics*.tif -

o terracotta\client\static\mosaics\optimized\ [OPTIONS]

o After the above command finishes run the following command to ingest and serve the

raster images:

▪ >> terracotta serve -r

terracotta\client\static\mosaics\optimized\ {region}_{band}.tif

https://github.com/mlgarrett/glacies-indicium
https://terracotta-python.readthedocs.io/en/latest/cli-commands/serve.html
https://terracotta-python.readthedocs.io/en/latest/cli-commands/serve.html

• The final step to starting Terracotta locally is to open a second Anaconda prompt. In this new

prompt, go to the glacies indicium repository directory and run conda activate

terracotta. Then run the next command to connect to Terracotta:

o >> terracotta connect http://localhost:5000

o This command will automatically launch the user interface in a new browser tab with

the available optimized raster images.

• Additionally, Terracotta provides three API endpoints for further exploration of the available

data. These URL links can be found below:

o http://localhost:5000/keys

o http://localhost:5000/datasets

o http://localhost:5000/apidoc

Production Cycle

• The preprocessing module does not require any compiling before running, and simply

requires the raster_prep.py file to be called in order to run.

• To edit the HTML in the user interface and view the changes, Terracotta requires a full restart

in order to render the new changes. This can be achieved by running CMD/CTRL + C in the

Anaconda prompt and then re running the same command from above.

• The JavaScript also does not need to be recompiled through Terracotta before running, but

does require the user interface to be refreshed in the browser by pressing F5 to run the new

changes.

• To deploy the changes, separate branches are used to push updates which can then be

reviewed before being merged into the master branch.

http://localhost:5000/keys
http://localhost:5000/datasets
http://localhost:5000/apidoc

