
Technology Feasibility Report
Team Fridge Filler
10/21/2020

Project Sponsors:

Dr. Richard Rushforth
Sean Ryan

Team Members:

Shangyi Dai
Jonathan Derr
Travis Flake
Gage Gabaldon
Zhibang Qin

Mentor:

Sambashiva Kethireddy

Overview
This document outlines the technological feasibility of the “Fridge Filler”. This will
include major technical challenges that may arise during the production process, as well
as some possible methods that will be utilized to overcome such challenges.

1

Table of Contents

Introduction 3

Technological Challenges 4

Technology Analysis 5
Issue 1: Application Framework 5
Issue 2: Database Platform 7
Issue 3: Administrative Portal 8
Issue 4: Database Access Tools 9
Issue 5: Database Security 10
Issue 6: Application Analytics Service 11
Issue 7: Recipe Formatting 13
Issue 8: Foodbank and Store Navigation 14
Issue 9: Scanning Food Items to Add Them to the Pantry 15

Technology Integration 17

Conclusion 18
References 20

2

Introduction
Food banks have always had problems with getting food to families, and in recent times
this demand is increasing even more. Even before the pandemic Saint Mary's Food
Bank and other food banks had trouble recommending and suggesting healthy recipes.
Along with making sure that food is not thrown away and wasted. As the uncertainty of
food that comes through the food banks and the distribution of food products is not
uniform. Taking the United States, for example:

● Every year, 80 billion pounds of food are thrown away in the United States.
● Food banks across America receive different food products in varying quantities

from donors throughout the country.
● Foodbank workers may be unfamiliar with products given to the food bank.

All of these factors create an inefficiency that is hard to solve with the changing supplies
available to the food banks and with the lack of knowledge to best use the food.
This is where our group, Fridge Filler, comes in to help with food efficacy. With our
sponsors, Richard Rushforth and Sean Ryan, we partnered with Saint Mary's Food
Bank (SMFBA) to help solve this problem. They believe that the current interaction
between the food banks and the people who use them is inefficient. The way they
interact now is that people come into the food bank, receive a box full of whatever the
food bank has available at that time, and then the person has to try and figure out what
they can make with what they have just received. This is fine for some people, but not
all people like to cook or know what they can make with the ingredients given. Along
with the uncertainty of what will be at the food bank creates problems with the families
and makes everything more chaotic.

Fridge Filler aims to create a mobile application that can serve as a go-between for the
food banks and the people and families that use the food banks. That way, families can
figure out what food to cook with the ingredients they have through simple,
easy-to-follow recipes. The app also can recommend places to pick up missing
ingredients and even a way to sync what you have at home with the app. The overall
goal of the application is to help families effortlessly plan meals and to help ensure that
the food at the distribution sites is used more effectively.

These challenges are diverse and can lead to many different solutions based upon what
is decided and what is technologically feasible. In the technological challenges section,
we will analyze each of these diverse challenges in detail and the rationale for choosing

3

a particular solution; In the technology integration section, we will be looking at how all
these solutions will come together to make a successful project.

Technological Challenges

The technological challenges of the project are mostly in the realm of backend database
management and integrating various technologies that will help users to make various
food from what's available in their house, in the food bank, and nearby stores.

● Compatibility: We will need to create a mobile app that is user friendly and

usable on multiple platforms.
● Backend Storage: We will need to select a platform to use for our Database.

Ideally, this should line up as close as possible to the databases already

maintained by Saint Mary’s Food Bank.
● User Interface: We will need to create the UI for the web-based access portal.

● Administrative Tools: We will need to create access tools for the database so
that administrators can make changes to the databases.

● Security: We will need to secure our database from unwanted access.

● Analytics: We will need to select an analytics service that can display various
pieces of data in a graphical format to administrators.

● Formatting Recipes: We will need to find a way to format the recipes from the
database as PDF files/possibly some other web-friendly format.

● Navigation: We will need a way to implement navigation to the nearest food

bank, which means we will need to choose a Navigation API to support the most
users effectively. Should be able to function with either GPS data on the device

or zip code.
● UPC Scanning: We will need a way to use UPCs to search for food items and

add them to the user pantry.

4

Technology Analysis

In this section, we will explore the issues in greater detail and give some ideas about
how to solve the problem. We will first give an introduction to the issue as a whole to
better flush out the problems we are dealing with and the desired characteristics we
want. Then we will outline the potential alternatives and give the reasons they are a
good alternative. Lastly, we will prove that the technology we choose is the most
feasible and the best option for this project.

Issue 1: Application Framework

● Intro the issue: We need to develop a cross-platform mobile application. There
are many ways to make a mobile app, and we are aiming to create a fast
application that is the same cross-platform, preferably with a clean user interface.
To do this, we have chosen Ionic, with React JavaScript as our JS framework.

● Alternatives: There are several options we are investigating for development
framework and native development. For cross-platform development, we are
choosing between Ionic, React Native, and Flutter. These are very good
frameworks but flutter is not as popular and requires us to learn a new language.
Ionic on the other hand isn't native and is shown to lose in performance testing to
native apps. React Native is based on React but appears to have a much steeper
learning curve than our other options, which could inhibit the development
process.

○ React Native is a development framework created by the creators of
ReactJS, and it’s grown very popular. It uses native code, and while it is
popular and based partially on javascript for rendering (namely React JS),
we felt the learning curve for this was much steeper than Ionic to produce
the same results.

○ Flutter is a Google-made development framework that uses its language
dart to create multi-platform apps. Not popular but very good performance.

○ Ionic is easy to use and is based upon HTML and CSS. It is a powerful
tool for app development but overall sees worse performance at runtime.
Ionic is also open-source and has a large and helpful library of APIs for us
to work with.

5

● Table Discussion: In the table above, we measured a few criteria for our choice
of which mobile framework we chose for our application. Ease of use is important
to us, and the Ionic application setup was by far the simplest out of the ones
tested. App creation is fast and allows us to get right into design work. As far as
features are concerned, Ionic and REACT are fairly similar in contents, and both
have a larger library of features that are made accessible to the framework than
flutter. The team is notably more familiar with Ionic since it is based within
CSS/JS/HTML, where the other top options are entirely new frameworks with
their languages. The performance of the frameworks, while measurable, does not
ultimately detract from the runtime performance on a mobile app of the scale we
are developing when comparing Ionic and REACT Native, and flutter only
performs a bit worse than these options. Ultimately we felt Ionic had the best
performance in these categories, especially because of its wide range of features
for UI, and the ease of development, which we suspect will allow us to spend
more time refining the less visual components of the application.

● Chosen approach: Ionic
● Proving feasibility：To prove the feasibility of Ionic app development, we have

installed Ionic, and will experiment with the intuitive UI libraries to create an
experience that is accessible to the less technologically literate users, and
moving forward development in Ionic will ease the curve of learning new
technology stacks, facilitating more in-depth work on the features of the app. The
Ion UI libraries will lessen the burden of graphic design on the team, meaning our
demos will be more fleshed out technically.

6

Feature
Comparison

REACT Native Flutter Ionic

Ease of Use 2 3 5

Feature Set 4 3 4

Familiarity 1 1 3

Performance 4 4 3

Total 11 11 15

Issue 2: Database Platform

● Intro the issue: We will need to select a platform to use for our database.

Ideally, we will develop a database system and let it work well with the frontend
application and backend control portal. There are many platforms for us to
choose from: MySQL, MongoDB, PostgreSQL, etc. Our goal is to choose a
platform that is powerful and familiar for all teammates.

● Alternatives: There are several platforms for us to use:
○ MySQL is an open-source relational database management system. It is

one of the most widely used relational databases, powering nine out of
ten websites around the world, and about half the developers prefer it.

○ MongoDB is a cross-platform document-oriented database program. It is
a NoSQL database that stores data as JSON-like documents and uses
the MongoDB query language for access.

○ PostgreSQL, also known as Postgres, is an open-source relational
database management system. It has many numerous features such as
native partitioning, parallel query, support of foreign data wrappers,
powerful JSON features, streaming and logical replication, and the
availability of many open source tools for HA, backups, and monitoring.

● Table Discussion: All of the choices above have similar features and serve the
purpose of storing data. All database management systems listed are rather user
oriented and highly usable from the perspective of a database administrator. The
functionality of each DBMS will be nearly identical, as the relations needed for
the app we are developing are rather simple in design, and do not require
advanced algorithms to be applied to increase efficiency between interacting
databases. As far as familiarity goes, the team is most familiar with MySQL, as

7

Feature
Comparison

MySQL MongoDB PostgreSQL

Usability 4 3 3

Functionality 3 3 3

Familiarity 5 2 2

Total 12 8 8

we all have a moderate amount of experience and knowledge of MySQL from the
CS345 database design course, and as such we feel most comfortable with it.

● Chosen approach: MySQL
● Proving feasibility: Going forward we will be developing our database in

MySQL, and connecting it to the frontend app that we are creating in Ionic,
aiming to link user, recipe, and pantry databases to the application for
prototyping. We will host all the databases we develop in MySQL. We will
develop a pantry database for users, a site database for admin. The pantry
database will be able to contain what users have and the site database will hold
the information about the sites.

Issue 3: Administrative Portal

● Intro the issue: For this project, we need to design an administrative access

portal for system administrators from SMFBA to edit food distribution sites and
other user data. We want this portal to be simple and accessible to minimize the
risk of edits that will cause problems.

● Alternatives: The backend will be a website, and we have a few options for this.
We could use a Javascript framework, such as react or angular, however, the
issue at hand may be simple enough to not require an intricate framework, as the
feature will not see wide-scale use. Rendering from ReactJS is a great feature,
but we likely won't need the intricacy of a javascript framework to make this
happen.

● Table Discussion: JS frameworks are collections of JavaScript code libraries

that provide developers with pre-written JS code to use for routine programming
features and tasks. However, owing to a large set of powerful features, most
frameworks tend to be bulky regarding functions and codebase. Meanwhile
simple JS is a client-side language and can also satisfy what we need in the

8

Feature
Comparison

JS Framework(React,
Angular, etc.)

Simple JS/HTML/CSS

Functionality 5 4

Simplicity 2 5

Total 7 9

administrative portal. What we are going to use is simple javascript for it is
relatively simple to learn and implement. We will be using that.

● Chosen approach: Basic Javascript
● Proving feasibility：Going forward we will design an administrative portal with

basic HTML/CSS/JS, and going forward will link it to our databases for user data
and food bank location/recipe data to validate our choices being accessible and
editable from the administrative portal. If needed, this can be changed to
ReactJS, but the complexity of this issue has yet to present itself in a way that
demands a framework.

Issue 4: Database Access Tools

● Intro the issue: For the database, we work on, we need to create access tools

for the database so that administrators can make changes and the app can
access it. The tools should be connected to the remote database system, also
work smoothly with the administrator portal. Also, the tools need to adapt to the
SMFB’s database system.

● Alternatives: There are many languages we can choose to write the tools,
here’re the available languages for us:

○ PHP is a popular general-purpose scripting language that is especially
suited to web development, it’s the most popular to use PHP with MySQL.

○ JavaScript is now also being used on the server, with the engine called:
Node.js. It’s a lightweight, interpreted programming language and well
known as a scripting language for Web pages, also many non-browser
environments.

○ Java / JSP is a server-side programming technology that enables the
creation of a dynamic, platform-independent method for building
Web-based applications. JSP has access to the entire family of Java APIs.

○ Python has the Python standard for database interfaces which is called
Python DB-API, and it supports a wide range of database servers.

○ Ruby has the Ruby DBI which is the database-independent interface for
Ruby, it provides an abstraction layer between the Ruby code and the
underlying database, allowing you to switch database implementations
easily.

○ ASP.NET - usually with the C# programming language. “.NET” is a
developer platform made up of tools, programming languages, and
libraries for building many different types of applications. “ASP.NET”
extends the .NET developer platform with tools and libraries specifically
for building web apps.

9

● Table Discussion: Of the languages above, PHP, JavaScript, Java, and Python
are the most familiar one for us, also it is very common to use these languages to
connect with database systems. Because we want to use web portals to control
databases, JavaScript is the most suitable choice for us, it can be used on both
the server-side and admin side, or it can just stay on the admin side and send
requests to the server.

● Chosen approach: JavaScript
● Proving feasibility：We are going to use JS for the Administrative Portal, as it

will be easier to manage the database if JavaScript is also used for accessing the
database. We won’t directly connect to the remote database by JavaScript and
remote HTTP(S) backends are used to provide the client-side apps with the data.
Therefore, to provide front-end apps with data from a MySQL database we need
to implement a server-side backend and make the front-end apps use it. We
have tried MySQL Connector/Node.js and it looks good. It is a free-to-use,
open-source database that facilitates the effective management of databases by
connecting them to the software. After testing and finding some examples about
it we believe it is stable and reliable for the database access in our project.

Issue 5: Database Security

● Intro the issue: Because our database will contain information about users, it

will need to be secure from unwanted access. We also need to control who has
access to the database and who has permission to access it. We want a system
that will be secure from unauthorized access.

● Alternatives: There are many things to help secure a database some of these
options include encryption, access control, and some other security measures
that are native to a DBMS. The option of separating the user database from the
main database will also work wonders.

10

Feature
Comparison

PHP JavaScript Java/JSP Python Ruby ASP.NET

Functionality 4 4 4 4 4 4

Usability 3 3 3 3 2 3

Familiarity 3 5 2 2 1 1

Total 10 12 9 9 7 8

● Table Discussion: The table shows that each one of the ways to secure
databases has its perks and cons. However, these are all parts of a secure
database system and must be used in conjunction with each other to be
effective.

● Chosen approach: Encryption, Separation, Access Control
● Proving feasibility: We will be using a combination of encryption, separation,

and access control. We will be encrypting the user information so that the user
information can be private and no one knows what it is. We will also use the
Access Control to control who can access the database and make sure that only
the administrator has access to the database. The Separation of Databases
makes sure that all our different databases are self-contained and don’t interfere
with each other.

Issue 6: Application Analytics Service

● Intro the issue: We will need a way to implement basic analytics to track the
usefulness of an application. The analytics we will aim to collect may include the
popularity of features within the app, as well as what audiences utilize which
portions of the app. The analytics tool should also specifically aim to display
analytics in some graphical format.

● Alternatives: For this issue, there are several strong contenders for analytics
that have great coherence with the Ionic framework.

○ Google Firebase/Firebase Analytics: Google Firebase Analytics has a
paid option but is largely free and the paid services are designed to assist

11

Feature
Comparison

Encryption Access Control Separation of
Databases

Prevents Users
From Accessing
Harmful Data

5 5 5

Controls Who
Has Access

1 5 4

Hides Personal
Data

5 0 1

Total 11 10 10

large scale businesses. Many of the features for the paid version target
monetization of pages, which is something we do not need. Firebase also
has a graphical representation of data built-in, which meets our
requirements for data visualization.

○ AWS X-Ray: Amazon X-Ray is only free on a smaller scale, and an
analysis of over 100,000 traces removes you from the free plan of AWS.
The cost of this is low, but should the app be further developed after we
handle it and grow in user base this could be a problem for SMFB.

○ Datadog: Datadog is a great tool, but also comes with a steep price for
large-scale development, which is an issue for an app developed for a
non-profit food bank, as we aim to develop something that is not going to
produce future costs for the Saint Mary’s Food Bank.

● Table Discussion: This table examines a few key requirements of our analytics
software choices. We need it to have high functionality for SMFBA to create user
flows they wish to monitor for the food bank users. Datadog appears to offer
more detailed breakdowns of data and user flow setup than X-ray and Firebase.
The accessibility refers to how easily usable the data is, and while it has a
learning curve both Firebase and Datadog have quite nice graphical data
analysis interfaces for users. AWS has a slightly less polished UI but shows the
data accurately. The cost requirement was more unique to this feature, as most
well-maintained Analytics software has subscription costs. Google Firebase
offered by far the most coverage for its price, so it scales higher than the other
two options, which require payment for a much smaller count of users analyzed.

● Chosen approach: Google Firebase Analytics
● Proving feasibility: Some of the team has used firebase before and firmly

believes it can solve basic analytics requests presented by the Saint Mary’s Food
Bank and will proceed in development. Going forward we will aim to design event
listeners and demographic sets that will provide useful data for the food bank

12

Feature
Comparison

Google Firebase AWS Xray Datadog

Functionality 5 4 5

Accessibility 5 3 4

Cost 5 3 1

Total 15 10 10

when the app is released, and in testing produce analytics data to show how
basic collection will work.

Issue 7: Recipe Formatting

● Intro the issue: We will need to find a way to format the recipes from the

database as PDF files/possibly some other web-friendly format. This will have to
be done programmatically through JavaScript, and fortunately, there are several
APIs we could use for this:

● Alternatives:
○ PDFKit - PDFKit is an object-oriented PDF generation library that is based

on Node. It includes all the basic functionality required for generating PDF
documents, but it can also generate vector graphics and encrypt the
documents it generates. It is heavily objects and function-based, with
function calls used to do most things with the document objects, which
could limit our options in terms of implementation and portability.

○ Pdfmake - Pdfmake is another PDF generation library based on javascript.
Unlike the other two libraries listed here, it features limited utilization of
functions, relying more on attributes to change things about the document.
It is also much more feature-rich than the other two options listed here,
and also appears to be the most complete. It has a wider variety of
standard text and image manipulation tools, and can also generate QR
codes, include custom fonts, generate images using the Scalable Vector
Graphics format, embed document metadata, and embed watermarks, just
to name a few features. This library can also be used on both the server
and the client-side of interactions, which would give us more options when
it comes to implementation.

○ jsPDF - jsPDF is another PDF generation library-based on Javascript that
takes a more object-oriented approach to generate PDFs. Like PDFKit, it
is much more object and function-oriented than Pdfmake, with documents
existing as objects, which are manipulated using functions. There is not a
lot of documentation for this library, so it is difficult to judge how well it will
work for our purposes at face value.

13

● Table Discussion: Pdfmake leads in functionality, having a greater variety of
options to use when creating and formatting documents. It also leads in Ease of
Use, as its approach of not relying so much on function calls is likely to make the
document creation code less complicated. PDFKit is a close second, and its
reliance on functions and rich feature sets may still find some use with this
project if we run into any unforeseen issues with pdfmake. jsPDF seems to be
the weakest library of this selection, mainly because it’s so hard to find easily
accessible documentation on it. WIth pdfmake’s function-based design, it will be
much easier to produce printable recipe PDFs based on the ingredients that
users have available to them, which is the main goal of this feature.

● Chosen approach: Pdfmake
● Proving feasibility: Pdfmake appears to be the best option for us. Its multiple

implementations on both client and server-side platforms and its multitude of
features will hopefully allow us to be flexible with how we implement the
requirements that use this library. Going forward we will design functions that
format recipes based on what ingredients users possess to create print-friendly
versions of desired recipes.

Issue 8: Foodbank and Store Navigation

● Intro the issue: We will need a way to implement navigation to the nearest
foodbank. Since the creation of mobile phones, there has been a large number of
navigation apps developed, some of the more prominent being Google Maps,
Waze, and Bing maps. We require the maps integration to work on the most
phones possible and ideally support offline use and pathing that can be done
without needing a vehicle.

● Alternatives: We considered Waze maps, Google maps, and Bing maps for this
facet of the application. All 3 options have rather high-quality mapping
capabilities, but out of the 3 Google Maps is the only application that provided
pathing for bicycles, which is a rather popular mode of transportation and could
alienate users if it was not included as an option. Google Maps also offers offline

14

Feature
Comparison

PDFKit pdfmake jsPDF

Functionality 4 5 3

Ease of Use 3 4 3

Total 7 9 6

functionality, which can help users who need to use the public internet to get the
map, but still would like to have it available to them without printing it out.

● Table Discussion: The table above compares navigation options from each of

the 3 considered map APIs, factoring in how many modes of travel are offered
and how accurate the travel data will be. Google Maps scored highly on this for
having a wider offering of travel options compared to Bing and Waze, as well as
relatively more accurate travel data for each option. The device compatibility
section of the table is to consider how well the map API will work on mobile
devices, including deprecated/outdated machines, and new models. Google
Maps is one of the oldest map APIs that works with mobile phones and has great
continual support.

● Chosen approach: Google Maps
● Proving feasibility: Going forward we will be requesting access to the Google

Maps API, and from there developing a simple “Food Banks Near Me” search
tool and a search for local grocery stores in future technological demos to prove
our choice for feasibility was correct.

Issue 9: Scanning Food Items to Add Them to the Pantry

● Intro the issue: We need to create a method for users to scan in the food items
using their barcodes (UPCs) to add food to the user’s pantry to allow good
recommendation of recipes. This feature needs to be highly functional and work
using device cameras. For this, we are considering the Google Barcodes API,
the Barcode Lookup API, and the Cloudmersive Barcode Lookup API.

15

Feature
Comparison

Google Maps Bing Maps Waze Maps

Navigation
Options

5 3 2

Device
Compatibility

4 2 3

Familiarity 5 2 2

Total 14 7 7

● Alternatives: It is very important for the Barcode API we choose to be portable
to the largest range of devices possible, since there is no way we can predict the
age or make of user devices, but do not want to exclude those with older phones.

○ The Google Barcode API supports a wide range of devices, and multiple
forms of UPC Barcodes (Both UPC A and UPC E).

○ The Barcode Lookup API allows searching of products using their UPC
Code or name and has a database of over 200 million items to be
searched. It is not limited to only food objects, however.

○ The Cloudmersive API allows the scanning of barcodes to convert them
into data, as well as the creation of barcodes to assign them to objects.
This feature is not required but could allow interesting features for the
foodbank to catalog items without UPCs for ease of access to food bank
recipients. A caveat of this is that the Cloudmersive API has a price for
apps that call it over 800 times a month, which is below what our app will
see use on the scale of upon successful release.

● Table Discussion: This table compares the functionality of the bar code lookup

APIs, considering how well the API will work on a range of devices. The Barcode
scanning features are looking at features of each Barcode API, and considering
the Unique concepts, each has built into the API. Accessibility is the ease of use
and compatibility that each API offers, as well as how easily we can offer this
service on a wide scale developed project. While the features of Google
Barcodes API were a bit lacking compared to the contemporary options, it is
widely accessible and highly functional.

● Chosen approach: Google Barcodes API
● Proving feasibility: While it lacks some of the features we are seeing in the

other Barcode APIs researched, this is the most widely accessible barcode API

16

Feature
Comparison

Google Barcode
API

Barcode Lookup
API

Cloudmersive
Barcode API

Functionality 5 4 4

Barcode
Scanning
Features

5 4 4

Accessibility 5 3 2

Total 15 11 10

that we can trust will work on cross-platform applications, and it does not have
the problem of being a paid API, unlike Cloudmersive. Going forward we will
integrate a barcode search and select feature for our tech demos, in which users
will be able to add food items into their “Digital Pantry” for recipe finding.

Technology Integration

Now that we have all the technology in place, the only job that remains is organizing all
of that technology to create our final product. The following diagram outlines our plan to
create an effective solution for this problem.

The system diagram for the application and supporting technologies.

The mobile application itself is built in the Ionic framework using Javascript, CSS, and
HTML, and our backend will use the MySQL DBMS. The app has a database for the
recipes that will be used in conjunction with the user’s pantry. This will help to determine
what recipes are suitable for the user and what ingredients are needed. We then will
use A few different API’s to help with the recipe portion of the app. The UPC API will
help to add various food items to the user’s pantry using the barcodes found on each
item. We will use the PDFmake to format the recipes to be printed out in the app.
Google maps will be great to provide the nearest location to pick up missing food items
either from a food site or a local store. Lastly, the Google firebase API will be used to

17

provide the necessary analytical information about commonly used ingredients, recipes,
and information about the app and the user. The app also relies upon and uses the
administrative portal to get user information and to change different database
information.

The administration portal will be made in HTML, CSS, and Javascript. This portal serves
as a way for administrators to access the backend databases to update recipes, add
new recipes, update food sites, and overall make changes to the databases. We will
also keep track of user information in this backend with a database that the app will
have access to.

Conclusion

The Fridge Filler project is aiming to provide an efficient and technical way for food
banks and users to use food resources. We want to help solve the inefficiency and
uncertainty that comes with food banks. Our project will create one application for
customers and a web client for the administrator. The application should allow users to
add what pantry they have and provide search and navigation functions. The
administrator portal will give the administrator the right to control the whole database
system. This document discusses the technological feasibility of the “Fridge Filler” and
addresses the multiple technical challenges that we will face during production.

What we envision: by the end of the development process, we hope to have a
cross-platform application, with a clean and fast user interface, that will facilitate finding
local food banks and recipes that can be made from the food you own in combination
with the food you can obtain from nearby food banks or restaurants to enable healthier
eating using the AZ Health Zone recipe database.

We are pleased to present our research, which we believe will make a successful
software development. Here’s the summary of our findings:

18

The table above shows a list of technical challenges that we hope to overcome. It also
displays the solutions we find and they will help us in future development.

Fridge Filler is excited to work on this project and look forward to developing and
incorporating our proposed solutions into this project. Even though it may take some
time for us to implement our features, we are confident to make them work.

19

Technical Challenge and Solution Table

Technical Challenge Solutions

Make our application look good on
multiple platforms.

Ionic: lonic works perfectly between
different platforms.

Choose a suitable platform for the
database.

MySQL: Is the one we are going with as it
is widely used and we have the most
familiarity with it.

Build a web-based access portal for
administrators.

HTML/CSS/JavaScript: we will combine
them together, use JS to implement
functions.

Create tools for administrators to control
databases.

JavaScript: JavaScript allows us to send
requests to the server and change data in
the database.

Ensure database security. Separate user database from the primary
database and Heavily encrypt user
information.

Implement basic analytics to track the
usefulness of our application.

Google Firebase Analytics: It provides us
a basic way to solve basic analytics
problems.

Navigate the user to the nearest
foodbank.

Google Maps: Google Maps API allows
us to implement search and navigation.

UPC Lookup and Scanning Google Barcodes API: Google Barcodes
API allows fast and clean searching and
scanning of UPC barcodes.

References

Bing Maps VS Waze - differences & reviews? (n.d.). Retrieved October 22, 2020,
from https://www.saashub.com/compare-bing-maps-vs-waze

Blog Details. (n.d.). Retrieved October 22, 2020, from
https://realclear.software/google-maps-vs-bing-maps/

Dove, J. (2020, September 23). Waze or Google Maps: Which Navigation App Is
Best for You? Retrieved October 22, 2020, from
https://www.digitaltrends.com/mobile/waze-vs-google-maps/

Ionic framework. (n.d.). Ionic Article: Ionic React vs React Native. Retrieved
October 22, 2020, from
https://ionicframework.com/resources/articles/ionic-react-vs-react-native

Ionic framework. (n.d.). Ionic Article: Ionic vs Flutter. Retrieved October 22, 2020,
from
https://ionicframework.com/resources/articles/ionic-vs-flutter-comparison-guide

Says:, M., & Says:, R. (2019, October 08). React Native vs. Ionic: Which one is
right for you? Retrieved October 22, 2020, from
https://blog.logrocket.com/react-native-vs-ionic/

MySQL Connector. (n.d.) Retrieved October 22, 2020, from
https://dev.mysql.com/doc/dev/connector-nodejs/8.0/

Datadog vs Google Cloud Platform. (n.d.). Retrieved October 22, 2020, from
https://www.softwareadvice.com/app-development/datadog-profile/vs/google-cloud
-platform/

MongoDB: The Database for Modern Applications. (n.d.). Retrieved October 22,
2020, from https://docs.mongodb.com/

Deploy Cloud Applications with MySQL Database. (n.d.). Retrieved from
https://www.oracle.com/mysql/

MySQL. (2020, October 06). Retrieved from https://en.wikipedia.org/wiki/MySQL

The World's Most Advanced Open Source Relational Database. (n.d.). Retrieved
from https://www.postgresql.org/

20

https://www.saashub.com/compare-bing-maps-vs-waze
https://realclear.software/google-maps-vs-bing-maps/
https://www.digitaltrends.com/mobile/waze-vs-google-maps/
https://ionicframework.com/resources/articles/ionic-react-vs-react-native
https://ionicframework.com/resources/articles/ionic-vs-flutter-comparison-guide
https://blog.logrocket.com/react-native-vs-ionic/
https://dev.mysql.com/doc/dev/connector-nodejs/8.0/
https://www.softwareadvice.com/app-development/datadog-profile/vs/google-cloud-platform/
https://www.softwareadvice.com/app-development/datadog-profile/vs/google-cloud-platform/
https://www.oracle.com/mysql/
https://en.wikipedia.org/wiki/MySQL
https://www.postgresql.org/

7 Database Security Best Practices. (n.d.). Retrieved October 23, 2020, from
https://www.esecurityplanet.com/network-security/6-database-security-best-practic
es.html

Pdfmake: Client/Server-side PDF printing in pure Javascript (n.d). Retrieved
October 23, 2020, from http://pdfmake.org/#/

Anon. Barcode API Overview | Mobile Vision | Google Developers. Retrieved
October 24, 2020 from
https://developers.google.com/vision/android/barcodes-overview

L.LC Cloudmersive. Cloudmersive. Retrieved October 24, 2020 from
https://api.cloudmersive.com/

21

https://www.esecurityplanet.com/network-security/6-database-security-best-practices.html
https://www.esecurityplanet.com/network-security/6-database-security-best-practices.html
http://pdfmake.org/#/
https://developers.google.com/vision/android/barcodes-overview
https://api.cloudmersive.com/

