

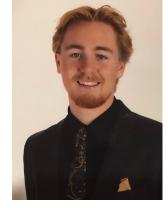
Fire Scout A Modern Take on Fighting Wildfires

Team Fire Scout

Team Leader

Recorder

Drew


Sansom

Jacob Hagan

Hardware Researcher

Matthew Briody Interface Manager

Kenneth Klawitter

Mentor

Sambashiva Kethireddy

- Masters student in Computer Science at NAU
- Graduate Teaching Assistant

Client

Dr. Fatemeh Afghah

- Assistant Professor, School of Informatics, Computing and Cyber Systems (SICSS)
- Director, Wireless Networking and Information Processing (WiNIP) Laboratory

<u>Alireza Samsoshoara</u>

- Client Assistant
- Ph.D. Candidate At NAU
- Graduate Research & Teaching Assistant

Problem

<u>Fires</u>

- Unpredictable
 - USA 2019 **4,664,364 acres**
 - USA 2018 **8,767,492** acres
- California 2020
 - 4,194,148 million acres burnt
 - 9,177 fires
 - Indirect deaths of 1,200+
 - \$10 Billion total economic loss

<u>Analysis</u>

- Not real-time
- Information gap
- Expensive
- Risk human lives

Solution

- Unmanned Aerial Vehicles (UAVs)
 - Remove humans from fire
 - Provide real-time data
 - Implement AI
- Onboard Hardware
 - Raspberry PI or Jetson Nano
 - HD and thermal cameras
 - Image processing algorithms
 - SDR communication

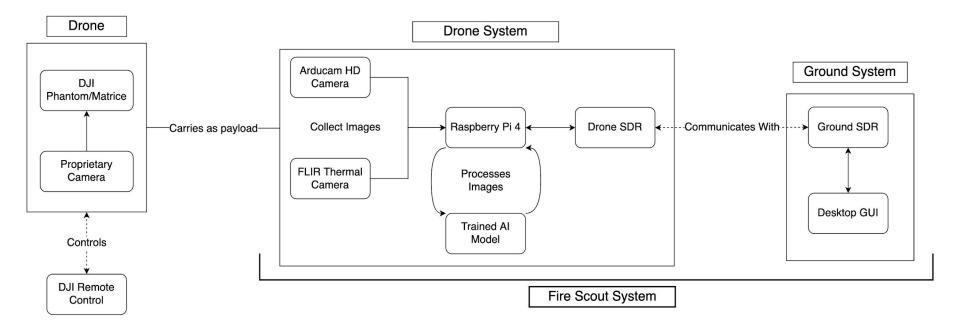
The Process

1. Pilot Flies the Drone

2. Drone Finds Fires

3. Drone Processes Fires

4. Drone Sends Data to User



The (Detailed) Process

Fire Analysis

1. Image Classification

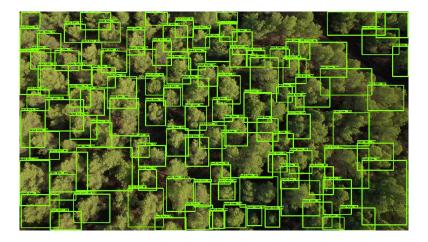
- a. *Is* there a fire
- b. Onboard the drone

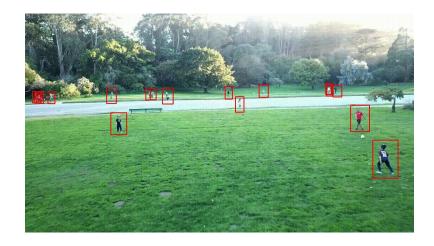
2. Image Segmentation

- a. What is the fire?
- b. Desktop or onboard

3. Fire Path Planning

- a. *Where* will the fire go?
- b. Follow and stay ahead
- c. Onboard the drone





Object Detection

4. Detect People and Trees

- a. Through classic image analysis techniques
- b. Through CNNs

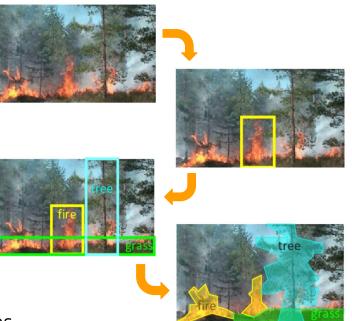
Data Communication

- 5. Sends Data to Desktop GUI
 - a. Receives data while the drone is in the air
 - b. Communicates via SDR

6. Control Fire Scout from Desktop GUI

- a. Communicate what data will be delivered via SDR
- b. Offers configurability for end-user

Constraints


- Drones provided: Matrice 200, Phantom 3 Pro
- Electrical Engineering team
 - SDR
 - Mini-computer mounting
- Data Collection: Cannot fly drones over fires at will

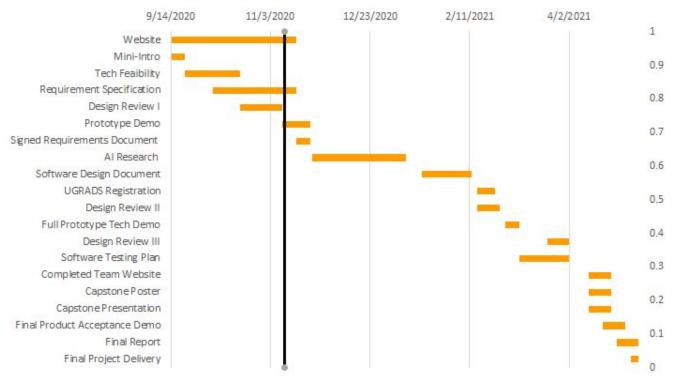
Analysis Breakdown

- Classifies Fires
 - Is there fire?
 - o CNNs
 - Future: drone flies to fire automatically
- Segments Fires
 - What is the fire?
 - o CNNs
 - Runs on drone or desktop
 - Depends on Pi's power
- Plan the Fires Path
 - Show on the GUI arrows and cardinal coordinates
 - Future: drone can follow the fire automatically

Risks and Feasibility

<u>Risks</u>

- Simultaneous need to learn and implement working AI
- Limited data for ANNs
- Pi can not process enough data
- Fire recognition is still a newer technology


Feasibility

- All software has been developed at some point, by someone
- All hardware has been used at some point, by someone
- Combination is possible

Schedule

Fire Scout's Current Development Schedule

Conclusion

<u>In Summary:</u>

- New wildfire analysis is critical
- UAV fire analysis is safe + efficient
- Solution Vision
 - Fire Analysis
 - Object Detection
 - Data Communication
- Gather more data over winter break
- Start development next semester

Sources

https://www.nbcnews.com/mach/science/drones-are-fighting-wildfires-some-very-surprising-ways-ncna820966

https://www.fire.ca.gov/stats-events/

https://news.nau.edu/afghah-career-award/#.X5pfIFBlB3g

https://www.sfchronicle.com/california-wildfires/article/Hidden-cost-of-wildfire-smoke-Stanford-15595754.php

https://blog.skygate.io/how-to-detect-a-single-tree-from-a-drone-imagery-of-a-dense-forest-de190f64cdb7

https://nanonets.com/blog/real-time-object-detection-for-drones/

https://www.dji.com/matrice-200-series

https://abc7news.com/california-wildfires-cost-of-cal-fire-stanford-wildfire-research/6897462/

https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html

https://www.researchgate.net/figure/Comparison-between-image-classification-object-detection-and-instance-segmentation_fig6_3344 18384

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10649/106490B/Wildland-fires-detection-and-segmentation-using-de ep-learning/10.1117/12.2304936.short?SSO=1