Fire Scout

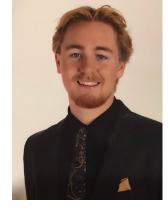
Drew Sansom Nick Bollone Jacob Hagan Matthew Briody Kenneth Klawitter

Team Fire Scout

Team Leader

Recorder

Drew


Sansom

Jacob Hagan

Hardware Researcher

Matthew Briody Interface Manager

Kenneth Klawitter

Mentor

Sambashiva Kethireddy

- Masters student in Computer Science at NAU
- Graduate Teaching Assistant

Client

Dr. Fatemeh Afghah

- Assistant Professor, School of Informatics, Computing and Cyber Systems (SICSS)
- Director, Wireless Networking and Information Processing (WiNIP) Laboratory

<u>Alireza Samsoshoara</u>

- Client Assistant
- Ph.D. Candidate At NAU
- Graduate Research & Teaching Assistant

Problem

<u>Fires</u>

- Unpredictable
 - USA 2019 **4,664,364 acres**
 - USA 2018 **8,767,492** acres
- California 2020
 - 4.2 million acres burnt
 - o 33 direct lives lost
 - Indirect deaths of 1,200+
 - \$10 Billion total economic loss

<u>Analysis</u>

- Not real-time
- Information gap
- Expensive
- Risk human lives

Solution

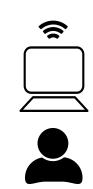
- Unmanned Aerial Vehicles (UAVs)
 - Remove humans from fire
 - Provide real-time data
 - Implement AI
- Onboard Hardware
 - Nvidia Jetson Nano
 - HD and thermal cameras
 - Image processing algorithms
 - SDR communication

The Process

1. Pilot Flies the Drone

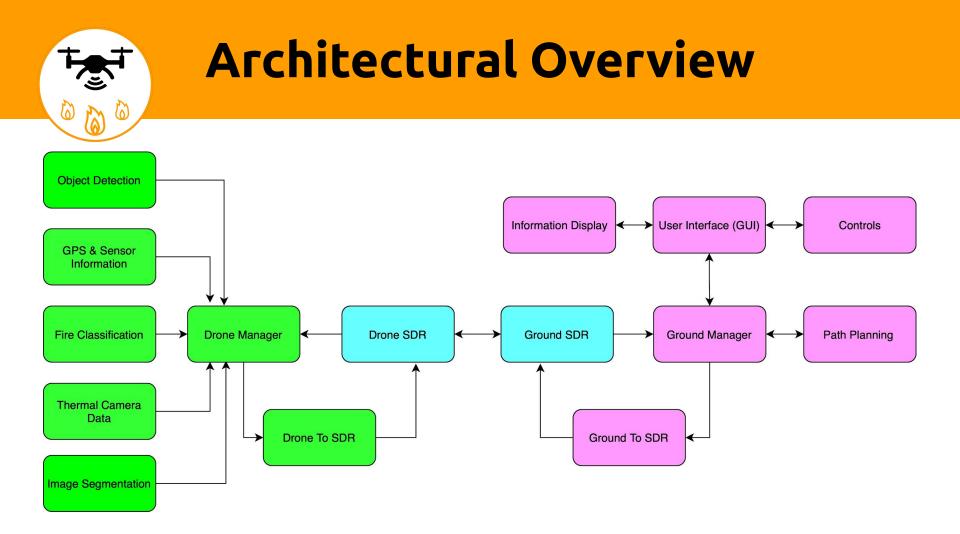
2. Drone Finds Fires

3. Drone Processes Fires


4. Drone Sends Data to User

Architectural Overview

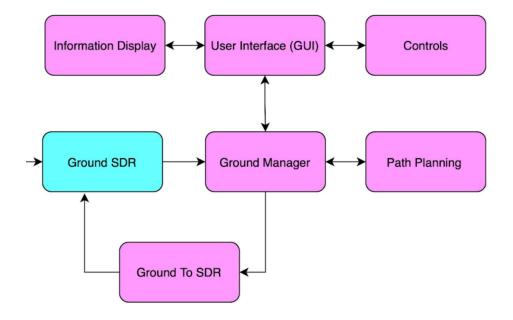
• Drone Station


- Run AI models
- Gather info from sensors
- Pass it to the SDR

• SDRs

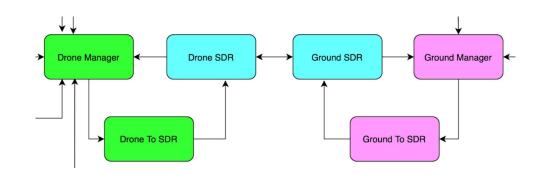
• Relay information

• Ground Station

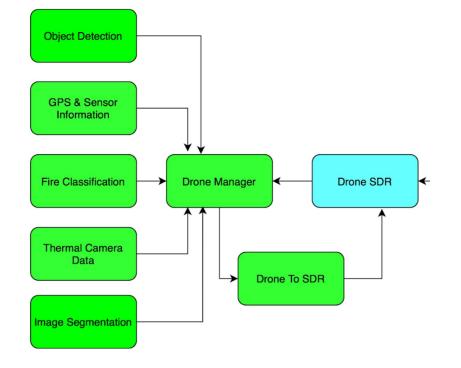

- Display info
- Present user with drone System
 Controls

Ground System

- 1. Contains only front end
- 2. Controls Drone System
- 3. Displays Drone's System findings


User Interface

	Title of Curren	t Operation				
HD or Thermal view					Temp + Humidity Temperature: 33 ° F Humidity: 22%	CO2 CO2: 350 ppm
				GPS Longitude: -111.6528 Latitude: 35.1878 Altitude: 7020 ft Direction: NW		
					Weather Data i	n Flagstaff, AZ
Request HD	Begin Fire	Fire Segmentation	Object Detection		Current Weather: Sunny Wind speed: 11 mph E	
Request Thermal	Classification					

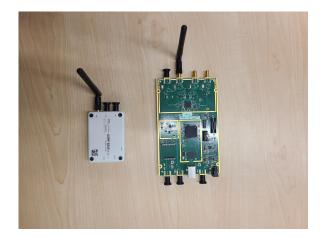

- 1. EE component
- 2. Send signals from Drone-to-Ground
- 3. Info is *written* by protocols
- 4. Info is *read* by managers

Drone System

- 1. NVIDIA Jetson Nano
- 2. Runs CNN Models
- 3. Collects sensor data

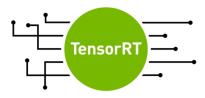
Note: Attached to drone, not built in

Training our Models


- Tensorflow/Keras
 - o numpy
- OpenCV
 - VideoStream
- Annotation programs
 - Labelimg
 - o MatLab

Challenges

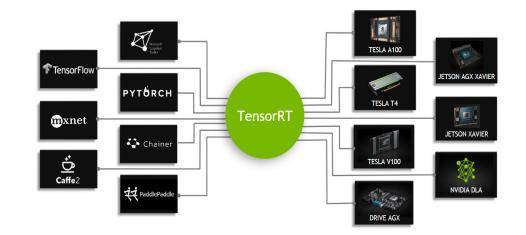
- Nvidia Jetson Nano
 - Converting models to Nvidia Jetson Nano
 - Different versions (Python, Tensorflow)
 - OOM errors
 - Lack of documentation
- SDR pipeline

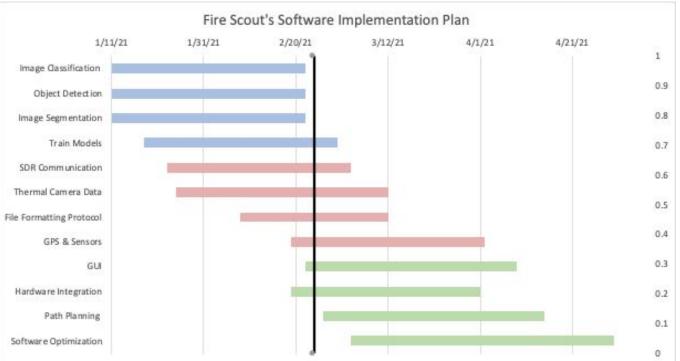


Drone SDR (left) and Ground Station SDR (right)

Solutions

- TensorRT
- Virtual Environments
- Working with EE to get the SDR to an acceptable state




Optimization

- Models \rightarrow tensorRT models
 - FPS
 - Boot time
 - No decrease in accuracy
- Neural Networks optimized for Nvidia Jetson Nano
- GUI
- Managers and SDR protocols

Schedule

Current Progress

- Image Classification running on Nvidia Jetson Nano
- Updated GUI
- Managers and Protocols
- Models and cameras run based on a text file that simulates the SDR process

Conclusion

- Fires kill and need to be fought in a unique ways
- Fire Scout saves lives and fights fires in a modern way
 - AI can detect and analyze fires
 - Emphasis on future developers
- Continue to build

• <u>https://docs.nvidia.com/deeplearning/tens</u> <u>orrt/developer-guide/index.html</u>