
Software Design Document
02/12/21

Team Name - Efficient Tester
Project Sponsor: Dr. Tara Furstenau

Team Mentor: Tomos Prys-Jones

Team Members
Tyler Conger

Miguel Villareal

Xiaobai Li

Bailey Mauss

Yihao Lu

Table of Contents

1. Introduction 3

2. Implementation Overview 5

3. Architectural Overview 7

3.1 Key responsibilities and features of each component 7
3.2 Communication mechanisms and control flows of the architecture 8
3.3 The influences from architectural styles 8

4. Module and Interface Description 10

4.1 The Login System/Interaction 10
4.2 The Front End WEB/APP 11
4.3 The Back-end Framework / Database 13
4.4 The Well Plate 16

5. Implementation Plan 18

6. Conclusion 20

2

1. Introduction

In the United States, Laboratories in the United States routinely conduct many tests for

infectious diseases, and at present there is the added pressure of testing for COVID-19. In

particular, during the novel Coronavirus epidemic, laboratories in the United States were testing

at least 600,000 samples a day. Today we are testing more samples at present than this time

last year, prior to the pandemic. While current testing effectively detects positive cases of

COVID-19, it can be wasteful with regards to reagents, laboratory consumables, and time.

With the ongoing COVID-19 outbreak and the reopening of public places, people are

returning to work and school. We are coming into contact with more people. This increased

contact could drastically increase the number of people who need testing. It has revealed a

huge challenge to our ability to detect pathogens. Traditional testing is effective at detecting

pathogens, but if the prevalence of infection is low in a population, many reagents and

consumables are wasted. As the majority of tests will be used on healthy individuals. In these

situations, it can be more effective to group samples into a single test tube and look to see

whether any of the individuals are infected. If the pooled test is negative, then the researcher

has saved n – 1 tests (where n is the number of individual tests that were grouped together). If

the pooled sample is positive, this group is subdivided into smaller pools and the process is

repeated. This method was developed by Robert Dorfman and is used by our sponsor Tara

Frustenau and her research group, who help laboratory-based testers to improve efficiency.

For rapid testing, our clients have developed their own protocols for group testing on a

96-well plate. The positive samples can be quickly detected in two or three steps. First, we

create six pools with 16 test samples in each pool. After passing the first test, we select the pool

with a positive population test, divide each pool into two pools on average, and conduct the

second group test. In each step the number of samples that are pooled together decreases, with

individual samples being tested in the final step. An example of this three-step process would

be: a) dividing the 96 well plate into six pools of 16 test samples, b) If a pool comes back

positive after the first test, the pool is divided into two pools of 8 samples, c) Finally, if the

second test comes back positive, the individual samples for each positive pool are tested

individually. While the example above uses pools of 16 samples per test tube, followed by 4 and

then 1, the optimal pool size may vary depending on the expected infection rate. After the

second population test, samples from each positive pool are tested one by one. Group testing

method is known and effective at detecting infected individuals, we believe that improvements

3

could be made to the clarity/timing of the process with a workflow assistant application. The app

would help technicians decide how to subdivide the 96-well plate, keep track of positive tests

and assist in recording results.

Our solution is to develop a mobile application that runs across android and IOS with the

main function of helping researchers design an optimal pool and track samples during testing. It

will run on a smartphone or tablet carried by a researcher or lab technician. In the application,

firstly researchers will get a graphical image of a 96 or 384 well plate. Then the application

would assist in determining the number of samples to the pool together at each stage(based on

the estimated positive infection rate). And we will use the database to store the test results and

update the protocol in real-time. We will also build a database to store technician/researcher lab

notes as well. Finally, we will develop a boot user interface (GUI) to visualize the protocol,

monitor protocol execution, and review the results.

The key functional requirements of the application are：

● Users can directly click on the well plate image to conduct experiments

● All of the user's progress can be completely and securely saved

● Each experiment can only be edited by the same user, and other users can only

be 'view-only' unless authenticated

The key performance requirements of the application are：

● The application response time must be within 0.2-2.5 seconds

● A user interface that allows users to interact smoothly with an application

● The application must be secure and safe to use

The key environmental requirements of the application are：

● browsers that support HTML5

● Internet connection

● Devices which can support system version above IOS11 and Android7

4

2. Implementation Overview
Our solution vision for our clients’ problem is to create a web and mobile application that

will be used by our clients and their colleagues in their lab to interact with a well plate image and

create experiments and protocols that will be used on a daily basis. The overall approach that

we are taking to help solve this problem is creating an application that will use a multiple

number of frameworks (As seen in Figure 1 below) such as an Ionic framework for the front end

GUI and will implement a Django backend/DjangoREST framework to communicate with our

pillow python interactive image and our database that will be connected to through MongoDB

which will store our information such as users, experiments, protocols, etc. We chose to use an

Ionic front end because most of our team has experience with HTML and CSS and we feel that

the learning curve for Ionic based on that experience would be shallow. Django and

DjangoREST were chosen because our client uses Python scripts that will give us the data

needed to run our interactive table. Django is a framework that uses Python so we felt that it

was an easy decision since integrating our clients’ scripts into the backend will be much easier

and will not have us translating those scripts into a different programming language. In the

creation of our interactive image we chose to go with the pillow python library for easy to use

image creation and since it will integrate well with our django backend. For our database, we

selected MongoDB because the types of data that we are storing does not necessarily follow an

object oriented design which is used in many other database frameworks. It is also more

suitable with our backend framework(Django) and is cheaper as well. There is plenty of

documentation of these frameworks working together and also documentation on how to link

these frameworks so we felt that the process of doing so would be something that can be done

in a fairly short amount of time. Our team chose to use these frameworks because we all have

experience with the languages used in all of them and felt it would give us more implementation

time on our development time frame. We have demonstrated our understanding of what each

framework could do in our technology demonstration at the end of our last academic semester

and as a team we are making progress day by day, gaining more knowledge of what these

frameworks are possible of and how we can use them to our advantage. As a team we feel that

now in the process of implementing these technologies, the right decisions were made going

forward with the technologies we chose and will continue to make more progress in completing

our solution to our clients problem.

5

Figure 1. This figures shows the interaction between all frameworks being used within our application and

how they will go about communicating with each other.

6

3. Architectural Overview

Figure 2. Showcases the flow of operations between each component. Each different interaction is labed, (a)

represents the user’s interaction with the web application, (b) represents the web application sending data to the web

server such as user login information, (c) represents the data being looked up and stored in the database, (d)

represents the return of data from the database, (e) represents the application retrieving the data from the web server

3.1 Key responsibilities and features of each component

Our product consists of three main components (Figure 2), the web application which the

user interacts with, the web server that supports the web browser and the database which

stores all datas. The web browser forms the front-end of our product and will mainly be written in

Django. The user stores the data through the web page to MongoDB (Figure2). The main body

of the website is the same with the homepage on application which are protocols, experiments,

groups, and interaction images.

The web application is the central controller of the software and acts as a middleman,

passing information from the browser to the database and back again. Because of the website

service, users can easily login, register and so on. And the website service is also convenient

for us to conduct all kinds of testing in the design stage. The application is another part of the

front end of the system. It is convenient to the user in the client operation and the application

connects to the database through the server.

The database is used to collect user information and store data. The database needs to

connect to both the Web server and the application to keep the information synchronized. The

Web server then passes the data to the Web browser. The database requires a higher level of

security to ensure that users' information is protected and secure. It also requires some

7

scalability because the database needs to be in constant use and data may be added or

changed over time. In addition, portability is required, because when users change, their servers

may need to be redeployed on other systems.

3.2 Communication mechanisms and control flows of the architecture

From Figure 2, we have 5 main communication mechanisms and flows.

3.2.1 User - Web application (a in Figure2)

Users interact with the web browser and application by uploading their data and notes.

3.2.2 Web app - Web server (b in Figure2)

This step sends the login or registration information entered by the user to the server so

that it can be processed accordingly and read work progress, such as test progress.

3.2.3 Server - Database (c in Figure2)

After the data and records are received, the server's job is to pass them to the database.

The database then takes care of storing according to the data models.

3.2.4 Database - Server (d in Figure2)

After the database receives the data, it stores the data respectively, and returns the data

to the server according to the user's needs, and the server returns the data to the Web

application.

3.2.5 Server - Web application (e in Figure2)

The Web server helps implement the login system and the Web application gets data

from the Web server.

3.3 The influences from architectural styles

Because our architectural style is layered, the whole project works individually. The

failure of one part will not affect the whole project. Especially during development, many parts of

a project can work together, such as the login system and front and back end. Their

development process does not interfere with each other. The dependency between the various

8

parts is low and joint problems are not easy to occur. When something goes wrong in one part

we just deal with the immediate problem, not the other parts. Because of this layered design, we

can focus more on standardizing the program. The most important point is that when we want to

call some part of the logic, it does not take much time to pass an architecture.

9

4. Module and Interface Description

4.1 The Login System/Interaction

In the login system, we have a register page, login page, and forgot password page. If you

are entering our application for the first time, you need to go to the registration page to create an

account, and then use the created account to log in on the login interface, and then enter our

application. Below are UML diagrams(Figure 3) depicting the different components of Login System

and the classes they are composed of.

Figure 3. Showcases the interaction between the login system and its various functionality that will allow a

user to login, reset a password, and register an account.

UML descriptions:

● The following explains the fields that login system will have:

Email: An email is used for account login

Password: A password is necessary for logging into the application and password

needs to be six characters or more

First Name and Last Name: They are used to complete personal profile during

registration

10

● The following explains the function that different pages will have:

In the registration page, users need to fill in their first name, last name, email, and

create a password of no less than 6 characters to complete the account registration. Then

the user can return to the homepage to log in.

In the login page, the user needs to enter the registered account password to log in.

Forgot Password option listed on login page.

In the forgot password interface, the user needs to enter the email address to get the

link, and the link takes you to the page to change the password information.

If you enter the landing page for the first time, you will have a Register Option/Create

new user option, and a Login Option/Use already created user option.

4.2 The Front End WEB/APP

This module will consist of the use of our Ionic framework which will be used for our

frontend GUI. This framework will help us create an easy to use interface for our clients lab

colleagues in which they will be able to record their experiments and protocols as well as

interact with the well plate image itself and take notes on certain portions of their work. This will

fit well with other components of our application (as seen in figure 4 below) because it will

communicate with our Django backend which will be receiving requests from the frontend based

on user inputs. These inputs could range anywhere from new user and login credentials which

were discussed above as well as receiving input on new groups, experiments, protocols, notes,

etc. The ease of use will be important because these lab users already have to record a lot of

data as it is and having a user interface with a steep learning curve is something that we did not

want them to have to endure. The image below shows how our frontend will be laid out and

what components are necessary to have. These sub-pages were necessary because without

them the frontend would be massively cluttered and would not be easy to navigate.

11

Figure 4. This figure demonstrates the layout that our frontend GUI will have and the process that the users would go

through in handling the application.

The services that this component will provide are as follows. After the user has made an

account and logged in, as discussed in the previous section, the application will take you to the

home landing page (As seen in Figure 4 above). This landing page will consist of a description

of the lab and what the application entails as well as info on contacting leads in the lab and the

lab itself. This page will also have the ability of taking you to a menu portion of the application.

The menu portion will consist of 4 tabs: protocols, experiments, groups, and user/application

settings. The protocols sub-component will have a section where you can create a new protocol

for yourself or a group in which you will have to input the plate type, number of samples,

suspected positivity rate, etc , as well as look at protocols that you have already created.

Another sub-component will be the experiments page, where you will be able to create a new

experiment where you will have to input what protocols are being used and you will be taken to

your interactive image, which will be based off of an existing protocol. Viewing an already

completed experiment, or an open in-progress experiment that the user may have already been

working on with its information saved. The next sub-component will be the groups page, where

you will be able to either create a new group, in which you can add other users, or you can

select a group that you have created or been added to. This is an important feature as many of

12

the lab colleagues work together on certain protocols and experiments, so being able to share

the work that has been done is a crucial feature. The next sub-component of the front end will

be the interactive page which can be accessed after you have created or are in process of

creating an experiment from the experiments page, in which users will be able to interact with a

well-plate image similar to that of one used within the lab to show and record data taken in the

lab. Lastly, the final sub-component that the frontend GUI will consist of is our user and

application settings page. This is where the user will be able to view or edit their account

information such as name, email, and password, as well as be able to change some application

settings on their side of the application. All of the sub-components listed and described above

are all necessary to ensure that our client and users will have all that they need in their work

environment and will ensure that the application is ready for deployment when that time comes.

These sub-components may be different in functionality, but when it comes to the frontend, they

all play a vital role in giving the user the tools they will need when in the lab environment and

will give them an easier way of recording and sharing information taken while doing their job.

4.3 The Back-end Framework / Database

4.3.1 Back-end Framework

The back-end framework is responsible for defining data models for the database. It is

expected to be the definitive source of information on what kinds of data the database is storing,

what information those data models contain, and how they interact with each other. The data

models that the back-end stores will be as follows (and is demonstrated in figure 5 below, along

with the relationship between data models):

● Users

○ Name (First, Last)

○ ID

○ Email

○ Password

○ Organization

● Lab Group

○ Name

○ ID

○ List of members

13

○ Authentication token-- to invite users to join group

○ Admin

○ Protocols

● Protocols

○ Plate type

○ Number of samples

■ Number of plates

○ Expected positive rate

○ Protocol name

○ Creator UserID

○ Date created

○ Date last used

○ Number and ID of experiments used in

○ Active/inactive

○ Lab group

● Experiments

○ Protocol used

○ Associated images-- well plate image including pools, positive and

negative groups

○ Active/completed

○ Notes page

○ Step number within overall experiment

○ Plaintext representation of data, including all of the above data and

individual case results

14

Figure 5. The data models and their relationships to each other.

By defining these data models, the back-end makes clear to the database and REST

API what is being transmitted both from the user and from the Python scripts used to perform

calculations.

4.3.2 Database

The database, which in this project is a MongoDB cluster, is responsible for storage and

retrieval of the data generated by both the user’s interaction with the front-end and the Python

script. Through the REST API, it can respond to requests for data from the front-end and serve

that data, or receive data from the other components of the program and store them for later

use. This component is very important to the useability and value of the application, as the

ability to store and retrieve data for later use is necessary to do any meaningful lab work.

15

4.3.3 REST API

The REST, or Representational State Transfer, API is responsible for managing and

facilitating communication between the back-end, the database, and the front-end. It both

accepts and sends information to and from each of these components so that they can

communicate. This component is crucial to this application as it enables communication

between all other parts of the application.

4.4 The Well Plate

The associated well plate image editor will be the module that interacts with the
well-plate image, which will be implemented through python classes. Doing various edits in real
time to update and create the well-plate as the user interacts with it. As can be seen in the
below figure (Figure 6) this module is passed information regarding the newly created
experiment from the backend Django code. As can be seen in Figure 1 as well, these python
scripts will have main interaction with Django code that will support the page holding the
well-plate image. This Django page will be linked to the frontend user interface and rest of the
application. The data this module needs to properly operate are based on the information
provided by the user when creating a protocol and experiment. Data included from the protocol
is the type of plate, the number of samples, the name of the protocol, number of plates total,
and suspected positivity rate. This information will inform the python scripts of the form of the
well plate image that is to be created and displayed to the user. This is done through the
createPlate method which will have interaction with the samplePooling.csv file. This is a comma
separated value sheet that contains all possible group sizes based on number of samples and
the suspected positivity rate. This file will require it to be read each time a new well plate is
generated to properly generate each individual well plate image based on the groupings
associated with that number of samples and positivity rate. This file was created through
modification of the original script that was used to create pooled groups by our project sponsor.
The modifications that were made increased the range and totality of the sheet to include more
scenarios. Once this data is acquired the groupings will be drawn on the image for showcase to
the application user. Associated well plate information will also be generated along with the
original plate. This includes using methods such as generateHeader which will be used to
create a header based on the protocol name, also the generateTestTubes will create the first
grouping of test tubes along the bottom of the well plate image.

After the complete image is formatted and drawn, including both header, test tubes, and
well plate it will be passed back to the Django back-end code for display on the page. As the
user interacts with the well-plate by touching the individual wells, as this occurs the Django
back-end code will use the updateImage function to continually update the image based on the
user’s interaction. Each updated image will be passed back to the Django back-end code and
then displayed to the user on this page.

16

Figure 6. Showcases the interaction between the wellPlateImage scripts and the Django back-end code, as well as
interaction with the modified spreadsheet of potential cases

17

5. Implementation Plan
As a team, we have developed an implementation plan, and we will implement the plan for

the rest of the semester. Our plan is divided into four parts: Login System/Interaction (Xiaobai &

Yihao), Front End WEB/App (Miguel), Back-end Framework/Database (Bailey) and Well Plate(Tyler).

Throughout the project development phase, we have maintained close contact with the clients so

that we can continuously deepen our understanding of project requirements and ensure the quality

of our projects. For the design and development of these different parts, we have carried out a

division of labor within the group.

Our plan is to complete our first generation of products before the first week of March, and

then start our product testing plan. Therefore, the person in charge of each part has estimated the

completion of their own module content and the time allocation. When all modules are completed

and merged, we will have a full prototype tech demo at the end of this stage to show our products.

18

Figure 8. A visual representation of our current progress and our continued plan and timeline for

development throughout the semester.

19

6. Conclusion
The COVID-19 virus has highlighted the need for more efficient grouped testing

techniques. Both Dr. Fofanov and Dr. Furstenau have been able to identify that the multiple

steps in the process often leads time-pressured lab users to make errors. Our proposed solution

of a mobile, tablet, and web application to help walk the users through the protocol with the aim

of reducing these human errors. Reducing burden on lab workers by making grouped testing

more clearly identifiable and easily visualized is a key portion of our project that will allow lab

workers to more easily complete their required tasks. This is the reason why Dr. Furstenau and

Dr. Fofanov have tasked us with the creation of an application to solve these problems and

bring a solution to the lab workspace.

As we have outlined, our application will have a few major areas of focus. The first being

the front end, which will be developed through Ionic, this is the main web application that users

will be able to interact with and it is what users will see when using the application. The first

page a user will be directed to is the home landing page, which holds information about logging

in or finding a lost password and setting up an account. Once a user makes it past this page

they will be directed to the intro page and will be able to access the settings tab that allows

direction to the rest of the application including protocols, experiments, group and user settings,

as can all be seen in Figure 4. The main ionic User Interface (UI) front-end will have

interactions with the Rest application programming interface (API) that will be used to

communicate with the back-end of our application. This will be the main linkage to get requests

and calls, operations of code, from the front end and interact with them correctly to process user

actions appropriately. These two pieces of software will allow for us to easily display and

transmit data between different pieces of the application. Meaning we can quickly gather data

from the user about their well plate and the Django backend code and the database through

MongoDB. This interaction is key in accessing the data stored in the database such as the user

information, group information, protocol and experiments. The Django backend will allow us to

more easily interact with the python code, which generates and translates user interactions into

information that can be used to update and change the main well plate image that is displayed

to the user. The MongoDB will consist of the main data storage and handling, everything from

the different protocols and experiments that are created by the users to individual user and lab

group information, this includes the results of each experiment with images and wells containing

positive cases.

20

Overall, this document shows the main interactions between different pieces of software,

and what type of interactions they will be. It also outlines the classes and necessary methods

that will be used. This is useful as it will give us a good foundation and guide towards

programing our final version of the application, as well as making sure all the pieces link

together. This information came from both our weekly meetings with our project sponsor and

within our team, as well as the information from our requirements document which showcased

many of the necessary components for completion.

As we move forward, we may have minor speed bumps, but we believe that our way of

trying to complete tasks in parallel, as can be seen in Figure 8, will help us to progress and

finish this project in a timely manner. We plan to continue progression with development up to

and begin testing on the second of March. Our current to date progress includes addition of the

four different models; protocol, user, group and experiment, we will be using for data storage in

our database. We have also linked our front end Ionic with the rest API and the database,

mongoDB, as well as the Django framework. We have also begun the process of creating all the

python scripts that will be used for generating and updating the well plate image.

21

