

Team Ceres

Technological Feasibility Report
October 6, 2020

Sponsored By: David Trilling, Michael Gowanlock

Team Mentor: Fabio Santos
Team Members: Javier Quintana, Joseph Sirna, Miles Barrios, Zach Messenger

1.Introduction 3

1.1 The Problem 3

1.2 Current Solution 3

1.3 Team Ceres’ Solution 4

2.Technological Challenges 5

2.1 Importing data into a web-accessible database 5

2.2 Choosing a framework to develop a user-friendly web interface 5

2.3 Data Visualization 5

2.4 Selecting a service to host the web application 6

2.5 Authentication for role-based permissions 6

3.Technological Analysis 6

3.1 Importing data into a web-accessible database 7

3.2 Choosing a framework to develop a user-friendly web interface 10

3.3 Data visualization 14

3.4 Selecting a service to host the web application 18

3.5 Authentication for role-based permissions 21

4.Technology Integration 24

5.Conclusion 26

6.References 27

2

1.Introduction
In this document we will be introducing our project on a more technical basis, and then
analyzing the feasibility of the technological challenges that we have to overcome. This
will be broken down into multiple subsections for the various components of the project
in order to address each challenge individually; additionally, we will conclude the
technical analysis with an overview of how each of the solutions are able to come
together, but first, let’s get to the project overview.

1.1 The Problem
Astronomers all around the world participate in all-sky surveys every night in hopes to
gain knowledge of both small and large bodies in space. These surveys produce very
large quantities of data that researchers are then able to filter and sort for their own
analysis. The information they gain can be applied as follows:

● Drawing conclusions about the formation of the galaxy and our solar system
● Enlightening us to the nature of our universe
● Aid us in preparing for the eventuality of another catastrophic meteor impacting

the planet
○ This event being the most motivating for this field of study

Scientists have found evidence of large asteroid impacts over the course of Earth’s
existence, and eventually another one will impact with our planet. This event could be
catastrophic for human life and at the very least cost billions of dollars in damage to the
infrastructure humans have built here. That is why it is important to be able to study
these bodies in space with ease, but with the amount of data being collected every night
and the lack of a good medium for this data analysis, it is almost impossible for
astronomers and researchers alike to study these all-sky surveys.

1.2 Current Solution
Currently, Zwicky Transient Facility (ZTF), located in SanDiego County, California, is
operating and producing nearly 2 terabytes of data per night! Once the construction of
the Rubin Observatory in Chili is complete, this number is expected to go up to 20
terabytes of data per night, and there are almost no accessible interfaces for accessing
and analyzing this. Our clients here at NAU are ingesting the portion of the data from
ZTF that is broadcasting information related to asteroids; however, they do not have an
existing interface for analyzing the data.

3

Currently, our clients work with another colleague who runs programs on the raw data in
order to provide them with the desired smaller subsets and diagrams they need to
analyze this data. This is not an ideal solution because a number of things inhibit their
research. Any analysis of data that they want to perform must first go through their
colleague in order to extract the necessary data, then images have to be created from
the resulting data set. This is already a slow process, but their entire method of analysis
also relies on another worker. If their colleague is ever sick or unable to help with the
data extraction and visualization, then they are no longer able to analyze the data. This
is the problem that Team Ceres aims to solve.

1.3 Team Ceres’ Solution
Our goal is to create an easily accessible web interface that allows users to view and
process large amounts of data both visually and in tables with ease. The database of
raw astronomical data will be linked to the web application, allowing researchers to be
able to view data and draw conclusions almost seamlessly. We want to eliminate the
need for tedious manual labor or constant back and forth discussions in order to obtain
the correct data.

We plan to work with our clients over the next year to refine the requirements and
develop this application to further enhance their research. The key components of our
web application will be:

● A responsive front end user interface with tools for applying data analysis
● A functional back-end api to serve search requests on the database
● Handling large size data sets efficiently and effectively without loss of

responsiveness in the webpage

This is a very general description of the main components of our project, but throughout
this document we will provide more details on the feasibility of the various portions.
Although we are confident that we can develop the previously described technology,
there still exist some technological challenges that we need to overcome along the way
to our goal.

4

2.Technological Challenges
This section is going to discuss the main challenges that have been discovered for this
project. The challenge descriptions will provide a brief overview of what each challenge
is and how it pertains to the overall problem we are solving for the database holding the
ZTF asteroid information. These challenges will be analyzed in the following section to
decide what the best possible solution is for each problem.

Our project currently has the following challenges:

● Importing data into a web-accessible database

● Choosing a framework to develop a user-friendly web interface
● Data visualization

● Selecting a service to host the web application

● Authentication for role-based permissions.

2.1 Importing data into a web-accessible database
Currently, all raw observation data is stored in a single sqlite 3 database file. This
approach does not scale well for web applications, especially those where several
concurrent queries may be run depending on website traffic. Because of the amount of
data currently contained within these database files, it is impractical to expect anything
other than an industry standard database engine to manage this data efficiently.

2.2 Choosing a framework to develop a user-friendly web interface
This project is built around the idea of building a user-friendly interface for the SNAPS
database so that users are able to retrieve information regarding asteroids quickly and
easily. In order to build a responsive web application, a framework would provide an
efficient and effective solution to developing the application. When choosing a
framework to develop a web interface, the developer must consider a few
characteristics of the frameworks including: performance, scalability, maintainability,
and learning curve.

2.3 Data Visualization
As it currently stands, the SNAPS database has no interface to export data graphically
and all visuals have to be generated by the person who manages the database by
running queries on specified data and then having them run through a program they
made in Python. This is problematic for a number of reasons but the main ones being
that without a person who manages the database (which is currently only one person at

5

this time), no data can be visualized or exported into graphs without the script to run it
and without the person running the database no data can be exported at all.

The obstacle that makes data visualization a challenge for this project is finding a
suitable library in JavaScript that will allow us to create scalable, easy to read graphs,
that will best summarize the data being exported. The reason this is an obstacle is
because while the SNAPS database is a smaller scale version of the Zwicky Transient
Facility (a data stream that participates in collecting all-sky survey data), it still collects
thousands of data points that users may want graphed or summarized in a single table
or graph. Because of this, Team Ceres needs to ensure that the graphic library that we
choose is capable of handling large amounts of data without suffering on performance
or quality.

2.4 Selecting a service to host the web application
Due to the requirement of needing a user-friendly web application, we need to have a
place to host that web application. This web application will need a web hosting service
that is reliable, secure, efficient, and scalable. The web hosting service should be one
that does not require a large amount of cost but still provides the services needed to run
the web application.

2.5 Authentication for role-based permissions
One of the requirements for our web application is that we have a system for
authentication of users, and delegating role based permissions. This system will serve
the purpose for some users to have the ability to perform critical
alterations/modifications on the database, while other users are only able to access,
view, and query the database normally. Additionally, we want users to be able to have
some of their data stored that would be useful for them, such as specific data sets,
visualizations, or query logs.

3.Technological Analysis
An important step in determining which solutions to use for smaller problems is
analyzing them critically against alternatives. In this section, different approaches for
various solutions we have identified as usable will be analyzed and compared. Below,
we address problems including database implementation details, choosing a framework
for the frontend of the application, determining an efficient way to visualize the data, and
authenticating users while avoiding security vulnerabilities.

6

3.1 Importing data into a web-accessible database

3.1.1 Current Database Implementation
The existing infrastructure with regards to observational data is a variety of sqlite 3 .db
files, each containing one table. One .db file serves as an intermediary step between
raw observational data from ZTF and calculated information about them. These
calculated metrics are manually generated using a python script, and output to a similar
table schema, in a separate database file. Regardless of the specific database driver
used (sqlite 3 in this case), singular database files stored on disk are generally regarded
as insufficient to service a web application because of the inevitability of concurrent
read/write operations, limited disk throughput, and lack of sufficient protections against
attacks on the database.

Since a non-hosted database implementation was concluded to be insufficient for a
public-facing web application, the next reasonable conclusion is that this web
application must be serviced using a hosted database. A hosted database will manage
concurrent read/write operations and enforce basic authentication, to ensure that
different database roles are restricted only to the scope they absolutely require (e.g. a
read-only query will not have permission to write to the database, offering some
protection against SQL injection).

3.1.2 Choosing a Database Engine

Whichever database engine is decided upon, it must satisfy the following requirements:

1. Compatibility with hosting environments. Since this will be a public-facing
web application, a managed hosting environment is inevitable. The database
engine should have a good track record of compatibility with this environment.

2. Support for large data quantities. The potential end-of-life database size for

this project could approach 1TB, according to the person responsible for
maintaining the current database implementation.

3. Development Experience. This is the backbone of the project. Learning a

DBMS entirely foreign to everyone on the development team uses precious
development time that could be spent optimizing for responsiveness.

4. Licensing Costs. Because of the limited resources of the team, the price of a

database management system license is an extremely important factor. For
example, Microsoft SQL Server might seem like a good choice on paper, but the
prohibitive licensing costs make it infeasible for this project[12].

7

3.1.3 Alternatives

1. Microsoft SQL Server
If there’s one database engine that screams “Industry Standard,” it’s
Microsoft SQL Server. First introduced in 1989 and used in 98 of the top
100 Fortune companies [2], SQL Server has proven to be able to handle
large amounts of data with relative ease.

2. MySQL
Developed by Oracle since 2010, MySQL is the most popular open-source
database engine. Including all standard SQL features, MySQL is a good
solution for most database applications.

3. PostgreSQL
PostgreSQL was first prototyped in 1988, and has since grown to be
another popular open-source database engine.

3.1.4 Analysis

1. Microsoft SQL Server
Though reliable and efficient, MS SQL Server is a commercial application,
with commercial-sized license costs.

Pros:

● High compatibility with most popular managed hosting
environments (AWS, Azure)

● Scalability
● Performance monitoring tools[13]

● Team development experience with T-SQL
Cons:

● High licensensing costs (MS SQL Server 2016 Standard running on
Windows Server 2016 costs potentially $0.864/hr on AWS[8])

● A single-core MS SQL 2019 Standard license is $899[12].

8

2. MySQL
MySQL has no licensing costs, and is a popular alternative to MS SQL
Server.

Pros:

● Compatibility with hosting environments[15]

● Performance
● No licensing costs

Cons:
● Syntax slightly different from T-SQL
● Database-blocking backup operations[16]

3. PostgreSQL

PostgreSQL is a proven DBMS, but nobody on the development team has
experience using it.

Pros:

● Performance
● No licensing costs
● More data management and abstraction tools than MySQL[14]

Cons:
● SQL syntax slightly different from T-SQL
● Contains useful features, but unnecessary for this project

3.1.5 Chosen Approach

Each of the alternatives listed above are given a (semi-)arbitrary score, 1-5, based on
the analysis. The cost of licensure will also be rated on a 1-5, with a 5 being free and a
1 being extremely expensive (relative to the other alternatives).

 Compatibility Performance Development
Experience

Cost of
Licensure

Total

MS SQL Server 5 5 5 1 16

MySQL 5 4 3 5 17

PostgreSQL 5 3 0 5 13

9

Microsoft SQL Server is the preferred DBMS for this project, but prohibitive license
costs make it infeasible. MySQL and Postgres have no licensing costs, and so do not
have this problem. MySQL edges out over Postgres mostly because of the past
development experience of the team with MySQL. Postgres has more data
management features, but they are unnecessary on this project.

3.1.6 Proving Feasibility

To prove the project-specific feasibility of MySQL, it must be first tested to ensure that
the proposed database import job (see: technology integration section) can easily insert
rows from a sqlite3 .db file into a MySQL server without a significant performance hit. In
the event of a performance hit, the job can be scheduled to run at odd hours of the
night, during historically low-traffic times.

Integration with the REST API is also essential. .NET Core provides a multitude of
database connection drivers, and MySQL is supported among them. A
benchmark-driven performance test would be a useful tool to pinpoint bottlenecks in this
implementation. Here, MySQL can also be tested for performance with a large amount
of data.

3.2 Choosing a framework to develop a user-friendly web interface

3.2.1 Choosing a framework
The information currently being brought in from the Zwicky Transient Facility is currently
stored on a database and simply queried when that data is needed. However, this
current route is inefficient and requires a simpler way to allow any scientist to access
this database and search for the information they need without going through a
middleman. Providing a simple, responsive user interface on top of the database will
decrease the time it takes to get asteroid data and will allow for a better user
experience.

3.2.2 Desired Characteristics
Choosing a framework must take multiple characteristics into consideration. These
characteristics can influence the performance, reliability, and responsiveness of an application.
These characteristics include:

10

● Performance. This web application deals with the visualization of big data
relating to asteroids. Due to the large amount of data, it is key that the web
application is able to perform at high speeds, even for massive amounts of data.

● Scalability. Due to the potential of massive growth in the amount of data stored
in the database, the web application needs to be able to handle even more
amounts of data/visualizations in order to assist researchers.

● Maintainability. This project is assumed to grow in size and thus it is mostly safe
to assume that this web application will need maintenance in the future in order
to keep it functioning and responsive. The framework needs to have a high level
of maintainability to plan for the future.

● Learning Curve. As this web application is to be finished by May of 2021, it is
important to choose a framework that has a moderate learning curve. This is to
reduce the need to spend a large amount of our time understanding how to use
the framework rather than producing code.

3.2.3 Alternatives
1. React

An open source Javascript library that was originally started back in 2013.
This library was created by Facebook and has quickly become the leader
in front-end libraries/frameworks. This library focuses on building
single-page applications[21]

2. Angular

An open source framework designed to simplify the development of
single-page applications. Angular was developed by Google back in 2016
and has become one of the main frameworks used for web applications.
Angular uses typescript, a language built around Javascript that adds
types to increase the development experience[22]

11

3. Vue.js
An open source Javascript framework that was launched in 2013. Vue.js
was developed by Evan You after working for Google using Angular.
Vue.js excels at developing highly adaptable user interfaces and
single-page applications[23]

3.2.4 Analysis
Below is an explanation of the pros and cons regarding the frameworks for front-end
development introduced about:

1. React

● Pros
○ Easy to learn due to design[18]
○ Uses a Virtual DOM (Document Object Model) which allows high

performance speeds[17][18]
○ Has large support for server-side rendering which makes it great for

applications that contain large amounts of content[17]
○ Implements Functional Programming practices creating easy to test,

reusable code[18]

● Cons
○ Moved away from traditional class-based components which creates a

barrier for programmers used to Object Oriented Programming[17]
○ Due to the loose structure of React, it leaves developers having to make

decisions regarding development[17]
2. Angular

● Pros
○ Compiles HTML and TypeScript into JavaScript during development. This

means all the code is compiled in the backend prior to loading the web
application[19]

○ Provides good structure and architecture that allows for easy scaling[17]
○ Highly detailed documentation that allows for a developer to answer all of

their own questions[17]

● Cons
○ Has more structures including : injectables, components, ppes, modules,

etc.). This increase in the number of structures can cause developers to
have to spend more time learning the framework[17]

12

3. Vue.js

● Pros
○ Detailed documentation that allows for a fast learning curve for

developers[17][20]
○ Vue.js is not limited to only single-page applications. Vue.js allows for the

development of more difficult web interfaces[17]
○ Due to the reusable templates, Vue.js can be scaled quickly[17][20]

● Cons
○ Due to its smaller size in the JS framework market, there is less

knowledge available to developers to aid in software development[17]
○ Vue.js can struggle when being implemented into larger projects and has

had limited testing when attempting to do so[17][20]

3.2.5 Comparison and Chosen Approach
Below is a chart detailing the analysis based on the desired characteristics mentioned
above, these criteria will be ranked on a scale from low - high:

Framework Performance Scalability Maintainability Ease of use

React high high high medium

Angular medium high high low

Vue.js high low medium high

As seen in the chart above, the options we provided are all quite competitive in what
they have to offer. The chosen approach for our team is React, this is because React’s
ratings outperformed Angular in performance while having a higher ease of use than
Angular. This will allow the team to learn React quickly and implement it in an efficient
and effective way.

13

3.2.6 Feasibility
Testing the feasibility of React will be quite different from testing the feasibility of other
challenges. The testing will be the thoughts and opinions after doing the following tests:

1. Reading through documentation to ensure that it is understandable and does not
require a large amount of prior knowledge on single-page applications. This in
turn will prove that React has a medium learning curve which does not prove to
be an issue.

2. Building out a small, barebones web application to showcase the power of
reusable components which in turn shows off scalability. After building out the
barebones web application, this provides us with a small peak at performance by
showing off the responsiveness of the web components.

Along with testing the framework on its own, the team will need to ensure that the
framework communicates well with our backend language as these will make up a large
amount of the web application. Proving feasibility will rely heavily on the thoughts of the
developers as the front-end framework needs to communicate well with other
technologies being used.

3.3 Data visualization

3.3.1 Overview of Data Visualization
In order to make the data from the SNAPS database easier to examine, there will be
components of the application that make it possible to view and export selected data
into graphs and tables. By adding this feature to the interface, it will make the
application more useful for users who are interested in spotting trends in data and will
save users time in creating graphs that they would have otherwise made by manually
entering data points into another program. Because the bulk of the data visualization is
being done on the web interface.

14

3.3.2 Desired Characteristics
The ideal data visualization component has the following desired characteristics that will
impact the decision of the graphic library we choose to use:

● Scalable Data Representation. It is anticipated that data sets of various sizes
will be evaluated using the data visualization tool, so it would prove useful to
show graphs that fit the data better and do not skew the appearance visually. In
order to combat this problem, the data visualisation tool will create any graphs it
makes based on the amount of values being graphed and a five-number
summary of the data being evaluated. The reason the graphs will be created this
way is because the five-number summary accounts for the minimum and
maximum values of the data thus making it easier to determine the scale of the
graph axes and how much they should increment.

● Data Summarization. For large sets of data it would be highly beneficial to have
a summary generated of outstanding data points and outliers. The reason this
would be useful to have is because if a graph is generated with hundreds or
thousands of data points it may be hard to pinpoint any specific data that stands
out from the rest. Ideally, either a five-number or seven-number summary would
be generated from the data to help comprehend the spread of the values in a
plot.

● Ability to Export Graphs in Various File Formats. When it comes to exporting
data, Team Ceres wants to ensure that the library we select is capable (or
compatible with other software) of formatting the graphs into file formats that will
benefit users for research, documentation, or presentation. Because of this, it is
important that the visualized data can be exported into the following formats:
PDF, PNG, and CSV. This will allow any specific data that was requested to be
reusable for our users and flexible to show off.

15

3.3.3 Alternatives

1. Google Charts
Google’s open source web API that was originally released in 2007. This
library was created to allow users to embed graphs and charts into their
web pages while maintaining a low learning curve. Google Charts latest
release was in July of 2020 [5].

2. Dygraphs
Dygraphs is an open source JavaScript library that focuses on graphing
and charting data in an interactive way. It has focused on handling huge
data sets, highly customizable graphs, and scalable interactive data [6]. It
was released in 2013 and had its most recent update in December of
2017.

3. Chartist.js
Chartist is an open source JavaScript library that focuses on plotting data
in SVG format and has built in animations to make graphs more visually
appealing. It is developed by a community of developers via GitHub and
seems to have been released in 2014. The latest version of Chartist was
released in 2019 [7].

3.3.4 Analysis
Below is a breakdown of the libraries that the team is looking into along with the pros
and cons of each library.

1. Google Charts.

● Pros:
○ Cross browser compatibility (even on mobile devices)
○ Automatic data refreshing/real time uploads on graphs [5]

○ Very large selection of charts to select from
○ Ability to hover over graphs to view point values
○ Support exporting graphs into PNG and CSV format [5]

● Cons:
○ Does not mention ability to zoom or pan over graphs after they have been

created
○ No mention of large data set capability

16

2. Dygraphs.
● Pros:

○ Made to hand huge data sets (claims millions of data points without
getting bogged down) [6]

○ Interactive graphs with zoom, pan, and mouseover functionality
○ Compatible with all browsers (including mobile devices) [6]

○ Scalable graphs and range selector to view specific ranges of data

● Cons:
○ When zooming in on a graph it seems that you have to reload the graph to

get the full picture again
○ No explicit function seems to outline data summarization
○ Does not seem to have built in functionality for exporting graphs and

tables

3. Chartist.js.

● Pros:
○ Premade templates that can be used for data visualization dashboard
○ Large variety of graph types that can be made
○ Graphs can be animated [7]

● Cons:
○ Graphs do not seem to be able to be zoomed in, panned around, or

moused over
○ Unable to export to any file format with graphs that are created
○ No mentioned of large data capabilities

3.3.5 Comparison and Chosen Approach

Graphing Library Scalability Data Summarization Data Exporting

Google Charts Not Mentioned Possible PNG and CSV

Dygraphs Possible Not Mentioned Not Mentioned

Chartist.js Not mentioned Not Mentioned Not Mentioned

17

3.3.6 Feasibility
After researching the libraries mentioned above it is very apparent that the Chartist.js
library brings very little to the table that will be needed for this project and for this reason
it will not be considered for our data visualization component.

While Google Charts has the most benefits marked in the table, Dygraphs is still a
contender worth looking into. Both libraries will have to be tested in order to be certain
of which is best but the reason Dygraphs is still worth looking into is because its specific
mention of large data capabilities and its interactive graph features that make outlining
data possible. Google charts however has the most uses but it lacks interactive
capabilities and fails to mention whether or not large quantities of data will function well.

3.4 Selecting a service to host the web application

3.5.1 Overview of web hosting services
Choosing a web hosting service is important when developing a web application
because it provides the actual web application to live. This web host needs to be able to
provide a reliable service that is accessible to the users and ideally would provide some
extra resources to the web application itself. Choosing a secure, easy to integrate web
host will allow for our application to live safely online, available for use to many.

3.5.2 Desired Characteristics
Choosing a web hosting service requires for a few different characteristics to be
examined prior to making a decision. The following are the criteria that will be evaluated
for each:

● Cost. Cost plays a big role in deciding on a web hosting service because
reducing the cost of hosting the website would allow for money to potentially go
towards other features and/or services that may be used in the future.

● Availability. In order to ensure that our application is always usable for the
researchers and other users, the web hosting service should rate highly when
looking at the how available it keeps our web application.

● Space. Since this web application deals with a large amount of data, it is
important to ensure that the web hosting service can handle a decent amount of
data being transferred.

● Reliability. Due to the location of the various researchers and scientists that
might be using the web application, our team needs to ensure that the web
hosting service we choose has a high uptime (low number of outages) for the
servers.

18

3.5.3 Alternatives
1. Amazon Web Services (AWS)

AWS is a cloud based service that has quickly risen to popularity. AWS
allows for a user to stand up various types of applications on servers that
are managed by Amazon. AWS was originally launched in 2006. When it
comes to costs, AWS only makes you pay for what you use.

2. Microsoft Azure

Created by Microsoft, Azure is a cloud computing platform that allows
users to host web applications, REST APIs, and mobile backends. Azure,
similar to AWS, makes you only pay for what you use. Azure was released
back in 2010.

3. Monsoon (NAU)

Monsoon is a high performance computing cluster that is used by the NAU
research community. Each user is provided with a large amount of storage
which would be very useful for our web application. This computing cluster
was released to researchers in 2014.

3.5.4 Analysis
1. Amazon Web Services (AWS)

● Pros
○ Diverse set of tools[24]

○ Low Cost (pay for what you use)[24]
○ Reliable security[24]
○ High availability[24]
○ Detailed documentation[24]

● Cons
○ Amazon’s EC2 service has limits[24]

2. Microsoft Azure

● Pros
○ High Availability[25]
○ Cost Effective (pay for what you use)[25]
○ Reliable Security[25]
○ Highly Scalable[25]

● Cons
○ Requires extensive knowledge on usage[25]
○ Requires management[25]

19

3. Monsoon (NAU)
● Pros

○ Owned by NAU, used for research[11]
○ Lots of storage provided for researchers/projects[11]
○ Minimal costs[11]

● Cons
○ Time to set up hosting environment[11]
○ Physical hardware must be managed[11]

3.5.5 Comparison and Chosen Approach
The criteria mentioned above will be used to choose where the web application will be
hosted. These will be rated on a scale from 1 - 3:

Web
Services

Cost Availability Space Reliability Total

AWS 2 3 3 3 11

Azure 2 3 3 2 10

Monsoon 3 1 3 2 9

The three alternatives given above scored within a few points when it came to judging
the options based on cost, availability, space, and reliability. Based on the results above
(total), it seems that AWS is the chosen web hosting provider for this web application.

3.5.1 Feasibility
In order to test the feasibility of AWS, the team should attempt to host a demo web
application on AWS to ensure that it is quick, reliable, and meets our needs. This will
ensure that the developers understand how to use and implement AWS into our project.
Feasibility can also be tested by roughly calculating the cost to run our web application
on AWS so that we can decide if the costs are worth it.

Our chosen approach above provides a great solution to our challenge of finding a web
hosting provider that fits the potential size of the web application. However, due to client
restrictions at this time, the web application will be hosted on a local machine in order to
allow for the advancement of development. Should the web application grow in size and
usage, AWS would be a great addition to this project.

20

3.5 Authentication for Role-Based Permissions

3.5.1 Overview of Authentication
As mentioned above, we want user authentication to be a component of our
application.There are numerous reasons for us to do this, but overall we feel it is useful
to have user accounts and ability to save data within the website for further use. Users
would be able to log into an account within the website, and based on this have data
available that they had previously saved or used. Additionally, users would have
different role levels for access into the website and the database. We think this would
really improve the ease of access for the functionality of the web application.

3.5.2 Desired Characteristics
Overall, authentication should be fairly simple to integrate into our application, but there
are still a few key characteristics that we would like to see within our authentication
service:

● Secure authentication. This is pretty straightforward, but we want to make sure
that our application and login via authentication is secure for our users. Their
account is for their own personal convenience, so if they have any sensitive data
within it, we want to make sure that it is protected through our authentication
method.

● Easy to set up/maintain. We want our application to be easy to maintain

throughout the future as well, so that this product is useful for a long time. For
this reason, we want our authentication service to be easy to set up as well as to
maintain. This would allow future programmers on this project to be able to
update the application in the future, and maintain all of its functionalities.

3.5.3 Alternatives
1. Firebase Authentication

An authentication platform developed by Google for creating safe mobile
and web applications. Features include backend services, easy to use
software development kits, and ready-made UI libraries to authenticate
users to an application.[3]

21

2. Passport.js
An authentication middleware for Node.js. This authentication method is
very flexible and modular in its implementation. Features include
persistent sessions, dynamic scope and permissions, as well as easy to
handle success/failure results.[4]

3. Self Implementation
This method of implementing authentication would be the most
complicated, but would be able almost guaranteed to satisfy our
requirements for authentication on our web application. This would be a
very time consuming and tedious process to code on our own.

3.5.4 Analysis
1. Firebase Authentication

● Pros
○ Data is secure [3]
○ Easy to set up, use and maintain
○ Backed by Google [3]

● Cons
○ Some reported user errors in initial setup of authentication, but many

seemed able to be resolved.

2. Passport.js
● Pros

○ Data is secure
○ Has built in functionality to aid in setup [4]

● Cons

○ Also some reported user problems in with authentication failures

3. Self Implementation

● Pros
○ Could be built to be secure

● Cons

○ There would be a lot of preparation to get this up and running
○ Would only be as maintainable as we are able to make it

22

3.5.5 Comparison and Chosen Approach

Method Security Ease of Use/
Maintainability

Firebase Authentication x x

Passport.js x x

Self Implementation x

Although both Firebase Authentication and Passport.js both satisfy both of the desired
characteristics, we chose Firebase because it is a service that is backed by Google and
easily integrates with almost any web application. It provides many additional features
already built that the team is able to use as well when building the application.

3.5.6 Feasibility
The approach we are currently thinking about taking to prove feasibility is to implement
user login and logout functionality in a web application. There seem to be many tutorials
detailing how to set up Firebase Authentication in a web application, so we should have
no shortage of resources when implementing this with whichever Javascript framework
that we decide to use.

23

4.Technology Integration

The proposed solution can be split into roughly three components: the web-accessible
database, the REST API, and the web interface.

24

4.1 Database Component

Using a desktop-like hosting environment, the database import job would be scheduled
and run on the same machine as the SQL server for lower latency and less otherwise
avoidable network traffic. Using a low/no-overhead hosting environment like AWS or
Microsoft Azure, the database import job would live separately.

The Database component is responsible for importing ZTF observation data from a
sqlite3 file into a SQL server that is able to handle multiple simultaneous requests from
the REST API. In addition, the database component stores user data like roles,
permissions, saved searches, and login information.

4.2 REST API

The REST API may be hosted in a separate environment, but would ideally have low
latency with the SQL server. The REST API’s primary responsibility is to translate data
visualization requests from the web interface into one or more SQL queries, delivering
the relevant data points. The REST API may also be optimized to cache frequently used
search queries in memory to improve responsiveness on the web interface as well as
reduce the load on the SQL server.

The REST API would also manage the interpretation of user data stored in the SQL
database, implementing and enforcing things like roles, logins, and sessions.

4.3 Web Interface

The web interface is primarily responsible for the responsive visualization of potentially
hundreds of thousands of data points. Frequent calls to the REST API are expected,
even when a user does not navigate to another page. For this reason, this part of the
proposed solution involves integrating the React.js framework with the REST API. To
accomplish this, the API will be written in C# MVC, where there will be separate subsets
of controllers for frontend navigation through the site and backend API calls.

25

5. Conclusion
The big data revolution is coming to astronomy, and there are very few computational
methods for analyzing this data as it currently stands. The knowledge to be gained from
this data could lead to many powerful discoveries, but most importantly it could help us
to prepare for the inevitability of an asteroid impacting Earth. So Team Ceres plans to
address this problem. We want to build a scalable, responsive web application in order
to aid in this revolution. We plan to use a comprehensive data visualization framework,
user authentication, and importing data to a web-accessible database system in order to
reach our goals.

We spent a good deal of time researching the various technologies that we could use
for this project, and we feel confident in the decisions that we made. Additionally, we will
be able to verify our feasibility very soon as we move into the technology demo for this
project. This will give us the opportunity to move forward with the decisions that we
made in this document and onto the design of our implementation. We are confident
that we can reach our goal and complete this web interface for the analysis of bodies in
space.

26

6. References

[1] CS486C – Senior Capstone Design in Computer Science Project Description - A GUI
interface for large data stream analysis for all-sky astronomical measurements

[2] Microsoft.com - Microsoft Data Platform
(https://www.microsoft.com/en-us/sql-server)

[3] Firebase Authentication - google.com (https://firebase.google.com/docs/auth)

[4] Passport - http://www.passportjs.org/

[5] Google Charts Guides -
https://developers.google.com/chart/interactive/docs/datatables_dataviews

[6] Dygraphs - Demo Gallery - https://dygraphs.com/

[7] Chartist - API and Examples -
https://gionkunz.github.io/chartist-js/api-documentation.html

[8] AWS Marketplace: SQL Server 2016 Standard with Windows Server 2016 -
https://aws.amazon.com/marketplace/pp/B01M3SSA4O

[9] Relevant (Choosing a Javascript framework) -
https://relevant.software/blog/angular-vs-react-vs-vue-js-choosing-a-javascript-framewor
k-for-your-project/

[10] How to choose a proper web hosting service for your website -
https://yalantis.com/blog/types-of-hosting-solutions/

[11] NAU Monsoon - https://in.nau.edu/hpc/

[12] MS SQL Server 2019 Pricing -
https://www.microsoft.com/en-us/sql-server/sql-server-2019-pricing

[13] MS SQL Performance monitoring tools -
https://docs.microsoft.com/en-us/sql/relational-databases/performance/performance-mo
nitoring-and-tuning-tools?view=sql-server-ver15

27

https://www.microsoft.com/en-us/sql-server
https://developers.google.com/chart/interactive/docs/datatables_dataviews
https://dygraphs.com/
https://aws.amazon.com/marketplace/pp/B01M3SSA4O
https://relevant.software/blog/angular-vs-react-vs-vue-js-choosing-a-javascript-framework-for-your-project/
https://relevant.software/blog/angular-vs-react-vs-vue-js-choosing-a-javascript-framework-for-your-project/
https://yalantis.com/blog/types-of-hosting-solutions/
https://in.nau.edu/hpc/
https://www.microsoft.com/en-us/sql-server/sql-server-2019-pricing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/performance-monitoring-and-tuning-tools?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/performance-monitoring-and-tuning-tools?view=sql-server-ver15

[14] PostgreSQL vs MySQL -
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax
-performance-scalability-and-features

[15] MySQL Supported Environments -
https://www.mysql.com/support/supportedplatforms/database.html

[16] MySQL Backups -
https://kb.virtubox.net/knowledgebase/backup-your-databases-with-mysqldump/

[17] TechMagic (React vs Angular vs Vue.js) -
https://medium.com/techmagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa
91d

[18] Javatpoint (pros and cons of react) -
https://www.javatpoint.com/pros-and-cons-of-react

[19] Pluralsight (Angular 101) -
https://www.pluralsight.com/blog/software-development/angular-101

[20] Altexsoft (pros and cons of Vue.js) -
https://www.altexsoft.com/blog/engineering/pros-and-cons-of-vue-js/

[21] Education-Ecosystem (React.js History) -
https://www.education-ecosystem.com/guides/programming/react-js/history

[22] The Startup Lab (The History of Angular) -
https://medium.com/the-startup-lab-blog/the-history-of-angular-3e36f7e828c7

[23] Wikipedia (Vue.js) -
https://en.wikipedia.org/wiki/Vue.js#:~:text=Vue%20was%20created%20by%20Evan,in%20a%2
0number%20of%20projects.&text=The%20first%20source%20code%20commit,the%20followin
g%20February%2C%20in%202014.

[24] The 5 benefits of AWS -
https://sados.com/blog/aws-benefits-and-drawbacks/

[25] Corps (Microsoft Azure) -
https://blog.icorps.com/pros-and-cons-microsoft-azure

28

https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
https://www.mysql.com/support/supportedplatforms/database.html
https://kb.virtubox.net/knowledgebase/backup-your-databases-with-mysqldump/
https://medium.com/techmagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://medium.com/techmagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://www.javatpoint.com/pros-and-cons-of-react
https://www.pluralsight.com/blog/software-development/angular-101
https://www.altexsoft.com/blog/engineering/pros-and-cons-of-vue-js/
https://www.education-ecosystem.com/guides/programming/react-js/history
https://medium.com/the-startup-lab-blog/the-history-of-angular-3e36f7e828c7
https://en.wikipedia.org/wiki/Vue.js#:~:text=Vue%20was%20created%20by%20Evan,in%20a%20number%20of%20projects.&text=The%20first%20source%20code%20commit,the%20following%20February%2C%20in%202014
https://en.wikipedia.org/wiki/Vue.js#:~:text=Vue%20was%20created%20by%20Evan,in%20a%20number%20of%20projects.&text=The%20first%20source%20code%20commit,the%20following%20February%2C%20in%202014
https://en.wikipedia.org/wiki/Vue.js#:~:text=Vue%20was%20created%20by%20Evan,in%20a%20number%20of%20projects.&text=The%20first%20source%20code%20commit,the%20following%20February%2C%20in%202014
https://sados.com/blog/aws-benefits-and-drawbacks/
https://blog.icorps.com/pros-and-cons-microsoft-azure

