
Team Ceres
Software Design Document

Version 1.0
January 31, 2021

Sponsored By: David Trilling, Michael Gowanlock
Team Mentor: Fabio Santos

Team Members: Javier Quintana, Joseph Sirna, Miles Barrios, Zach Messenger

1. Introduction--- 3

2. Implementation Overview-- 5

3. Architectural Overview-- 6

4. Module and Interface Descriptions--------------------------- 9

4.1 Frontend--- 9

4.2 Backend-- 10

4.2.1 Rest-API--- 10
4.2.2 Databases--- 14

5. Implementation plan-- 16

6. Conclusion-- 19

2

1. Introduction
The purpose of this document is to outline the software design for our project and

review the expected requirements in the final product that Team Ceres creates. The

document will be broken down into multiple sections outlining the process of how the

various components of our product will come together, and we will further describe the

general software design of these components. This document will serve as a blueprint

for the general overview of how our project will function and be built.

Background
Every night astronomers across the globe participate in all-sky surveys, where the night

sky is recorded in hopes to gain knowledge of the galactic entities that surround the

Earth. These surveys can produce very large quantities of data and are useful for

cataloging notable bodies, such as asteroids. The Zwicky Transient Facility (ZTF) in San

Diego, California generates nearly 2 terabytes of data every night and that data alone is

very difficult to examine due to the high rate that data is collected.

It is estimated that when the Vera C. Rubin Observatory is finished being built in 2021,

20 terabytes of data will be collected every night for the next 10 years. By the end of the

Rubin Observatory’s participation in these all-sky surveys, 73 petabytes of data will

have been collected.

Our clients, Professor David Trilling and Professor Michael Gowanlock, are interested in

using this data for their personal research but many of the interfaces that use data from

the ZTF, are either outdated or not user friendly. The main problem that our clients face

however, is that they have no interface available to them with functionality that is user

friendly and easy to navigate. Because of this, Professor Trilling and Professor

Gowanlock are interested in the development of a new interface that uses data from the

ZTF and provides easy to access data that doesn’t overwhelm its users on first view.

Team Ceres goal is to create this graphical user interface and to create it with all of the

requested accommodations to make it a valuable tool for our sponsors.

3

Current Standing
Right now, our clients will choose specific sections of data to import from the Zwicky

Transient Facility (ZTF) observation process, mostly focusing on small bodies and

asteroids. In order to analyze this data, our clients must request that a series of scripts

and processes are run in order to:

1. extract the relevant data from ZTF

2. store the data in separate database files

3. run analysis on hundreds of thousands of small bodies

4. export the results to another database file

5. chart/graph the requested information using these results

These processes are run by another colleague, who then makes the relevant charts and

graphs available on NAU’s RCDATA portal.

The current solution in place does not provide the client with an easy way to query data

and get results. This is due to the lack of user interface. The current solution is also

extremely time consuming as the client needs to reach out to another colleague in

charge of performing the queries and then compiling the data analysis into a usable

form suitable for their needs. Another issue faced with the current solution is the

responsiveness of the database. Whenever a script is run to add new charts and data,

the current site directories need to be manually cleared and repopulated. This causes

the site to be down momentarily.

This process is workable for our client, but leaves a few things to be desired. Namely:

● Easy access to the charts and graphs

● An intuitive way to browse different aspects of analysis for a particular asteroid

● A compiled overview of the analysis as a whole

● On-demand generation of the above charts and graphs

● A way to share the results of this analysis

4

● A way to mark particular areas of study as important, unique to each individual

user

These are some of the key requirements that will exist within our product, and

throughout the rest of this document, we will be overviewing how we intend to

implement these features and flesh out more of the design of our software.

2. Implementation Overview

In order to implement the ZTF Asteroid Analysis Tool (ZAAT), there are two main

components. We want to start by creating an interactive web application that allows for

users to easily view, search, and analyze asteroid data. The second component we

want is a back-end database and api to serve data from our database to the front-end

interface. These two components will give the user all the functionality required for our

product, and allow for easy upgrades and improvements to the interface without

affecting the ability of the application to run. Although these are the two main

components of our application, there was some breakdown of these technologies in

order to allow for them to operate as optimally as possible.

The chosen technologies for this project are broken down below:

1. ZTF Asteroid Analysis Tool (ZAAT)

a. Front-End React Application

i. Various styling frameworks to allow for an excellent user experience

ii. FirebaseJS to allow for user authentication, roles, and personalized

preferences and bookmarks

b. Back-End Database

i. A live hosted database that is updated regularly to keep data

accurate and consistent

ii. An api to service requests to the database and send them back out

to the front-end interface

5

This is a very general overview of the implementation of our product, and throughout

this document we will further develop the concepts of our designs to formulate a

blueprint for ZAAT. This should allow for incoming developers to understand our thought

process with our designs and understand how the tool was built.

Figure 1: Simple Diagram Of the ZAAT’s Design

3. Architectural Overview

As seen in the diagram below, our app consists of two main components. These being

the frontend user interface and the backend database. Our user interface is able to

interact with the database through a rest api. The rest api will send data requests from

the frontend to the database, and provide the data back to the frontend. This rest api

basically acts as a middleman between the database and our web application.

When viewed in this aspect, the role of each component can very clearly be seen. The

database is in charge of keeping our data accurate and consistent. This will be done

through regularly scheduled batch jobs that are to import new datasets without

disrupting the user’s experience. The database will also be answering requests from the

rest api in order to present data to our web application.

6

The rest api is very simply put, a middle man for our product. The rest api will receive

requests from the frontend/user and then send these requests to the database or

answer from cached queries.

The frontend application will be the user’s main interaction with our product. This

component will be visually appealing to the users and responsive with all the actions

users might perform. The frontend will display data to the user, manage the user’s

authentication status to save personalized bookmarks and preferences, and allow for

searching/querying of the database.

Overall, the data flow pattern of our application can best be seen through describing a

use case of our application. Suppose a user is viewing asteroid data and wants to

search for asteroids with a certain trait, let’s say asteroids that have above 20

observations in our database. This would mean that we have observed this asteroid

enough for the user to want to see the different metrics collected over a series of

observations in order to perform some form of analysis. Our user would start by going to

the search page in our application, applying the appropriate filters, and sending out the

request. This is where the data flow pattern of our application comes into play.

Our application starts by calling a frontend function to handle gathering the various

search parameters the user provided. These parameters are then used to create a

get/post request that will get the desired asteroids from our database. The frontend

function passes the request to our API, which in turn is able to execute the actual query

upon the database. From here, the database returns the results from the query: either a

list of asteroids with the desired traits or an empty list. These results are passed to the

API, which in turn sends data back to the frontend of the application. The frontend is

able to parse the data received into an easily readable form for the user, and then

displays these results.

7

Figure 1: Architectural Layout of the Interface

8

4. Module and Interface Descriptions

This section will dive deeper into the architectural structure discussed above. The

modules discussed in this section represent overall functionality of the application and

how these modules work together to accomplish a task.

4.1 Front-end

Figure 2: Diagram outlining the Front-End of the program

The front-end follows a component-based structure where the overall web application is

represented with the component named “app”. The breakdown of the front-end structure

is as follows: The app component renders the Navigation bar and the Footer for the web

application. From there, the navbar component holds routes that link to the components

that make up the “meat” of the application.

These components are Home, Search, Asteroids, and Account. The Home component

currently holds four featured graph components which use the REST API to grab data

for the graphs (this will be discussed below). The Search component renders the

ResultsTable component which also uses the REST API to gather the information from

9

the database. The Asteroid component currently does not render any components but

will hold information from the database later on.

The Account component holds three smaller components that are: Login,

CreateAccount, and Settings. These three components use the Firebase API to handle

all authentication to ensure that the user has a better experience.

Various components in the front-end utilize the REST API in order to query the

database and gather data rendered in our web application. This REST API is called

DataController and is discussed in the back-end section below. The FeaturedGraphs

component uses the GetAsteroids method to gather asteroid metrics. As discussed in

earlier sections, the Search component renders the ResultsTable which hits the

AdvancedSearch endpoint to allow the user to filter and search for specific asteroids.

4.2 Back-end
The back-end division of the project consists of 3 modules, which work together with the

ultimate goal of servicing the web interface in a timely and efficient manner. The general

flow of the data is as follows: the scheduled import job runs and imports data collected

by ZTF into the MySQL instance. From there, the REST API runs queries on any table

and delivers relevant data points to the web interface. If a query is requested more than

a (configurable) threshold within a certain time frame, the query result is cached by the

API and used in place of another database connection upon any subsequent requests.

4.2.1 REST API
The REST API is an MVC-style C# API with a fully-realized abstract model of the

MySQL table structure, with endpoints to deliver relevant data points to the web

interface upon request for the purpose of plotting, searching, and comparisons. The

main model of the REST API is the Asteroid object, with collections of Observations

over time. In addition, the ZTF data component of the Asteroid object stores data not

required for normal plotting purposes, yet required for a more detailed histogram of a

10

given asteroid, and so can be excluded from less-detailed requests for asteroid

information.

Figure 3: UML Diagram of the REST API

The main endpoints of the REST API can be divided into their respective controllers:

Data, User, and Bookmark.

Data Controller

● GetDBInfo: (no parameters)

returns a json result containing the total number of observations in the

database as well as the total number of asteroids

11

● AdvancedSearch: (propertyName, minValue, maxValue, orderAscending, page,

limit)

The propertyName parameter refers to the column name to filter by in the

database schema, the min and max value parameters refer to the

numerical min and max with which the API should develop an upper and

lower bound to exclude results. The orderAscending parameter is passed

directly to the corresponding SQL query, and it specifies whether the list of

results should be ordered by the ‘propertyName’ value in ascending or

descending order. ‘page’ and ‘limit’ are used for the purpose of paging the

search results, if desired. A ‘limit’ of 0 will include all results returned from

the SQL query.

The expected return of this endpoint is a list of generic type objects, each

with the properties ‘ssnamenr’ to uniquely identify the asteroid, and

‘column’ to indicate the value of the requested propertyName.

● GetAsteroids: (limit, sort, columns)

The ‘limit’ parameter will limit the number of results returned by the API.

‘sort’ refers to any built-in method of sorting asteroids. ‘columns’ is a way

to explicitly specify which columns should be returned from the API for

each asteroid and if left null, the API will return all properties associated

with every asteroid.

The expected return of this endpoint is a list of asteroid objects, in JSON

format, with either every property or, optionally, just the properties defined

in the ‘columns’ parameter. This list is not sorted by default, but can be

sorted if the ‘sort’ parameter is passed with a valid value.

12

● GetAsteroidData: (ssnamenr)

The only parameter for this endpoint refers to the unique identifier of the

asteroid, used to query the ‘asteroids’ table in MySQL.

The expected return of this endpoint is a single generic type object in

JSON format that contains properties of the requested asteroid, as well as

a list of observations from the MySQL ‘ztf’ table.

User Controller

● RegisterUser: (UID, Firstname, Lastname, Email)

These parameters are used to insert a row into the ‘users’ table in MySQL,

and the primary key of this table is used to access bookmarks for any

given user.

The expected return of this endpoint is the unique identifier (GUID)

assigned by the MySQL auto-increment function on the primary key of the

users table.

Bookmark Controller

● RemoveBookmark: (bookmarkId, UID)

This API endpoint will remove a user created bookmark given the

corresponding bookmark id and the user’s UID.

The expected return of this endpoint is either a http status 500 (if a

bookmark/user does not exist or the specified user has no bookmark by

the provided Id) or an http status 200 if the bookmark was successfully

removed.

13

● GetBookmarks: (UID)

Given a user UID, this method will return a JSON-encoded list of all user

bookmarks and their properties. If a user does not exist with the provided

UID, the endpoint will return an http status 400 along with a status

description of this condition.

● AddBookmark: (UID, ssnamenr)

Given a user UID and asteroid unique identifier, this method will insert a

row into the ‘bookmarks’ table in SQL. The expected return of this method

is a JSON-encoded object containing the ‘BookmarkId’ of the created

bookmark as its only property. If an asteroid with the corresponding

ssnamenr does not exist, or a user with the corresponding UID does not

exist, the endpoint will return an http status 400 along with the appropriate

status description if either of these conditions are met.

4.2.2 Database

The database section of the backend of the application consists of two components: the

MySQL RDBMS and the scheduled import job.

The import job is a command line utility written in C# that is highly configurable. The

associated configuration file allows specification of a custom working directory,

changeable urls to download the sqlite3 .db files, as well as a provision for a different

MySQL username and password in the event that the database ever needs to be

migrated or the credentials need to be changed. In addition, the import utility accepts a

custom database schema JSON-formatted document that allows it to account for slight

modifications to database schema without modifying the C# code and recompiling.

The import job is a self-contained and relatively simple utility, with few methods and

straightforward operation. The methods it uses are:

● RandomFilename: (no parameters)

14

returns a random, unique file name in the current working directory

● MD5: (input)

This method is included as a way to simplify the call to the basic

encryption API provided by .NET and return an MD5 hash in string form

● Main: (string[] args)

The main driver of the program. Downloads appropriate files from

configured URLs, verifies configuration file integrity, and calls the below

methods in listed order.

● importAsteroidInfo: (no parameters)

Imports data from a sqlite3 file into the ‘asteroids’ table in MySQL.

● importPubGood: (no parameters)

Imports data from a sqlite3 file into the ‘ztf’ table in MySQL.

● importTimeseriesInfo: (no parameters)

Imports data from a CSV file into the ‘timeseries’ table in MySQL.

15

Figure 4: Database Import Job UML Diagram

Figure 5: A snippet of the schema.json file used by the import utility

The MySQL instance is highly configurable as well, with a relatively straightforward

table structure corresponding to the initial format laid out in the sqlite3 files. Since the

REST API will cache frequently requested queries, the load on the MySQL instance will

be greatly reduced.

5. Implementation Plan
Provided below is the implementation plan for our project. In the previous semester, our

team made significant development on our product. This allowed us to come into this

16

semester with a very solid foundation for our web application. This allows us to have a

very straightforward implementation plan for this semester. Overall as a team, we intend

to follow this plan and get our project done well for our clients. Since tasks are very

linear, we are able to make modifications using feedback from our clients throughout the

semester.

Our main plan of action for this semester is as follows: we want to start with building out

the remaining key features of our project being the searching features and creating an

interactive analysis tool. Once these are built out, the rest of the time spent will be

personalizing the tool, polishing up the interface, ensuring we eliminated all bugs, and

getting ready to present our final project. This might sound like we are oversimplifying

the implementation of our product; however, using the plans outlined throughout this

document the development of this product should go smoothly as we function optimally

as a team.

Figure 6: Team Ceres Spring 2021 Schedule

17

Add Homepage Graphs - Assigned to Joseph

This task will add additional graphs to the ZAAT interface so users can be presented

with the new data collected from the Zwicky Transient Facility data stream. The graphs

presented will be specifically requested by the clients and may have the chance to have

options on which data the user wants displayed.

Refine Sorting Feature - Assigned to Team Ceres

The task to refine the sorting feature on the ZAAT will present users with an easy to

read and easy to use search interface that filters data via column name, minimum and

maximum values, and may potentially be able to sort the difference between two data

values for more specific searches.

Graph Interactions - Assigned to Javier

The graph interactions will allow users to scale the graphs to be more readable in the

case that the data presented is hard to read, most likely due to the volume of data being

loaded. It will also allow users to click on any data points on the graph’s scatter plots to

take the user to an asteroid’s detailed information page.

Settings Update - Assigned to Zach

The settings update will provide users with more useful tools to make searching on the

interface easier. It will provide a menu that users can use to adjust what graphs appear

on the home page, options to change account information, and other tools that the

clients request as development progresses.

Personalization Options - Assigned to Miles

The last major update will allow users to personalize their account to save specific

asteroid pages and data by keeping a journal for them to use. This journal will keep

18

track of any previous asteroids visited by the users and will give them the opportunity to

follow the data any certain asteroids provide.

The remaining tasks not mentioned above will all be handled by the members of Team

Ceres so we can complete them effectively and efficiently for the clients. All of the tasks

above are subject to change, but based on recent discussion with the clients, this is the

current vision that is laid out.

6. Conclusion

Ultimately, we are feeling very confident in our ability to provide our clients with a

product they will like. As it currently stands, it will soon be impossible to perform

analysis on the amount of data being pulled in about asteroids and other small bodies in

space. The knowledge gained from this analysis is invaluable though; we could learn

about the formation of our solar system and the conditions that led to our civilizations'

formation. Additionally, we could better prepare for the inevitability of an asteroid

impacting Earth.

That’s where Team Ceres comes in. We plan to give our clients, Professor Trilling and

Professor Gowanlock, the tool to be able to perform this analysis. With this, our clients

would be able to perform research with ease and efficiency. Currently our clients work

with another colleague in order to perform more complex analysis on the database of

asteroids that exists, and this is incredibly inefficient. That means that once this

database begins to grow exponentially, their research becomes nearly impossible to

complete. And that is why our tool is necessary for them. The ZAAT would be some of

the first technology of its kind, and could be beneficial to astronomical observers all

around the world. With this tool, researchers would be able to perform research at a

much faster pace and come to conclusions in record times.

19

