

A/GUI Interface for Large Data Stream Analysis for All-Sky Astronomical Measurements

Introduction

Professor David Trilling

Department of Astronomy and Planetary Science

Professor Michael Gowanlock

School of Informatics, Computing, and Cyber Systems

Project Mentor:

Fabio Santos

Project Developers:

Joseph Sirna Release Manager Coder

Zach Messenger Recorder Coder

Miles Barrios Architect Coder

Javier Quintana Team Lead Coder

Problem

While collecting data is not an issue, finding ways to utilize the data is

- It is estimated that when the Vera C. Rubin Observatory is finished being built in 2023, 20 terabytes of data will be collected every night for 10 years.
- By the end of the Rubin Observatory's participation in this survey, 73 petabytes of data will have been collected
- Currently, the Zwicky Transient Facility in San Diego California produces nearly 2 (terabytes of data every night by participating in these surveys

Problem

Clients receive a stream of data from ZTF pertaining to asteroids and other small bodies in an attempt to

- Study the formation of our solar system
- Prepare for asteroids impacting our planet
- No graphical interface exists to access information in the database
- Queries are run by a colleague to gather the requested information and analysis
 - Completely manual approach, not user-friendly
 - Due to the large amount of data being processed each night, database is constantly being updated manually as well

Solution

Create a responsive, easy to use web application that is able to

- Query and analyze data in the database as needed
- Update the database with new data coming in
- Save and export subsets of data or analysis currently being viewed
- Perform basic user authentication and hold role based permissions
- This will allow both our clients and astronomers all over the world to easily perform view data and perform research on asteroids and other small bodies

P X	Query Data Directly Through Interface			Provides the data for each query automatically through the interface
	← →	GUI that Connects to SNAPS	•	SNAPS Database
Clients		Runs Data Queries Handles Data Visualiza References Other Inte	ation	

• ØUI that allows:

Key Requirements

- Custom querying and applying analysis tools to data
- Interactive plots for quickly viewing correlations between asteroid features
- Mechanisms for exporting and saving subsets or current plots
- Application must be user friendly and responsive with large sets of data
- Link to other existing data sources, such as
 - ANTARES, JPL Horizons, and MARS

Specific Requirements

/Functional Requirements

- Filter/search data
- Export data/plots
- Set account preferences and have a section for saved work
- Share various analytics with other users
- View and access other users analyses

Performance Requirements

- Responsive/Reliable
- Scalable
- Usable
- Secure

• Environmental Requirements

Must be able to run on locally owned NAU machines

Closer Look

Filter/Search Data

- Search Bar
 - Allows for the user to enter partial and complete search values
- Filter Options Box
 - User should be able to select specific asteroid properties to get desired data
 - Ex: name, # of observations
 - Results Panel
 - Relevant graphs/ and data tables given some search criteria
- Responsiveness
 - Requests for/graphs should display results quickly
- Other Key Requirements follow a similar breakdown

Potential risks:

Risks & Feasibility

- \circ $\,$ An implementation change in how the ZTF data is gathered
 - Medium-risk
 - Solution: A separate module for importing the data
 - allows for easy changes to source database schema
- Importing large amounts of data at once, blocking access to the database
 - High-risk
 - Solution: asynchronous import process
 - allows existing tables to be used while new data is imported

Schedule

Finalizing our Requirements Document with clients over the next couple weeks

- Finish developing small scale demos
- Wrap up the semester with signed Req. Doc. and successful Tech. Demo
 - Overall, we are on schedule

Conclusion

- We want to build a responsive, easy to use web application to
 - Aid our clients in their research
 - Allow astronomers across the globe the same ease of access to this data
- This research could lead us to knowledge about the formation of our solar system, and prepare us for the eventuality of an asteroid impacting our planet
- We should be able to demonstrate the feasibility and minimized risk throughout the next month through our Requirements Document and Technology Demo