

Final Report
April 26, 2021

Project Sponsor : Chris Doughty
Team Mentor : Andrew Abraham
Team Members : Kainoa Boyce, McKenna Chun, Gregory Geary, and Wesley Smythe

Table of Contents

Introduction 2

Process Overview 5

Requirements 6

Architectural Overview 8

Implementation 11

Testing 16

Project Timeline 29

Future Work 3 1

Conclusion 3 2

Glossary 3 4

Appendix 3 5

Figure 0: Earth’s Biodiversity 1

1 https://medium.com/wild-without-end/international-day-for-biological-diversity-our-solutions-are-in-nature-b480e11fa193

1

Introduction
Tropical forests are biodiverse hotspots filled with many species of flora, fauna, and
fungi. Thousands of these species in recent years have become extinct, in addition to
this, globally there are one million species at risk of extinction 2 due to an influx of human
activity in the wild. While the extinction of species is a natural process, the fact that
species extinctions are up by one thousand percent since humans have gotten
involved 3 , is not. The root of this current mass extinction lies in a variety issues that
have been unresolved for years, these include:

● Increasing Climate Change
● Illegal Deforestation / Logging
● Illegal Poaching

While these are not the only problems, they are some of the most well known and afflict
much of the damage to biodiversity in tropical forest regions. Many scientists around the
world have dedicated themselves to specifically researching and collecting information
on this topic. From this, many solutions and models have been created in attempt to
remedy the predicament that vulnerable biodiverse areas like tropical forests are in.
One such model however, has stuck out the most in recent years due to its unique and
beneficial data it provides, this model is the Madingley Model.

The Madingley Model is a revolutionary biodiversity and ecosystem model that has the
capability to generate data over wide areas of land, limited only by the maximum
surface area of Earth. The model is also able to include data for both oceanic and
terrestrial areas and factor in a multitude of different scenarios, most of which are
human driven, such as the aforementioned climate change or deforestation. For each of
these scenarios, the model produces data on the interactions between different species
in the environment. Figure 1 shows how the Madingley Model views and categorizes
species into specific areas, and is able to then use this information for the scenarios it
supports.

2 https://www.nationalgeographic.com/environment/2019/05/ipbes-un-biodiversity-report-warns-one-million-species-at-risk/
3 https://www.nationalgeographic.com/news/2014/5/140529-conservation-science-animals-species-endangered-extinction/

2

Figure 1: The Madingley Model Interactions 4

Another feature of the model is the ability to predict data in the future , this allows
scientists to see potential outcomes from the current standards in place. That is why the
model itself was created with the intent of providing policy makers accurate biodiversity
data, of which they could then use to influence the types of policies they put into place.
However, due to the underlying fact that nature is incredibly complex, the data sets
generated by this model are extremely large and very difficult to manipulate and
interpret for the average human being.

To solve this, Biosphere was developed as an Ionic Progressive Web Application
that allows the user to view different summaries of Madingley Model data in a cost
effective, easy, and efficient manner, requiring little prior knowledge on biodiversity and

4 https://madingley.github.io

3

ecosystems. The overall functionality and user experience of the application typically
follows these steps:

1. The application starts by prompting the user to input various data (user-type,
location, scenario, and intensity of that scenario)

2. These are then used to determine the specificity of the scenario data, where the
user selects the desired scenario and the intensity of it

3. The application will then fetch the corresponding Madingley Model data to be
displayed via a heatmap, line or bar graph, and tables with averaged data

The visualizations from this process allows the application to turn the previously visually
unappealing data into readable and understandable formats that the user is able to
retain and extract information from.

This overall goal of having users learn about the Madingley Model data helps to
constitute a better application, by allowing us to maintain a consistent standard of
performance for the product. With this one major goal in mind, other stretch goals and
minor features were planned and implemented for a better user experience on the
application. This included:

- Translations of the text into other languages
- Data exportation

While not implemented perfectly, they help to both enhance the user experience on the
application, and help to increase the user base of the application to a wider audience.
Therefore, we are able to spread the data from the Madingley Model more, and thus
helps to further improve the application to fit the main goal.

All of the aspects and features from the application all have a specific usage and play a
key role in the overall functionality of the application. Changing or removing a feature
requires deep understanding as to how each of these features connect to one another,
this can be read and will be explored further in this document in the upcoming sections.

4

Process Overview
After our requirements acquisition process, we were able to generate a general tech
stack which operates as follows:

These general components were then split amongst the team, where each team
member would be responsible for 1-2 components, which allows for overlap, and
strengthens our overall component understanding. As a result of our component-based
delegations, we each took the role of a Subject Matter Expert (SME) on top of
administration responsibilities like: team leader(s), client communication, recorder, and
release manager. With regards to the technical aspects of this project, the release
manager is the only role of importance. The primary responsibilities of the release
manager include: ensuring all team members are using the GitHub repository correctly,
ensuring all versions submitting to the repository were merged, testing, and operable.
Once we were given the green light to develop, version control became useful to ensure
compatible components.
Tracking issues that arose either within a localized development environment, or from
the repository were tracked and discussed informally using a Discord server. Initially we
hoped to use Trello to keep track of tasks and their status. However, it became clear
that due to the frequency of our meetings, and meeting notes, it was easier to simply
ask for status updates at each meeting rather than use a formal task management tool
like Trello. If matters needed to be communicated during non-meeting times, then it was
done using the team Discord server and dedicated channels per domain i.e. front-end
and back-end. In our Team Standards, and Communication documents, it was stated
that all directed messages must be responded or acknowledged within 12-24 hrs. As
such, communication lines were always open and issues were able to be resolved off
the clock.

5

● Backend
○ Data storage
○ Data processing
○ Communication vector

● Frontend
○ PWA framework
○ Geolocation library
○ Visualization library
○ Stretch goal libraries

Requirements
The first, and arguably most important step of the development process is the
acquisition of requirements. This step involved meeting with our client on a weekly basis
to brainstorm ideas about what they / and their stakeholders want and why. Since our
clients are not experienced in software development, the conversation was aimed at the
“why” aspect, while we are a team were able to determine what will be delivered. For
example, our client initially told us that they wanted a mobile application because it
would reach the largest number of users. As a team we determined that since their goal
was to reach the largest target audience a progressive web application would be the
best option, since it is compatible with all standardized browsers. Our client agreed with
our decision. This back-and-forth progress went on for 2-3 months.
The overarching goal of this project was to provide the target audience with meaningful
information/visualizations generated from the Madingley model, in a fast, easy to use,
and lightweight fashion.
Using that statement, as well as conversations with our client during the requirement
acquisition phase, we came up with six key components

Given that our system was required to be lightweight for the end user, it was apparent
that heavy lifting must be done off device, meaning we needed a cloud based, or
dedicated hardware solution. Given that dedicated hardware comes with a considerable
overhead, we decided to use an AWS backend which would store and process the data.
Next, the user would need the ability to generate unique requests through an interface,
this is where the GUI comes into play. The ionic framework was used to generate a
universally compatible GUI for most devices, and all standard browsers. In order to
generate unique requests, the user must first be able to select a geographic location of
interest. Our client required us to provide 2-3 tools to help the users through this
process. These tools include a manual entry form, an interactive drag and drop map
modal, and location selection based on the user’s GPS location. In order to satisfy the
“meaningful information” requirement we generated at least two graphs for the user to
interact with. The goal was to provide them with visualizations that would accurately and
easily communicate the information that the user requested. In order to prevent
unnecessary reruns of the scenarios, one of our stretch goals was to allow for data
exportation, which was done by exporting the visualized components to PDF, which
then gives the user the option to save, or message the visualizations to any platform of
their choice.

6

● Data storage
● Data processing
● Visualization

● Graphics User Interface (GUI)
● Location services
● Data exportation

In order to further satisfy the requirements that we were given we devised several
performance, or nonfunctional based requirements which include: application access,
general responsiveness, user/platform security, and language accessibility.
Application access refers to the applications ability to be accessed from around the
world. In order to satisfy this criterion, we chose to host the backend of our application
on Amazon Web Services (AWS) which has servers worldwide and guarantees
99.9999% service availability. As a result of this global accessibility, the application
would inherently be responsive from an availability standpoint. However, this is only half
of the puzzle. The other half revolves around efficient and non-repetitive code so that
the user is able to process requests, and step through the application with as few
limitations as possible. Next, in order to gain the user’s trust was important for us to
develop a secure application. Thankfully the libraries that we were using require a
security by default mindset, which allows us to develop the application with security as a
forefront, rather than as an afterthought. The final performance requirement teeters the
line between performance, and functional is language translation. This was important to
our client to further expand the range of users from only English-speaking users to now:
English, Spanish, French, German, and Portuguese. Numerically this would expand our
reach from an estimated 360 million possible users, to over 1.3 billion possible users.

7

Architectural Overview
In this section, we will discuss the application components and how they all fit together.
Our project will have four main components: AWS S3 bucket, AWS lambda functions,
AWS API Gateway, and the Ionic interface. The S3 bucket will store all of the Madingley
Model data. In order to retrieve the data, we will use the lambda functions. They will
fetch the data and process it. After it has been processed, the API Gateway will
transport the data from the lambda function to the Ionic interface. When the data
reaches the Ionic interface, the user will get the output that resulted from their initial
input. Finally, we will discuss some of the reasons why we selected each of these
components.

Figure 2: Architectural Overview Diagram

Backend Components

AWS S3 Bucket
An Amazon S3 Bucket is a data storage service offered by AWS that basically
allows for users to store data of almost any type in a file-based system within the
AWS Cloud, which makes for easy and efficient management. For our
application, we will be using an S3 bucket to store the Madingley Model dataset
that will essentially be used for displaying different biological stats in a user’s
given area.

AWS Lambda Function
The entire backend of our application will consist of a single AWS Lambda
function. This is a serverless application that when prompted, will receive the
data passed in by the user from the User Interface, and will use that received
data to then parse and retrieve the corresponding data from our previously

8

mentioned Madingley Model data set stored within an S3 bucket, process it, and
send it back to the User Interface to be further processed and displayed.

AWS API Gateway
The Amazon API Gateway is essentially what connects the front end to the
backend. The previously mentioned Lambda Function(s) will be mounted to an
API gateway endpoint. This API uses REST(ful) HTTP methods to pass the
necessary variables from our UI to the designated endpoint, in the form of a
JSON to be received by Lambda. Once the Lambda function processes this input
and pulls necessary response data from the Madingley Model data set, a
REST(ful) response is then formatted and all visualization data is sent back to
the UI.

Frontend Components

Ionic (Ionic v6 Angular v9) User Interface
The user interface being used for this application is Ionic. The Ionic framework
uses universal web programming concepts to allow for one code base to be
written which is then packaged into a progressive web application (PWA). This
PWA format is able to be downloaded and run on mobile devices (both iOS and
Android) and can also be used to generate a browser file pack that can be
hosted and run as a responsive web application from any device with a modern
browser (Chrome, Safari, Edge, etc.). Within our frontend framework, there were
a few different subcomponents used to help fulfill the major requirements of our
application. These are listed below:

● Ngx Translate - this node module was used to allow users to select from
various languages we’ve built out compatibility for within our application.
The module also used to detect the user’s device language settings to
automatically set the correct language upon loading of the application.

● Chart.js - this node module was used to build out almost all our data
visualization tools within the application.

● Google Maps API - this API was used to assist in the development of the
interactive map that allows users to easily choose a location by moving an
adjustable circle over an interactive map of the entire earth.

9

Influences
Each of the components in our application’s architecture has been chosen through
intensive research and comparison, and has only been chosen because we feel it is
truly the best candidate for its job. The Ionic UI was chosen because we believe it
allows for a smooth/efficient Cross-platform development experience, with the ability to
not only share a single code base, but to share even individual written UI components
that are then compiled differently to match whichever iOS, Android, or Web application
interface is being built. The AWS API gateway, Lambda, and S3 backend services were
all chosen because Amazon has the highest regarded web services due to them being
extremely easy to integrate with each other. They are also very reliable, and easy to
maintain especially for someone who doesn’t have a computer science background (via
the AWS Console and account permissions we’ve built out). Lastly, AWS Lambda is one
of the only/leading serverless application tools which gets rid of the need for servers
and all the overhead associated with them, making it even easier for our clients to
maintain.

Component Interactions
To provide a better understanding of exactly how each of these components interacts
with each other, the application component interactions are described in further detail
below:

AWS S3 Bucket <---> AWS Lambda
After the Lambda function receives and interprets the data sent from the UI, it will
then pull the corresponding data from the Madingley Model data set stored in the
application’s S3 bucket. This raw data will be in the form of a CSV, which will
then be processed by the Lambda function to be packaged into a response and
sent back to the UI via the API gateway.

AWS Lambda <---> API Gateway
After a request is sent via the Ionic UI, the API gateway will trigger an instance of
our serverless Lambda function. The API gateway will pass the request data into
the Lambda function to determine what Madingley data to be pulled from the S3
bucket. Once the lambda has pulled the desired scenario data from the S3
bucket, it will then return a REST(ful) response to the UI with that data in the
body.

10

API Gateway <---> Ionic
Once the user has set all their desired variables/options, the Ionic application will
use an imported angular HTTP client library to make a REST API call to the API
gateway endpoint at which we’ve mounted our Lambda function to. This REST
API call will be in the form of a POST method which is named so because it
“posts” the JSON data that contains the desired user/location/scenario options to
the body of the request. After the Lambda function handles the rest of the data
pulling/processing, a REST HTTP response will be sent back to the front-end,
and in the body of that response will be the data required to visualize the results
of the imputed scenario.

Implementation
The actual implementation of our application went almost exactly as planned. Each of
these components was implemented in our final application. The only issue we ran into
was a strict time limit on the API gateway. Since the Madingley Model data sets consist
of around 475 different csv file’s each containing many megabytes of data, we found our
API calls were timing out resulting in a CORS error instead of the correct data being
returned. In order to work around this time limit, we implemented an algorithm we called
the ‘double onion’ that parses what would be a single request body into many based off
of the selected radius size and user type.

Instead of sending one request that contains a radius and a center to describe the entire
circle the user would like to obtain Madingley data for, we split the single request into
many containing a min and max distance from the center. The backend will then use the
min and max distance to parse and obtain data strictly for that ‘layer of the onion’. This
workaround seemed to do the trick for the general user type (only parses 4 files).
However, some requests were still timing out for the policy maker (needs to parse 10
files) and scientist (needs to parse 19 file) user types. To solve this problem, we took
our algorithm one step further and had it parse the request bodies not only by radius,
but by a file increment as well. This was to inform the backend to only search through a
designated set of files at a time, for whatever desired radius layer (hence the double
onion). Figure 3 provides a visual display of how it works.

11

Figure 3: Layered Onion Approach Diagram

We were then able to control these two parsing variables (radiusIncrement and
fileIncrement) to find a max number of files for the maximum sized radius layer that
doesn’t cause the API to timeout.

The example request body and resulting request array below helps to provide a better
understanding of exactly how the algorithm works for a given example request,
radiusIncrement, and fileIncrement:
Note: The resulting array would have 12 requests in it, but has been concatenated for
viewing purposes

radiusIncrement = 400000;

fileIncrement = 3;
example_ request_body (before being parsed with algorithm) = {

file_end: 0
file_start: 0

lat: 35.198284
lng: -111.651299

max_distance: 781472.6625472013
min_distance: 0

scenario: "EXTINCTIONS"

12

scenario_option: "Holocene"
user_type: "policy_maker"

}
// After being parsed by algorithm:

requestArray = [
{

file_end: 5
file_start: 0

lat: 35.198284
lng: -111.651299

max_distance: 200000

min_distance: 0
scenario: "EXTINCTIONS"

scenario_option: "Holocene"
user_type: "policy_maker"

},
{

file_end: 9
file_start: 5

lat: 35.198284
lng: -111.651299

max_distance: 200000

min_distance: 0
scenario: "EXTINCTIONS"

scenario_option: "Holocene"
user_type: "policy_maker"

},

{
file_end: 9

file_start: 5
lat: 35.198284

lng: -111.651299

max_distance: 200000
min_distance: 0

scenario: "EXTINCTIONS"
scenario_option: "Holocene"

user_type: "policy_maker"
},

{

13

file_end: 10
file_start: 9

lat: 35.198284
lng: -111.651299

max_distance: 200000
min_distance: 0

scenario: "EXTINCTIONS"
scenario_option: "Holocene"

user_type: "policy_maker"
},

{

file_end: 5
file_start: 0

lat: 35.198284
lng: -111.651299

max_distance: 400000
min_distance: 200000

scenario: "EXTINCTIONS"
scenario_option: "Holocene"

user_type: "policy_maker"
}.............

{

file_end: 10
file_start: 9

lat: 35.198284
lng: -111.651299

max_distance: 781472.6625472013
min_distance: 600000

scenario: "EXTINCTIONS"
scenario_option: "Holocene"

user_type: "policy_maker"
}

The last sub issue that came up in implementing this algorithm properly was that as we
continued to decrease our radiusIncrement and fileIncrement (in order to find that max
for each that was guaranteed to be fully processed without timing out), The resulting
request array length grew substantially, and since it would take upwards of 10 minutes
for some request arrays to be fully processed and retrieved asynchronously, we
decided, since one of the advantages to developing a backend using AWS Lambda is
infinite scalability (meaning that the function can be spun up infinite times

14

simultaneously), to implement a request structure that sends all requests at once
without waiting for the previous request response to be received. This decreased our
loading time substantially so that now all requests only take 20-30 seconds to be
retrieved.

Aside from our ‘double-onion’ algorithm, all other components were developed as
planned, and the overall development process went fairly smoothly with little to no
issues.

15

Testing
In order to check that we correctly implement all the architecture listed in the previous
section, we used a three-part testing strategy. The first part was usability testing. This
checked to make sure that each individual part of our application worked perfectly. The
second part was integration testing. For this version of testing, we checked to see if a
small portion of the individual components could function together properly. Finally, we
did some usability testing. This involved having different groups of users walk-through
the application to see if there were areas of confusion or areas that worked really well.

1. Unit Testing
As one of the key components of our testing strategy, unit testing was used to
break large pieces of software into individual components or functions. This
ensured that each unit performed as expected. Unit testing was used both
automatically and manually. In order for the unit tests to be validated, the team
generated tests and recorded their expected outputs. It was important that these
tests covered a wide array of possible inputs. Next, they were tested, and their
results were analyzed. We didn’t have any problems, but if there are failures in
unit testing, it is usually caused by a logical disconnect between the code written
and the intended output. The secondary purpose of unit testing was to find
obvious issues like, unrestricted access to various parts of a system, or the
mishandling of control or special characters. An example of this would be an SQL
injection as a result of improper handling of the input. This would have allowed it
to run as code, rather than constricting it to a string datatype.

For our project specifically, the backend was broken down into three major
components: data storage and retrieval, data processing, and the back-end
interface. Each unit was tested extensively with each unit containing its own
criteria. The backend unit tests can be seen in Table 1. The frontend, similarly to
the backend, was broken down into specific modules that each performed a
specialized task. While there were many smaller modules included in our
front-end, some of the major modules that were prone to invalid responses
included: location selection and data retrieval. Like the backend, each unit was
tested for a variety of scenarios, both successful and not. The frontend unit tests
can be seen in Table 2.

16

17

Unit Test Description Boundary
Values

Example Input Expected
Response

API: Single Valid Generate a single valid
response that is then passed
through the API Gateway.

distance values
cannot exceed
800km.

min_distance=0
max_distance=200000

{
 “Next”: None
}

API: Onion Valid Generate an onion handled
response that is then passed
through the API Gateway.

distance values
must be greater
than 800km

min_distance= 2345
max_distane = 340953

{
 “Next”: event
}

Data Retrieval:
Non-Existent File

Create a data request for a
file that clearly does not exist.

A string that looks
like a file i.e.
some_dir/some_file.
csv

get_object(file=”fake.csv”) FileNotFoundError

Data Retrieval:
Out-of-Bounds
Request

Create a data request for a
file that is located in a different
file system

A file that exists.
The file path must
start from the root.

get_object(Bucket=wrong_buck
et, file=”file.csv”)

FileNotFoundError

ForbiddenAccessError

Data Validation:
Correct Data
Types

Create a request with a valid
size and type to be tested
against validation library

The request must
conform to the
restrictions of the
requested input

{ “user_type”: public
 …
 scenario: “CLIMATE”
}

“[DEBUG]: Validation:
Passed”

Data Validation:
Incorrect Data
Types

Create a request with a valid
size and type to be tested
against validation library

The request must be
incorrect within the
constructs of the
validation functions

{“fish”: “taco42”} “[DEBUG]: Validation:
Failed”

Data Processing:
No Returned
Data

A data request using
semi-legitimate parameters.
For a dataset that does not
exist.

The request must be
approved by
validation functions

{ “user_type”: public
 …
 scenario: “CLIMATE”
}

{“statusCode”: 400,
“body”: None}

Table 1: Back-end Unit Testing Criteria

Table 2: Front-end Unit Testing Criteria

18

Data Processing:
Improper File
Format

A data request using
legitimate parameters for a file
that is mislabeled, or of an
invalid type

The request must be
approved by
validation functions

{ “user_type”: public
 …
 scenario: “CLIMATE”
}

{“statusCode”: 400,
“body”: None}

Data Processing:
Invalid Values

A data request using valid
parameters, for a non-numeric
value

The request must be
approved by
validation functions

{ “user_type”: public
 …
 scenario: “CLIMATE”
}

{“statusCode”: 400,
“body”: None}

Unit Test Description Boundary
Values

Example Input Expected
Response

Location Selection:
Map Input

Receive input from Google Maps
API selection, and send a data
request to back-end

Latitude: [-90,90]
Longitude: [-180,180]
Radius: [0, 12000]

Latitude: 52
Longitude: 105
Radius: 1240

Request made to
Back-end

Location Selection:
Valid Manual Input

Receive manual location input,
and send a data request to
back-end

Latitude: [-90,90]
Longitude: [-180,180]
Radius: [0, 12000]

Latitude: 40
Longitude: 105
Radius: 2421

Request made to
Back-end

Location Selection:
Invalid Manual Input

Receive an invalid manual
location input and produce an
error response

Latitude: [-90,90]
Longitude: [-180,180]
Radius: [0, 12000]

Latitude: -105
Longitude: 185
Radius: -2752

Error: Invalid Input

Data Retrieval:
Successful Data
Retrieval

Request and retrieve the correct
files selected from the location
and scenario options

Value 1:
0 <= Val1 < Val2
Value 2: Val1 < Val2 <= 1625

generateRequest
(0, 249)

Madingley Onion
Data,
statusCode: 200

Data Retrieval:
Failed Data
Retrieval

Failed request of correct data and
display an error

Value 1:
0 <= Val1 < Val2
Value 2: Val1 < Val2 <= 1625

generateRequest
(0, -515)

No Data,
statusCode: 400

Finally, for the purposes of security, the back-end components were compared
against the Common Vulnerabilities and Exposures (CVE) database to ensure
that most known vulnerabilities were patched. According to preliminary research
there were 115 vulnerabilities related to AWS and 494 vulnerabilities linked to
Python for the entry dated on March 4, 2021. It should be noted that not all
vulnerabilities were related to this application, and some were illegal to test
without a Certified Ethical Hacker (CEH) degree or being contracted as a bug or
vulnerability finder.

2. Integration Testing
In addition to unit testing, another form of testing that we used was integration
testing. Integration testing looked for a seamless interaction between different
components within our program. In particular, we needed the data storage, data
visualization, API Gateway, and the Lambda functions to all communicate
effectively with one another (seen Figure 4). After this part of testing, we didn’t
find any alarming or unexpected results.

Figure 4: Interactions Between Different Components of our Project

Back-end: Data Storage and Retrieval
A key component of the backend involved requesting, and retrieving data
files from the pre-specified file system. This was done through the lambda
function that was given special, and limited privileges in order to promote
the principle of isolation, and least privilege. In order to test the scope and
limitation of this aspect, an integration test was completed.

Table 3: Back-end Data Storage and Retrieval Integration Test Table

19

Integration Test Description Expected Response

Perform a valid action
specified by the Lambda’s
IAM policy

A request will be generated
that is within the scope of
the predefined policy

This test will be given a
passing mark if it performs
the action and does not
return AccessDenied.

Back-end: Data Validation and Interpretation
Once the data was retrieved from the file storage system, it was validated
and translated to a valid data type that was then handled by the remaining
aspects of the backend.

Table 4: Back-end Data Validation and Interpretation Test Table

Back-end: API Gateway and Lambda
In order to communicate between the frontend and backend, a gateway
was used. The Gateway acted as a trigger for the back-end components.
Once the lambda function was triggered it performed a pre-specified task.
Then, it returned numerous headers outlined by AWS. These headers
were then parsed by the frontend, so that they could be visualized.

Table 5: Back-end: API Gateway and Lambda Test Table

20

Integration Test Description Expected Response

Take a valid data file and
check its internal values.

Take a valid data file as an
input, then check the
internal values for column
names, length, and cell
type.

If this action is performed
correctly then no errors
should be returned, since
cell values and column
indices are hard-coded into
the backend.

Take a valid data file and
transform it into a
non-networked data type.

Take a valid data file then
perform the static and
dynamic operations
translating it from bytes to
JSON.

If the actions are
performed correctly then a
populated dictionary object
will be returned.

Integration Test Description Expected Response

Generate an API Request
and wait for the output.

Use the Live API Gateway
or API Sim to pass a
request to the lambda
function to then be called,
and data returned.

If the request is valid, and
does exist, then it should
return a response with
either a statusCode of 200
or 400.

Front-end: User Selections and Data Requests
The location selection module needed to pass three valid numbers for the
latitude, longitude, and radius of the circle. This data then needed to be
retrieved and stored. Once the user selected their user type and scenario
options, the API Gateway created a request for the appropriate data on
the backend.

Table 6: Location/Scenario Selection and Data Requests Test Table

Front-end: Data Retrieval and Data Visualization
The API Gateway was used to retrieve data from the backend that was
previously requested using the parameters selected by the user. This
data, if successfully retrieved, was then used to dynamically generate
graphics. These graphics included buttons, charts, and a heat map
produced by the Google Maps API, along with an appropriate legend color
scale.

Table 7: Data Retrieval and Data Visualization Test Table

21

Integration Test Description Expected Response

Collection of scenario and
location data, then request
data.

Different scenario data is
selected by the user and
stored, then used to
request specific sets of
data from the backend via
the API Gateway.

A successful response will
return no errors. Wrongly
formatted requests will
produce errors. Invalid
input will cause errors
elsewhere.

Integration Test Description Expected Response

Retrieval of JSON data
used to create visuals and
other UI components.

The API Gateway gets the
previously requested data
that the backend has
parsed and allocated for
use. This data is then
retrieved and used by the
front-end to visualize the
datasets using heatmaps,
graphs, and other
graphics.

If successful a series of
requests will return a finite
amount of data and a
statusCode of 200. The
graphics and other UI
components will then be
generated based on this
input.

Otherwise, it will return no
data and a possible
statusCode of 400.

3. Usability Testing
Besides unit testing and integration testing, a third type that we used was
usability testing. The purpose of usability testing was to test the interactions
between the application and the target audience. This type of testing focused on
the overall quality, and intuitiveness of the application. It simulated what a typical
user will do in the app. We specifically analyzed the speed of the app, the time it
took to get over the learning curve in the app, and whether the app could be
changed to make it more user friendly.

Usability testing was extremely important for the end-user facing aspects of the
application. In particular, the users were able to use the app without any outside
assistance from a team member. If they weren’t able to navigate the app by
themselves, we would have needed to change something. Also, this was one of
the first times that someone outside of our team used the app, so it was a good
way of getting constructive feedback from others. For example, we realized that
the submit location button wasn’t obvious to the user and that we needed to
provide a glossary explaining what each of the scenarios meant.

Since our application was a Progressive Web Application (PWA), we got
feedback for the web version, the iOS version, and the Android version of the
app. The only difference we noticed was the fact that Android and iOS didn’t
have a way to export the results to PDF. Neither platform supports this feature,
so we couldn’t implement it for those devices. Overall, we spent most of our time
testing the web version.

In order to get the best feedback, our team used zoom to visualize the user’s
screen and get their input on certain areas of our application. Most of the testing
required us to take notes on the user’s interactions with our app, but we also got
some verbal feedback from the user about their experience. To accomplish this,
we gave them a very vague task to complete within the app. Then, we watched
as they progressed through the app. We documented specific information on how
long it took for the user to get to the destination and if there were any spots
where they were confused on what to do next. When possible, we got several
people from the same user type to test out the application at the same time. By
doing this, cultivated useful discussion and questions while they were going
through the application. While on zoom we were able to tailor the testing to the
user’s specific background.

Since we had three very different user types, it was also important to see if we
addressed each of their needs. To begin, we are assumed that the general users

22

hadn’t heard of the Madingley Model prior to our testing meeting. As a result, we
made sure they didn’t get lost while navigating the app. Both the scientist and
policy maker groups had a detailed scientific background. It was important for us
to provide them a version of the app with this in mind. It was important that we
tested each of the user versions because they all produced different variations of
the data. For example, the general user had the option to select 4 different output
scenarios, but the scientists had the option to select from 19 different variables.
Therefore, if we only tested the app from the general user’s perspective, we
would have missed the other ⅔ of our application. It was important to test every
part of the app that any user could interact with. In the case of our application,
the user interacted with the: geolocation module, visualization module, and the
user interface.

Geolocation Module
In this module, there were three main pages we will need to test. First, we
needed to test the select location map page. On this page, we made sure
that the user could intuitively navigate the map to select their desired
location. Also, we needed to test whether the user knew that they could
change the radius of the circle. Second, we checked to see if the user had
any problems with the manually input coordinates page. On this page, we
investigated if the user had any problems entering the latitude, longitude,
and radius. The third geolocation check we needed to test for was when
the user selects to use their current location. The program needed to
correctly retrieve the device’s location and then properly display it on the
map page. In the process, it alerted the user if the location services were
turned off in their browser or computer.

Visualization Module
For this module, there was only one page to test. However, there was a lot
of important information that could have been wrong. First, we needed to
make sure that the user could correctly export a pdf of the results. There
was an export PDF button within the page. We found out that this wasn’t
possible on Android and iOS. We also needed to verify the user could
locate the generate PDF button and that they knew to click the button.
Second, we checked to see if the data was displayed in a way that makes
sense for the user. If there was too much information on one page, we
might have confused the user. If there was too little information on the
page, the user might not use our app in the first place. Lastly, the team
also needed to test if the table and map were readable. In other words, we
wanted to find out if the user could interpret the data in these areas.

23

User Interface
One of the most important UI tests for our team was checking if the user
could correctly navigate from one page to the next. For example, we
noticed that all of the users were able to submit their location (on the map
page) and move onto the scenario option page without any problems.
Even though we didn’t have all the languages implemented yet, it was also
beneficial to test out the translation feature. We were able to test the
French and Spanish Translations. It showed us English text that we forgot
to translate or text that was incorrectly translated.

Back-End: Lambda Functions, API Gateway, and S3 Bucket
Given that the end-user did not natively interact with the backend, this
module was excluded from usability testing. We specifically designed our
app to hide these aspects from the user. If they had access to these parts,
they could change the data or even destroy the inner workings of our
application.

24

25

Examples of Tests for All Users

Tasks Acceptance Testing Testing Results (up to March 19)

The user should
be able to create a
PDF of the results

Success:
● If the user can correctly navigate the app and get a PDF using the

button on the results page
Needs Work:

● If the user can't get to the results without assistance
● If the user uses the browser to create a PDF instead of the provided

button

Success
5/5 groups were able to create a PDF.
However, ⅗ groups had at least one person
who took longer to find the button than we
would like.

The user should
be able to start a
new simulation
and get the results
for ____ (insert a
mixture of
countries all over
the world)

Success:
● If the user can get results for the specified country.
● If the user can start a new simulation and it displays new information

from before
Needs Work:

● If the user can't start a new simulation without assistance
● If the user gets results for the wrong country

Success
5/5 groups were able to move the circle to the
specified country and get results for that
specific region.

The user should
be able to use
these latitude and
longitude
coordinates to find
the corresponding
results

Send latitude and longitude coordinates to the user in the zoom chat
Success:

● If the user can get results for their specified location
● If the results page shows a circle with the specified radius

Needs Work:
● If the user doesn't know where to input the values without assistance
● If the user gets an error or the results don't populate correctly

Success
All the tested groups* were able to get the
results matching the latitude and longitude
coordinates that were entered.
*only tested on ⅗ groups.

The user should
be able to walk
through the app in
the French
language

Success:
● If the user understands what all the text means in the French language.

Needs Work:
● If the user has trouble navigating the app because they don't understand the

text without assistance
● If the user uses Google Translate outside of our app

Success
Camille from scientist group 1 was able to
navigate the app.

Table 8: User Study for All User Types

Table 9: User Study for General Users

26

The user should
be able to explain
what the
Madingley Model
is and explain
what each of the
scenario options
mean

Success:
● If the user got a good understanding of the app from the About page
● If the user correctly summarizes the main points of the Madingley

Model and the scenario variables
Needs Work:

● If the user doesn't understand what the Madingley Model is without
Googling it.

● If the user is just clicking buttons and doesn't understand what the
scenarios mean

Needs work
⅖ groups (which had no previous experience
with the Madingley Model) had a hard time
understanding that the results were based on
the Madingley Model. The getting started page
should be edited to include some Madingley
information

Examples of Tests Specifically for General Users

Task Acceptance Testing Testing Results (up to March 19)

A general user
should be able to
easily select a
new output
variable (out of
the 4 possible
options)

Success:
● If the general user can select a new variable and the map refreshes to

display this new information
Needs Work:

● If the general user doesn't realize that they can select a new output
variable without assistance

Success
5/5 groups were able to change the variable
from the current default of “allelic diversity” to
any of the other output variables.

A general user
should be able to
describe what
each of the output
variables mean

Success:
● If the general user can define what each of the output variables mean

Needs Work:
● If the general user has no idea what they are clicking.

Needs Work
3/3 of the general user groups had a hard time
understanding what the variables meant.
Suggestion: add descriptions next to the
variable name

Table 10: User Study for Scientists

27

Examples of Tests Specifically for Scientists

Task Acceptance Testing Testing Results (up to March 19)
A scientist
should be able to
easily interpret
the results
shown on the
results page

Success:
● If the scientist can explain what the results are showing

Needs Work:
● If the scientist doesn't know what is being displayed on the page.
● If the scientist is overwhelmed with all the information being displayed

Needs work
Scientists weren’t able to get the results to
display. The users were stuck on the
“Madingley Data loading…” notification.

A scientist
should be able to
select between
the 20 raw data
output variables

Success:
● If the scientist can switch from 1 output variable to another one and

the results change as a result
Needs Work:

● If the scientist doesn't know that they can select one of the other 19
output variables

● If the scientist gets the same map even after they individually select
several of the other variables

Needs work
Scientists weren’t able to get the results to
display. The users were stuck on the
“Madingley Data loading…” notification.

Examples of Tests Specifically for Policymaker

Task Acceptance Testing Testing Results (up to March 22)

The policymaker should know that
the variables on the results page are
calculated EBV values. Test by
asking the policymaker what each of
the variables represent

Success:
● If the policymaker can identify that the variables are

calculated based on their selection in the app
Needs Work:

● If the policymaker thinks that the variables are
hardcoded values

Needs work
The policymaker wasn’t able to get the
results to display. The user was stuck on
the “Madingley Data loading…” notification.

Table 11: User Study for Policymaker

Resulting Project Changes
As a result of testing, we came up with nine different changes that we implemented before the final version was
completed. You can see all of these changes in Figure 5. Two of the changes that we want to highlight are parallel parsing
and adding a layered approach
to the backend. We decided
parallel parsing was important
because if the user selected a
large radius, they would have to
wait a really long time in order to
get their results. By adding the
parallel parsing, we were able to
make all requests between 20
and 30 seconds (regardless of
how big the selected radius
was). To make this possible, we
also implemented a layered approach. Figure 5: Post Alpha Prototype Changes
During testing, we noticed that the API
Gateway would timeout and wouldn’t return any values to the user. By retrieving small sections of the data at a time, it
allowed us to get around this issue and speed up the data retrieval process.

28

The policymaker should be able to
get results in a reasonable amount of
time or get a warning that it might
take a long period of time to retrieve
the requested data

Success:
● If the policymaker gets results in less than 2 minutes.
● If the policymaker gets an alert that it might take a

long time to process their results
Needs Work:

● If the policymaker thinks the app is broken because
the app is on the "Loading Madingley Data" page for
too long

Needs work
The policymaker wasn’t able to get the
results to display. The user was stuck on
the “Madingley Data loading…” notification.

Project Timeline
This section outlines the key tasks and timeline on which we completed our project.

As you can see in Figure 6, we spent the first five months planning and researching
solutions for our product. In September 2020, the team completed a Team Standards
document. We felt it was important for us to set a good foundation for the team as we
progressed through the project. After that, one of the main things we accomplished in
the first half of our project was refining our Minimum Viable Product (MVP). In addition
to that task, we also researched possible software, solidified our product requirements
with the client, and created a technical demonstration. This technical demonstration
showed what software we were hoping to implement in the Spring 2021 semester.

Figure 6: Fall 2020 Semester Milestones

Going into part two of the project, we were able to move onto the implementation stage
(as seen in Figure 7). During the Spring 2021 semester, we wrote all the code needed
to satisfy the requirements. Throughout the implementation process, the team
simultaneously worked on the frontend and the backend components. As you can see in
Figure 8, the frontend of the application was coded by Wes, Greg, and McKenna. The
backend was completed by Kainoa, Greg, and McKenna. In terms of the frontend, some
of the things we were able to accomplish were having a working map selection
component, successfully implementing the ability to export the results, and creating a
results page that contained visuals that were easy for the user to understand. In
addition to that, we were also able to get the AWS Lambda, AWS S3 Bucket, and API
Gateway working on the backend. In addition to those important milestones, we also
completed a software testing plan. This document outlined our testing strategy. On April
22nd, we had a final demonstration with our clients. During this presentation, we
showed off our application and demonstrated how each of the requirements were
implemented. As a result, the clients conveyed that they were very pleased with the
product and that we did a great job of implementing all of the requirements. They are

29

hoping to build off what we have created to make it an even better and more informative
application in the future.

Figure 7: Spring 2021 Semester Milestones

Figure 8: Each Team Members’ Task Focus

30

Future Work
Even though we addressed all of the requirements in our final product, there are two
main areas for future improvement: implementing new scenarios and integrating support
for a wider range of languages. First, as new information becomes available to our
clients, they plan on adding new scenarios to the application. They are also hoping to
find people who can help translate the application for languages that aren’t currently
supported.

Implementing New Scenarios
As you can see in Figure 9, not all of the scenario buttons included in our
application have the data to support their use. This is why some of them are
unclickable. Therefore, as the science becomes available, our clients hope to
add these new scenarios. Some of the scenarios, such as logging, might take a
couple of years to complete. Other scenarios, such as land use might just require
some time to translate the data from the complicated Madingley Model data into
something that our application can interpret.

Figure 9: Current Scenario Options Page

Integrating Support for New Languages
Currently our application supports four different languages. These languages
include English, Spanish, French, and German. We originally prioritized these
languages since the Madingley data is focused on areas of the tropics and these
are some of the common languages in those areas. For example, our client is
hoping to get policy maker’s attention in Gabon and Peru. In addition to those,
the client is hoping Brazil will also find interest in the information that the app is
producing. Therefore, our client’s next language priority is Portuguese. In order to
get the best possible translations, our team and the client both agreed to get
native speakers to translate for us rather than getting a mediocre translation from
Google Translate.

31

Conclusion
Tropical forests are biodiversity hotspots filled with countless species of flora, fauna,
and fungi. Thousands of these species in recent years have become extinct, and
around one million are at risk of extinction due to an influx of human activity in the wild.
The root of this current mass extinction lies in issues that have been unresolved for
years. This includes, are but not limited to: climate change, illegal deforestation, logging,
and poaching. The rapid decline of biodiversity has extremely negative effects on those
who inhabit the Earth. Biodiversity supports ecosystem service include: air and water
filtration, renewable energy, and climate regulation.
In order to prevent or slow the loss of biodiversity, our client Chris Doughty is using the
Madingley model; a ‘next-generation’ ecosystem and biodiversity model. The purpose of
this model is to inform policymakers about the impacts of their choices on biodiversity,
ecosystem services, and on trajectories of biodiversity change under different scenarios
of human development.
The problem we have been tasked to solve is that the Madingley model requires
scientific expertise to operate, and uses a large amount of computational power, which
is not readily available.
In order to solve this problem, we developed a progressive web application that allowed
the user to generate unique queries regarding pre-run Madingley model scenarios. This
data is then processed using services through AWS. Finally, the data is visualized for
the user to see, interrupt, and save. Some of the key features include:

Not only did this satisfy the requirements set before us, and then some, we are also
able to save our clients over 1,000 hours of development and anywhere from $26,000 to
$52,000 in development cost.
Our client and their supporters have been extremely happy with the progress and final
status of this project. A segment of the target audience includes policy makers
associated with national and international level organizations or governments. This
means that this application could be used to influence environmental policy around the
world which will have a global scale impact.
This process has taught us about the importance of patient, collaboration, and most
importantly communication. Our team has experienced and overcome numerous
frustrations and complications and as such we have not only bonded but take this with
us as real-world experience. We understand the impact that open and honest

32

● Worldwide availability
● Universal device and browser

compatibility
● Multi language support

● Customized visualizations
● Interactive and familiar location

selection tools
● Extremely responsive application

design

communication can have on a project. We know that everyone is human, and we all
make mistakes, and that what’s important is to pick each other up and keep going.

ʻAʻohe hana nui ke alu ̒ia.
No task is too big when done together by all.

33

Glossary
Amazon Web Services (AWS) : is a subsidiary of Amazon providing on-demand cloud
computing platforms and APIs to individuals, companies, and governments, on a
metered pay-as-you-go basis.

Progressive Web Application (PWA) : is a type of application software delivered
through the web, built using common web technologies including HTML, CSS and
JavaScript. It is intended to work on any platform that uses a standards-compliant
browser, including both desktop and mobile devices.

34

Appendix

Appendix A: Development Environment and Toolchain
In this section, we will explain some of the basics of our application. First, you can find
information on how to configure your machine to support our application. Second, we
will cover the steps you need to take to get the downloaded code from GitHub to run
properly on your device. Overall, this appendix will serve as a how-to manual for our
application. After reading this part of the appendix, you should be able to go from
knowing nothing about our application to being able to upload a new version to GitHub.

● Hardware :
As a team, we used a wide variety of platforms to run and build our application.
In Table 12, you can see that we all used an Intel processor. However, we had
different amounts of memory storage on our machines.

Table 12: Team Member Machine Technical Specifications

● Toolchain :
This subsection outlines all the tools we used to get our application working.
Some of the tools listed in Table 13 are essential for our application to run
properly. These tools include ngx-translate, the Geolocation module, and the
Google Maps API/Visualization Library. The team also used a wide variety of
IDEs. Any of the IDEs we used can be substituted with your personal preference.

35

Kainoa Ubuntu / Intel processor / 64GB RAM
This was completely overkill, the backend could be locally
tested/developed and run on a Raspberry Pi if needed.

Greg Windows 10 / Intel processor/ 16GM RAM
The program was able to easily be run, stopped, and restarted
throughout many tests without any problems.

McKenna Windows 10 / Intel processor / 16 GB RAM
The program was able to easily be run, stopped, and restarted
throughout many tests without any problems.

Wes macOS / Intel processor / 8 GB RAM
I didn’t have any problems running the Google Maps components
and the rest of the application on my computer.

 Table 13: Essential or Nice-to-Have Tools Used for Our Application

36

Kainoa Atom w/ custom linter (used for code standardization)
No package manager, all software developed used native
python3.8 modules

Greg Microsoft Visual Studio Code
● All-around IDE for managing and editing source code in

Angular (TypeScript), the terminal also allowed for the
installation of libraries and command line for Git

Android Studio
● Android IDE that allowed for deployment of the application

to a native Android environment using an emulated device
XCode

● iOS IDE that allowed for local building and testing of
applications on iOS devices.

McKenna Microsoft Visual Studio Code
● All-around IDE for managing and editing source code in

Angular (TypeScript), the terminal also allowed for the
installation of libraries and command line for Git

Android Studio
● Android IDE that allowed for deployment of the application

to a native Android environment using an emulated device
Ionic Capacitor

● Compiled source code for web clients and translated the
TypeScript code into native Android languages for testing

ngx-translate
● Translation library that allowed for the automatic detection

of languages on a user’s device, and allowed for easy
manual translations to be implemented

Chart.JS
● Visualization library used for creating data graphics

Google Maps API + Visualization Library
● Used to plot heatmap points on map with weights

Wes JetBrains WebStorm
● I used this IDE to edit and add to the codebase.

Geolocation Module
● You need to import this module in order to get the user’s

current location
Router and Navigation Extras Modules

● You need to import these two modules in order for the user
input to be transferred from one page of the application to
another

● Setup :

Tips on how to set up your device can be found in this subsection. We will outline
the things you need to download in order to get the application to run properly.
These include both backend and frontend components.

Table 14: Steps for Setting up Your Environment

● Production Cycle :
Now that you have set up your machine, you can now run and edit the
application. In Table 15, there are instructions on how to edit both the backend
and frontend components of our application.

Table 15: Production Cycle Steps

37

Backend $ sudo apt-get update # update system to most recent packages
$ sudo apt-get install atom # installs atom
$ sudo apt-get install pylint # installs pylint

Frontend 1. Install NPM (Node Package Manager)
2. Use the terminal to ‘cd’ into application source code folder
3. Run npm i in that folder (this installs all necessary node

modules)
4. Run ionic serve OR ionic serve --lab (this builds

and host the application on your local machine)

Note: instructions on local development setup are also included in
further detail in the README.md file of the application source
code.

Backend Local Development
1. Change Input.json for application inputs
2. Run APIGatewaySimulation.py for testing
3. Main file is lambda_function.lambda_handler
4. All other files are libraries and helper functions which are

described in their file docstrings.

Frontend 1. Edit desired file
2. Save changes
3. In terminal run ionic serve (optional)
4. Push code to GitHub

