
Computer Science Senior Capstone

CS476 - Requirements Engineering

ViralTech
Project: PIMpoint Collaborator Data Entry Point

Technology Feasibility Analysis

Overview:

The purpose of this document is to highlight the high-level requirements of our project
by presenting technological and integration challenges, and give ourselves the chance to

explore evaluations and solutions.

Team Members: Client:

Jialei Chen Jonathan Todd - Associate Bioinformatician

Carl Porter

Colton Spector

Weiheng Su

Scooter Nowak - Capstone Mentor

Northern Arizona University TGen North

School of Informatics, Computing, and Cyber Systems Flagstaff, Arizona

October 22, 2019

1

Table of Contents

Intro 4

Document Purpose 5

Technological Challenges 7

Customer Constraints 7

Back-End Langauge 7

QR or UPC Generator 8

Front-End Langauge 9

Shipping Label Interface 9

Web-Data Entry Spreadsheet 10

Technology Analysis 11

 Back-End Language 11

Java 12

Python 12

Node.js 13

Back-End Chosen Approach 13

Back-End Proving Feasability 14

 QR or UPC Generator 15

GoLang QR Code Library 15

QR Code Generator (QR Code Monkey) 15

UPC Barcode Generator (Barcode Tec-it) 16

Barcode Generator Chosen Approach 16

 Front-End Languages 17

HTML/(CSS) 17

Javascript 18

2

JQuery 18

Mootools 19

Ajax 19

Front-End Chosen Approach 20

 Shipping Label Interface 20

Integrated Fed-Ex Label & Package Tracking 20

 Web Data Entry Spreadsheet 21

Jakarta POI 22

Java Excel API 23

Spreadsheet Chosen Approach 24

Technology Integration 25

Front-End and Web Spreadsheet 25

Front-End and Google Authentication 25

Bar Code Generator and Back-End 25

Back End and JSON Objects 26

Back-End and Web Spreadsheet 26

Back-End and Shipping Label Generator 26

Back-End and PostgreSQL 26

Conclusion 27

3

1.0 Intro
As humans, we can only ever see the world in abstractions. The definition of those abstractions changes
depending on how versed we are in the specific domain we are abstracting. Non-medical professionals
for example think of cancer as a single disease with a single treatment: chemo therapy. Medical
professionals have a higher definition abstraction and see cancer as many separate diseases with
separate treatments depending on the type of cancer. However even this abstraction is still an
abstraction. No human can perfectly conceptualize the exact genetic structure of any single disease and
it’s exact interactions with any single patients DNA. While no human is capable of doing this, maybe
us humans can create machines that can get pretty close to that.

TGEN, which stands for Translational Genomics Research Institute, is a non-profit organization
dedicated to treating diseases not at an abstract level, but with razor sharp precision. They work
tirelessly to break down and understand the genetic components of common and complex diseases. The
amount of variables among diseases and people is so tremendous that one treatment can’t possibly
work for everyone. And so TGEN is working towards being able to genetically analyze the actual
disease afflicting a person and prescribe the best treatment on a patient by patient basis. However the
processes currently in place at TGEN aren’t as efficient as they can be to allow the scientists to dedicate
as much of their time as possible to actual science. This is where our team, Team Viraltech, comes into
play.

Team ViralTech includes: Jialei Chen, Carl Porter, Colton Spector and Weiheng Su. Our project is
PIMpoint Collaborator Data Entry Point. The sponsor for this project is Jonathon Todd, an associate
bioinformatician at TGen North.

The process for collaborators submitting data involves them sending the data in various formats
directly to the scientists at TGen north for them to input into the database (Figure 1). Currently this
processes is problematic for two main reasons:

1. Because data entry is non-standardized, scientists often have to track down or clarify
necessary data that wasn’t included properly in the submission

2. Scientists waste time every day manually entering data into their database.

To combat this problem our team is designing a configurable web platform to collect data from
contributors in a standardized format, then automatically upload that data to the database (Figure 2).
The platform will also produce a printable bar code that the contributor can attach to their samples so
that the scientists at TGen are able to quickly scan the sample and pull up all the information that they

4

Figure 1: TGen North current data entry workflow

need. Problem 1 will be solved by creating a formatted spreadsheet that defines what fields of data are
needed for the sample. Problem 2 will be solved by our website uploading the data to the database and
by the attached bar codes allowing scientists to grab a sample and immediately start working on it. In
addition to solving the two main problems our software will add a couple of new features that should
make a positive impact on TGens workflow:

1. Collaborators will be able to log into the website to track their samples progress through
the various TGen processes

2. Our website will produce a shipping label that the collaborators can use to send their
packages to TGen

3. Our software will be configurable with a text file, allowing our website to function for any
amount of packages containing any amount of items going through any amount of
different processes.

1.1 Document Purpose

This document is the Technological Feasibility document for our PIMpoint Collaborator Data Entry
Point project. The purpose of this document is as follows:

1. To outline the major technological challenges facing our project

2. To analyze the possible solutions to each one of our technological problems

3. To compare those solutions via objective measurements

4. To choose the best possible solution to each of our technological challenges

5. To determine how those solutions integrate together and into our clients system

This document will be successful if it’s able to:

5

Figure 2: Our proposed solution

1. Comprehensively identify all the technological challenges necessary to overcome for the
success of the project

2. Choose the best solutions for those technological challenges

3. Verify that all of those solutions integrate smoothly with each other and with the clients
system as it exists now

If this documents process is thorough and comprehensive enough then the actual implementation of the
project in the following semester will be significantly smoother.

The organization of this document is fairly straight forward. First, in our Technological Challenges
section, we will outline and analyze all of the technological challenges facing our project. Then, in our
Technology Analysis section, we will break down each and every one of our challenges and identify
the possible solutions. The pros and cons of each solution will be discussed and weighed. After each
solution has been weighed we will decide on which solution to implement in our project. To check our
decision we will prove that that solution is implementable with small demos. Finally, in our
Technology Integration section, we will go over the possible issues of integration. We will map out
the basic conceptual structure of our system and identify every connection between technologies. Once
we’ve identified those connections we can go through them one by one to determine if the connecting
technologies integrate together smoothly.

6

2.0 Technological Challenges
In this section we will outline the technological challenges that we will overcome as we implement our
solution. At it’s core our project is a fairly common web data entry platform. Some challenges we face
have been solved and thus should be straight forward. Having said that, there are also some challenges
with our specific implementation that need to be addressed in some more detail. We will start by
outlining the various customer constraints we’ve been given for this project. While these solutions are
already determined, it’s important to understand how they fit into our system. Finally we will outline
the various technological challenges and define the metrics by which we will judge them.

2.1 Customer Constraints

Our client has some constraints that our system needs to be able to work with. Some of these
constraints have to do with the preexisting system we are interfacing with while some are client
preference. We will go over the customer constraints now, as they play a role in some of our
technological challenges. The customer constraints we have are as follows:

• Google Authentication: Our client doesn’t want to have to store collaborator passwords in their
database. In addition to this, not having to make a new account for our website will be
convenient for the collaborators

• JSON Objects: Our client stores dynamic data for their samples in their database in the form of
JSON objects. Because of this our system needs to be able to create JSON objects and send
them to the database.

• PostgreSQL Queries: Our client uses a PostgreSQL database and so our website needs to be
able to perform PostgreSQL queries and insertions

2.2 Back-End Language

The back end language is essentially the brain of our web platform. Our back-end language will be
responsible for doing all of the interaction with our clients database, configure the website, abstractly
model all the data, and interact with our bar code and shipping label generation. Whatever language we
choose needs to be able to:

• Read a text configuration file to customize our websites structure

• Make PostgreSQL queries and insertions to update and read our clients database

• Send JSON objects to the PostgreSQL database

• Be object oriented to model our various packages, samples, processes and steps (Not
strictly necessary but simplifies the coding process)

7

We will select languages that fit this criteria and then judge them based on the following metrics:

• Team Member Familiarity: How many team members are familiar with this language already?
(0-4)

• Front-End Compatibility: How compatible is the language with common front end solutions?
Is this language used frequently for web development? (0-4)

• Simplicity: How simple is the structure of the language? Is there a lot of necessary plugins that
don’t add any functionality necessary for our project? (0-4)

• Cost: Will it cost us anything to commercially use this language or is it open source? ($)

2.3 QR or UPC Generator

In order for our project to fully solve our clients current problems it must be able to produce some type
of bar code. Searching the database for the sample data is quicker than inputting it yourself, but it still
takes a significant amount of time away from a scientists daily productivity time. Because of this our
back-end language needs to be able to use some type of bar code generating plugin. Our bar code
generator needs to be able to:

• Produce printable QR or UPC bar codes and ID numbers for those bar codes

While the necessary requirements aren’t that stringent, there are a few metrics we can use to judge how
well different generators will perform in our project:

• Performance: How fast does the generator produce the bar codes? (0-4)

• Scan-ability: The bar codes are often going to be wrapped around test tubes, how easy are they
to scan when they aren’t flat but instead curved? (0-4)

• Plugin Availability: How many back-end languages does it support? Will it fit into any back-
end choice we make? (0-4)

• Cost: Will it cost us anything to commercially use this generator or is it open source? ($)

8

2.4 Front-End Language

Certain aspects of the front end language, such as HTML, are essential to the front end development
process. Despite the lack of choice for some components we will still be doing technical research on
them to determine how best they fit into our system. There are still some areas where we have agency
though and those areas must be able to:

• Work well on most web browsers

• Dynamically display shipping/process stages

After compiling languages that meet these criteria we will judge them with the following metrics:

• Team Member Familiarity: How many team members are familiar with this language already?
(0-4)

• Back-End Compatibility: How many back-end languages work well with this front-end
language? (0-4)

• Screen Size Adaptability: How well does the language support screen size adaptability? (0-4)

• Mobile: How well does the language work on mobile platforms? (0-4)

• Cost: Will it cost us anything to commercially use this language or is it open source? ($)

2.5 Shipping Label Interface

Our platform needs to be able to produce shipping labels for the collaborators to attach to their
packages and send to TGen. The shipping label interface needs to be able to:

• Generate printable FedEx labels

While the requirements are straight forward we do have a couple metrics:

• Tracking: Does the interface also allow you to track shipments as well as create them?
(Yes/No)

• Back-End Compatibility: How many back-end languages work well with this interface? (0-4)

• Cost: Will it cost us anything to commercially use this interface or is it open source? ($)

9

2.6 Web Data Entry Spreadsheet

Our client wants us to use spreadsheet style data entry because most collaborators already submit data
in a spreadsheet format. We cannot use google sheets as several collaborators don’t feel that it is secure
enough. Spreadsheet data entry also allows the collaborator to input many samples at the same time in
different columns. The spreadsheet applet we choose needs to be able to:

• Accept copy and paste entry from common spreadsheet programs

• Set non-editable fields

• Pull data from spreadsheet and send it to back end language for database insertions

Once we’ve compiled applets that can meet these requirements we will judge them based on the
following metrics:

• Expandable: Is the spreadsheet dynamically expandable for further data entry? (Yes/No)

• Front-End Compatibility: How many front-end languages work well with this spreadsheet?
(0-4)

• Cost: Will it cost us anything to commercially use this spreadsheet or is it open source? ($)

10

3.0 Technology Analysis
In this section we will go over the technological challenges we outlined in the previous section and
analyze potential solutions to each. The general overlay of the different parts of the system and their
place in the system can be seen in figure 3. After we’ve analyzed the options we will use our metrics to
decide which option we will proceed with. Our technological issues are as follows:

• Back-End Language

• QR or UPC Generator

• Front-End Languages

• Shipping Label Interface

• Web Data Entry Spreadsheet

3.1 Back-End Language

The back end language is essentially the brain of our web platform. Our back-end language will be
responsible for doing all of the interaction with our clients database, configure the website, abstractly
model all the data, and interact with our bar code and shipping label generation. The back-end will be
compiled and hosted on our clients server, coordinating operations between the front-end and database.
Whatever language we choose needs to be able to:

• Read a text configuration file to customize our websites structure

• Make PostgreSQL queries and insertions to update and read our clients database

11

Figure 3: System Diagram with Connections

• Send JSON objects to the PostgreSQL database

• Be object oriented to model our various packages, samples, processes and steps (Not
strictly necessary but simplifies the coding process)

There are three main alternatives we can choose for our back-end language: Java, Python or Node.js.
Java is the most common runtime environment that enterprises use which means there is a large
community of support behind it. Python is an increasingly popular language that offers a lot of new
functionality not supported by Java. Node.js is a server side javascript platform, which is nice for
uniformity of languages between front-end and back-end applications.

3.1.1 Java

Java is the most common runtime environment that enterprises use. It was released in 1995 and since
then has morphed into one of the premier server side back-end development languages. Ironically it
wasn’t designed with this in mind, as at the time the internet looked much different than it does today.
Java is object oriented and is used by around 9 million web applications.

Pros:

• It’s popularity means it has support for a lot of different plugins

• Everyone on our team can program in Java

• It’s about twice as fast as optimized JavaScript

• Automatic Garbage Collection

• WORA Design, can port code to any platform with a JVM without having to re-write it

• Open-source

Cons:

• Different language from our Front-End

• Less built in functionality

3.1.2 Python

Python has seen a surge of popularity in recent years. It’s a higher level language than Java and offers a
lot of built in plugins that support increased functionality. Because of it’s popularity it still has support
for a lot of platforms. Python is a dynamically typed language and offers a lot of support for
mathematical and statistical operations.

12

Pros:

• It’s popularity means it has support for a lot of different plugins

• Everyone on our team can program in Python

• It has a lot of built in functionality

• Automatic Garbage Collection

• Open-source

Cons:

• Dynamically typed

• A lot of overhead for functionality not necessary for our project

• Different language from our Front-End

3.1.3 Node.js

Node.js is a javascript language that can be run server side. It’s a newer language released in 2009, and
supports a “Javascript everywhere” methodology. The idea is to unify the coding language between the
front-end and back end. Node.js is an asynchronous language meaning that the code isn’t run in
sequence but all at once.

Pros:

• Same language as Front-End

• Open-source

Cons:

• Only one of our team members knows this language well for back-end applications

• Asynchronous

• Slower

3.1.4 Back-End Chosen Approach

We chose Java for our back-end language. The main reason we chose java is because of team member
familiarity with it and it’s simplicity (Table 1). Java does not have as much overhead as Python and yet
offers all of the functionality we need for our project. Java is also not run asynchronously like Node.js
which simplifies our hierarchy of item building, taking into account that none of our team members
have a lot of experience with asynchronous programming languages. Because of it’s popularity, Java

13

has the most support for different pieces of our system that we want to include. In this situation it
doesn’t make sense to re-invent the wheel when our back-end tasks are fairly standard.

Cost Familiarity Compatibility Simplicity

Java 0$ 4 4 4

Python 0$ 4 3 2

Node.js 0$ 1 3 3

Table 1: Back-End Language Metrics

3.1.5 Back-End Proving Feasibility

Java is an object oriented language, we will be able to abstractly model the objects that need to be
displayed on our website (Figure 4). Processes will aggregate steps, which will aggregate Items. This
allows us to load all of the samples in the system and place them at the correct step, which is placed in
the correct process. Packages are also an aggregation of items, so that we can display the items inside
of the package. This object model will be able to model any similar system, with the amount of each
class, and it’s name being configurable via a text file. This will allow other companies that want to
intake and track items going through processes to port our platform to their business with a simple edit
of a text file.

Our future plans for testing involve coordinating with our client to set up test environments on their
server. We will create a java class that is able to query the server, and send that data to our front-end.
We will start prototyping our class structure as well, so that we can start working on demos for the
other parts of our website. The actual feasibility of our back end language is pretty sound, as we’ve all
had years of experience designing systems in exactly this manner. The only new things to us in this
process is running it on the server and database queries we will be performing.

14

Figure 4: Class Diagram of our System

3.2 QR or UPC Generator

TGen North has utilized printable barcodes to assist with collaborators getting an idea of what stage
their sample is at inside of the TGen facility. These barcodes serve an additional purpose to help
scientists scan and be able to have all sample data appear on the screen at their lab station. However,
this process is not efficient as collaborators are submitting their samples using their own haphazard
labeling systems that often times don’t work with TGen North’s current workflow. We believe that the
best solution for this issue is standardizing the process for how collaborators are printing and labeling
their samples through the use of generated QR or UPC barcodes that are small enough to be placed on
the sample tubes. Also, these barcodes need to be big enough so that there isn't any issues when the
scientist goes to scan it when at the workstation. A feature of these barcodes is that they need to be able
to communicate with the PIMS 2.0 database when data is submitted and when a QR or UPC code is
scanned by a scientists.

3.2.1 GOLang QR Code Library

The current back-end system of TGen North Utilizes the GO Language, a free programming language
with attributes similar to python. The research we conducted into this back-end language as well as its
libraries led to a discovery of a Github library dedicated to QR generation making the communication
between front-end and back-end very seamless for us.

Pros:

• Utilizes the back-end language to assist in creating QR codes for the clients

• We might be using GOLang for the back-end of our system and if so, this will make
communication from front-end to back-end very easy for us.

Cons:

• This will require a lot of in lab testing by the scientists which might be difficult with time
constraints

• We are not sure if this is the system they are currently using for their QR generation, so all
the MetaData that they usually show below a QR code might not be viable.

3.2.2 QR Code Generator (QR Code Monkey)

There are several free, open source QR code generating tools on the internet. Some offer more tools in
the way you can integrate into your own website as well as sending data to the website and having the
QR code then populate back onto your website. This would be incredibly convenient for the web
application since we are attempting to standardize the current process collaborators are haphazardly
doing.

15

Pros:

• Fully customizable shapes that the barcode could be displayed and printed as. This is
especially beneficial so we could test the shapes to see which ones would fit best on the
sample tubes and are easiest for the scientists to scan

• We were able to identify a website that allows for fully customizable QR code generation
and has an API that would allow us to use it directly on our website

Cons:

• This will require a lot of in lab testing by the scientists which might be difficult with time
constraints

3.2.3 UPC Barcode Generator (Barcode Tec-it)

Similar to the QR code generators there are countless free open source UPC barcode
generator websites. This solution offers a different way of encoding data onto a
scannable piece of paper and different possibilities to submit the data in the way it is
stored.

Pros:

• Integratable API that would allow UPC codes to be generated on our website

Cons:

• There are several versions of UPC barcodes that can be generated requiring research for
which type would be best for database

• UPC barcodes are wider than QR codes when printed, which could be an issue when
collaborators are labeling samples

3.2.4 Barcode Generator Chosen Approach

As a team we concluded that the QR code generator that is a library will be best to integrate into our
web application as it offers a wide variety of tools to help us generate QR Codes scanable from a test
sample, and allows us to communicate the information inputted into the spreadsheet to a QR Code for
the client (Table 2). We hope to create several demo versions to test data entry, QR code generation,
and scanning to reduce the amount of errors that will occur throughout our development process.

16

Cost Familiarity Compatibility Simplicity

GOLang Library 0$ 2 4 3

QR Code Monkey 0$ 1 3 2

Barcode Tec-IT 0$ 1 2 2

Table 2: Barcode Generator Metrics

3.3 Front-End Language

The front-end development language is to create Web pages or apps. These days, front-end
development refers to the part of the web users interact with. In the past, web development consisted of
people who worked with Photoshop and those who could code HTML and CSS. Now, developers need
a handle of programs like Photoshop and coding in not only in HTML and CSS, JavaScript or jQuery (a
compiled library of JavaScript). The language and development process we use to create our web
application will set the entire foundation for our product so proper examination of all tools is crucial.

Below are some common front-end development languages the team has looked into to help assist in
the creation of our web application

3.3.1 HTML / (CSS)

HTML is the markup that contains all the actual stuff that a web page has. All the text on this page
you’re reading right now lives inside HTML tags that tell your browser how to order the content on the
page. Go on, right click any element on the page and choose “Inspect Element” to open up your
browser’s Developer Tools and it will show you the structure of the page.

CSS tells the browser if you want to display any of those tags a particular way, for instance, turning its
background blue and pushing it a little to the left. In your Developer Tools, you can see the CSS styles
in another panel, usually showing which specific properties were inherited from which lines of CSS.

Pros:

• Our team is very comfortable using HTML/CSS to develop websites

Cons:

17

• Programming the web application without documentation of what each member is doing
could halt the over development process. We will need to make sure we are
communicating the changes we make.

3.3.2 JavaScript

JavaScript is a high level, dynamic, untyped, and interpreted programming language. It has been
standardized in the ECMAScript language specification. Alongside HTML and CSS, it is one of the
three essential technologies of the World Wide Web content production; the majority of websites
employ it and it is supported by all modern web browsers without plug-ins. JavaScript is prototype-
based with first-class functions, making it a multi-paradigm language, supporting object-oriented,
imperative, and functional programming styles. It has an API for working with text, arrays, dates and
regular expressions, but does not include any I/O, such as networking, storage or graphics facilities,
relying for these upon the host environment in which it is embedded. Javascript could help us to solve
the problem of sending the inputted data from the front-end to the back-end for barcode generation,
tracking label generation, and submitting the data to the database.

Pros:

• Allows for data submission from front-end to back end

• Allows our HTML/CSS web pages to dynamically adjust depending on the data submitted

Cons:

• We have just one group member who is confident in JavaScript meaning we will need to
learn this language if implemented.

3.3.3 JQuery

JQuery is a simple and fast JavaScript library. JQuery learning is relatively easy compared to learning
Java scripts, this is reduced. The difficulty of web front-end development, and jQuery is compatible
with almost all browsers. JQuery is a JavaScript library designed to simplify HTML DOM tree
traversal and manipulation, as well as event handling, and CSS animation. Web analysis indicates that it
is the most widely deployed JavaScript library by a large margin, having 3 to 4 times more usage than
any other JavaScript library.

Pros:

• It is a free open source project

• Allows for HTML DOM manipulation, meaning webpages can be dynamically created

• It is a very fast extension of the JavaScript Library

18

Cons:

• No group members have experience with this technology meaning we will need to allocate
time to learning and harnessing the utility of JQuery

3.3.4 Mootools

MooTools is a collection of JavaScript utilities designed for the intermediate to advanced JavaScript
developer. It allows you to write powerful and flexible code with its elegant, well documented, and
coherent APIs. MooTools code is extensively documented and easy to read, enabling you to extend the
functionality to match your requirements.

Pros:

• Could allow us to do all data submission from the front-end to the back-end with little
overhead

Cons:

• No group members have experience with this technology meaning we will need to allocate
time to learning and harnessing the utility of Mootools.

3.3.5 Ajax

Ajax is a set of web development techniques using many web technologies on the client side to create
asynchronous web applications. With Ajax, web applications can send and retrieve data from a server
asynchronously (in the background) without interfering with the display and behavior of the existing
page. By decoupling the data interchange layer from the presentation layer, Ajax allows web pages and,
by extension, web applications, to change content dynamically without the need to reload the entire
page.

Pros:

• It is a free open source project

• Allows for HTML DOM manipulation, meaning webpages can be dynamically created

Cons:

• No group members have experience with this technology meaning we will need to allocate
time to learning and harnessing the utility of Ajax.

In summary, there are a lot of tools on the internet we will be able to utilize for this project. As a team
we concluded that the technologies that we will implement into the front-end of the web application

19

will be HTML/CSS for the overall look of the web app and utilize JS, & JQuery to assist in dynamic
page resizing and data manipulation.

3.3.6 Front End Chosen Approach

There aren’t significant choices associated with front end languages, and thus its arguable that there
doesn’t need to be a front end section in an industry standard tech feasibility document. However, as
our team is composed of students and we as of yet have no industry experience, it was an important
exercise for us to prove (if only to ourselves) that the front end languages can do what we need them to
do. So while our chosen approach is really our only approach we will still lay out the best analysis of
the languages that we can in order to prepare ourselves for implementing our project. Our chosen front
end languages are CSS/HTML for the display of the website, and Javascript to make it dynamic (Table
3). CSS/HTML does not interact with the back-end directly but instead users javascript as an
intermediary. Our team if fairly familiar with it and it can adapt to various screen sizes with it’s
percentage settings on display size. Javascript can be integrated with most back-end languages and it’s
adaptability to screen sizes is also high as it can change it’s logic depending on the screen.

Team Member
Familiarity

Back-End
Compatability

Screen Size
Adaptability

Mobile Cost

CSS/HTML 3 0 3 3 0$

Javascript 2 4 4 3 0$

Table 3: Front-End Metrics

3.4 Shipping Label Interface

TGen North’s collaborators ship their samples from all around the world, but most of the time
collaborators don’t know if and when the samples have been received by TGen North. Collaborators
also use their own methods of printing and placing the labels onto their shipments of samples.

We believe the solution for this problem is having a printing label generated from the web application
with instructions as to how to place the label as well as providing the user with and attempting to
integrate Fed-Ex tracking on the web application since 80%-90% of packages are sent using Fed-Ex.

3.4.1 Integrated Fed-Ex Label & Package Tracking

Since 80%-90% of all packages received by TGen North come through Fed-Ex it makes sense to assist
users in seeing where their packages reside in the shipping process. We hope to integrate the tracking
box provided on Fed-Exs website to our web application, but if it can’t be managed we can have a link

20

that will take the collaborator to the Fed-Ex website using a hyperlink with the tracking number
embedded in the hyperlink.

Pros:

• Users can be aided in the tracking of their packages

• TGen North won’t need to be asked if the package has been received or not. Saving time
and money

Cons:

• No formal documentation on integrating Fed-Ex’s tracking box

Since Fed-Ex is used so often the team believes that integration of Fed-Ex tracking to assist
collaborators would be best (Table 4).

Tracking Back-End
Compatability

Cost

Integrated Fed-Ex Label
& Package Tracking

Yes 4 0$

Table 4: Shipping Label Interface Metrics

3.5 Web Data Entry Spreadsheet

The spreadsheet is an important part of our project because it is used to organize and categorize data
into a logical format to help scientists do their research. In our project, we first get data from the Front
End, then create the spreadsheet in the Back-end, then use spreadsheet to organize and categorize the
data from the front-end, and then finally pull data from spreadsheet and put it into back end language.
Google sheet seems like a good choice because it is a free, web-based program for creating and editing
spreadsheets. However, the contributors believe it be an unsafe method because Customer's believe
their information is at risk when using Google Sheets.

The solution to this issue is to find a free open source spreadsheet that has the ability to be integrated
with our web app and TGens database.. The spreadsheet we created should have some essential
quantities. First it has the ability to copy and paste into spreadsheet from other common spreadsheet
project. Secondly, it has the ability to set non editable fields. Third, it has the ability to pull data from
spreadsheets and put it into the back end language to be sent to the database.

21

3.5.1 Jakarta POI

Apache POI is the open source library of the Apache Software Foundation. The Jakarta POI project
consists of APIs for manipulating various file formats based upon Microsoft's OLE 2 Compound
Document format using pure Java. POI provides several APIs to read and write Microsoft Excel
(HSSF), Microsoft Word (HWPF), and OLE Property Sets (HPSF). However, to read and write Excel
(XLS) files using Java, the HSSF (Horrible SpreadSheet Format!) API.

Pros:

• It is open source so you can learn the code from some website easily, it is also easy to learn
how to create and read the spreadsheet.

• It is based on Java, and the team is familiar with the Java programming language

• The spreadsheet is dynamically expandable

• Has a clean interface within the front-end (Figure 5)

Figure 5: Jakatra POI

Cons:

• We are not sure if it is possible to copy a spreadsheet from say Excel and paste it into the
spreadsheet of choice.

22

3.5.2 Java Excel API

Java Excel API is a mature, open source java API enabling developers to read, write, and modify Excel
spreadsheets dynamically.

Pros:

• Supports font, number and date formatting

• Supports shading, bordering, and coloring of cells, so it will be able to display nicely on
the front-end

• Below is a result from one of our test environments (Figure 6)

Figure 6: Java Excel API

• Has the ability to modify existing worksheets, so you can copy and paste into a
spreadsheet from other common spreadsheet program

• The spreadsheet is dynamically expandable

• It is open source so you can learn the code from some website easily, i mean it is easy to
learn how to create and read the spreadsheet.

Cons:

• The only downside is it just generates spreadsheets in Excel 2000 format. It can not work
on other Excel format.

23

3.5.3 Spreadsheet Chosen Approach

We decided on using the second option. Compared with Apache POI and Java Excel API, they both
have has the ability to set non editable fields, the ability to pull data from spreadsheets and put it into
back end language as well as display nicely on the front-end (Table 5). However, Apache POI does not
support the ability to copy and paste information from one .csv file to another which could be annoying
when we implement into the web application. While in the Java Excel API, it allows for such copy and
pasting to and from .csv files.

Cost Language Dynamically
Expandable

Display Copy and Paste
Data

Jakarta POI 0$ Java Yes 3 Unknown

Java Excel API 0$ Java Yes 3 Yes

Table 5: Web Data Entry Spreadsheet Metrics

24

4.0 Technology Integration
Great pieces of technology are useless if they don’t fit into the larger solution. Even if a bar code
generator can do everything we want it to do perfectly doesn’t mean it will work with the rest of our
system. Because of this we need to map out our system and determine which pieces need to work with
each other. Once we’ve established the connections we need to test each one so that we can be
reasonably confidant in our choices.

4.1 Connections

4.1.1 Front-End and Web Spreadsheet (1)

We can embed Java Excel API into our HTML page and reference it with javascript. This will allow us
to add on click functions to buttons that pull the data out of the applet and send it to the back-end
application for processing. Javscript will be our main connection here, as we will use it to communicate
the data entered by the user into the spreadsheet applet to the back-end.

4.1.2 Front-End and Google Authentication (2)

We can embed the Google Authentication widget into our HTML and reference it with javascript. The
on click function will take the user to google authentication page where they will sign into their google
account. From there google will redirect the user back to our page and give us an identifying key that
will also serve to verify that the user authenticated successfully.

4.1.3 Bar Code Generator and Back-End (3)

Our QR generator has a plugin that will work with our back-end language. We will import the plugin
and use the functions to generate printable QR codes that we can send to the collaborator directly via
email. We can use different methods to create different QR code printing formats depending on the
collaborators needs.

25

Figure 7: Components of system and their connections

4.1.4 Back End and JSON Objects (4)

JSON Objects has a Java api that we can include in our back end solution. This will allow us to create
and read JSON objects from the database.

4.1.5 Back-End and Web Spreadsheet (5)

Java Excel API, like the name suggests, has an API for Java. We will be able to include this in our java
back-end and access any spreadsheets the client submits. If a client opts to use the website generated
spreadsheet for their data entry then our back-end will receive all the info via parameters in javascript
method calls to the back-end.

4.1.6 Back-End and Shipping Label Generator (6)

Fed-ex has it’s own APIs to support various platforms that will allow us to include it in our Java
application. With the plugin we can take the tracking number and call the methods to give us the
tracking information to display on our front-end.

4.1.7 Back-End and PostgreSQL (7)

PostgreSQL has a Java API that will allow us to access the server directly with method calls from Java.
This will allow us to configure the queries for different servers depending on the config text file. Using
the plugin we can insert data into the server as well as query data from the server.

26

5.0 Conclusion
Our problem we are solving involves issues with the current workflow process and data submission
with TGen North and their collaborators. Both TGen North and ViralTech envision a dynamic web
application with the capability to instruct collaborators on the proper way to ship their packages, label
their sample tubes with generated QR codes, and see the overall progress of both their package and
their sample tubes when received by TGen North.

This document outlined in detail the technological and integration challenges of creating this web
application. The primary technologies were a QR Code generation, a shipping label interface, google
authentication, a web data entry spreadsheet, and possible front-end and back-end languages. Below,
are the technologies and our confidence level with each technology (Table 6).

Challenge Potential Solution(s)
Confidence Score (1 to 5)

1 = low confidence, 5 = high confidence

QR or UPC Barcode Generator QR Codes 5

Shipping Label Interface Fed-Ex Tracking 3

Web Data Entry Spreadsheet Java Excel API 4

Front-End Languages HTML/CSS/JavaScript/JQurey 4

Back-End Languages Java 5

Table 6: Confidence Levels

ViralTech believes that our technological and integration challenges have been addressed, which
assures us that our solution is definitely feasible. We have high confidence in our Back-End language
as well as in our choice of Barcodes (5/5). While we have less confidence in our Shipping Label
Interface (3/5), we are confident in our Front-End language and Web Data Entry Spreadsheet (4/5). We
will continue to address technological and integrational issues as they arise through the development
process.

With our selected technologies, we are beginning the creation of a prototype application to test and
verify our selections. ViralTech believes that working on the prototype sooner rather than later will be
beneficial in being able to diagnose problems early on so it can be quickly addressed.

While there are always unforeseen issues, we have done as comprehensive of an analysis as can be
efficiently done at this time. We have turned our project from an abstract concept of what we need to
do, into a concrete understanding of the various parts and technologies we need to develop and
integrate for it to work. We are happy with our analysis, excited to begin development and confident we
can get the job done.

27

