

NaviBot Systems

Dr. Michael Leverington - Sponsor
Scooter Nowak - Mentor

Diva Ferrell, Logan Behnke,
Peter Aaron Giroux, George Cadel-Munoz,

Benjamin Peterson

Technological Feasibility Analysis
11/04/2019

Overview
This document outlines the technological feasibility of the “Thirty Gallon Robot, Part Deux” project. This
will include major technical challenges that may arise during the production process, as well as some
possible tools that will be utilized to overcome such challenges.

1

1. Introduction 3
2. Technological Challenges 4
3. Technological Analysis 5

3.1 Robot Mapping 5
3.1.1 Options for Robot Mapping 6
3.1.2 Proposed Solution for Mapping 9
3.1.3 Future Feasibility Testing of GMapping 9

3.2 Wi-Fi Localization 10
3.2.1 Options for Wi-Fi Localization 10
3.2.2 Wi-Fi Localization Framework Scores 11
3.2.3 Chosen Localization Package 12

3.3 Sensors 13
3.3.1 RPLIDAR 13
3.3.2 Microsoft Kinect 13
3.3.3 Intel RealSense 14
3.3.4 Chosen Sensor 14

3.4 Multi-floor Navigation 14
3.4.1 ROS Navigation 15
3.4.2 Multi Map Navigation 15
3.4.3 Build Our Own 15
3.4.4 Chosen Navigation Approach 15

3.5 Graphical User Interface 16

4. Technology Integration 18
4.1 Navigation and Mapping Cohesion 19
4.2 Navigation and GUI Cohesion 19
4.3 GUI and Mapping Cohesion 20

5. Conclusion 21

2

1. Introduction
We are NaviBot Systems, the capstone team responsible for the “Thirty Gallon Robot, Part

Deux” project, also known as Robot Assisted Tours (R.A.T). Our team is comprised of five

members:

- Diva Ferrell, Team Lead

- Benjamin Peterson, Customer Communicator

- Aaron Giroux, Team Recorder

- Logan Behnke, Release Manager

- George Cadel-Munoz, Team Architect

Together, under the mentorship of Scooter, we will be working on further developments of the

“Thirty Gallon Robot,” sponsored by Dr. Michael Leverington. Dr. Leverington has proposed an

affordable alternative to incorporating robotics into a learning environment. Specifically, Dr.

Leverington would like to create a robot that, once complete, will be capable of providing

self-guided tours throughout the Engineering Building located at Northern Arizona University.

This is the second year of work on the Thirty Gallon Robot project. While last year’s team

worked hard on getting the robot built and moving, there are still several shortcomings that we

would like to improve, such as:

- R.A.T. can only move with direct human input.

- R.A.T. requires a connected xbox controller in order to receive input.

- R.A.T. is not capable of reading or building maps.

- R.A.T. is not capable of navigating a building on its own.

- R.A.T. is difficult for an average person to start up and get it running.

Our client’s current issue is the robot’s lack of self-navigational components. These components

include software that will allow R.A.T. to operate without a human driver, the ability to read map

inputs, and the ability to self-locate regardless of boot location within the Engineering Building.

3

As a solution, NaviBot Systems would like to provide a navigational module, along with

mapping and location modules, that have the ability to interact with the robot through a

web-based GUI. In this document, NaviBot Systems will cover technological challenges we may

encounter during production, an analysis for each design challenge, a documented approach to

overcome listed challenge, and integrations of solutions into pre-existing systems.

2. Technological Challenges
For the future success of R.A.T., NaviBot Systems will have to address challenges that currently

exist in the current version of the “Thirty Gallon Robot.” There are three important tasks that

must be analyzed to create a solution for the proposed minimum viable product at the completion

of Capstone 2019-2020:

- Navigation: R.A.T. will require a navigational module. This module will provide R.A.T.

with the ability to use its currently installed components (i.e. such as sensors, wheels, and

motors) to drive while also allowing the robot the recognize obstacles, such as walls,

staircases, objects, and people.

- Mapping: R.A.T. will need to know how to read a given map. This module will allow

R.A.T. to understand physical constraints within a given physical area, and the ability to

understand where special landmarks, such as class rooms and offices, are located in the

building.

- GUI: R.A.T. will need the ability to communicate with end users. By providing the robot

with a GUI interface, end users will have the ability to view the status of R.A.T., and get

live updates of important events that occur during the robot’s tours.

In addition to the main requirements listed above, NaviBot systems will need to address higher

level challenges that may arise during development. The main challenges which we will be

focusing on include:

- We will need to create a meaningful map that the robot may utilize.

- We will need to research hardware and software capabilities to accommodate the use of

Wi-Fi localization.

4

- We will need adequate sensors that provide data for the robot’s navigation module and

map-making process.

- We will need a navigational library and/or algorithm with capabilities to support

multi-floor navigation.

- We will need a framework in which to build a graphical user interface that can receive

data from the robot and display the information to the user in real time.

With these technological challenges in mind, an analysis of each possible design challenge must

be made to create an appropriate design for the final iteration of the “Thirty Gallon Robot.”

3. Technological Analysis
An analysis on our technological challenges will provide NaviBot Systems with a deeper

understanding of current issues that we will have to face during the development process. After

analysis, we will consider a possible solution to each issue, as well as alternatives with their pros

and cons. Next, we will conduct research on each likely solution. Finally, we will provide

summations of each decision, along with technology demonstrations that will be developed in the

future.

3.1 Robot Mapping
In order for R.A.T. to navigate around the engineering building, we will somehow need to

acquire a map which is readable by the robot. There are two main ways in which we could

address this. The first is that the robot could roll around the engineering building (either on its

own or with human instruction) and take in sensor data in order to build a map. The other option

is for us to construct the map manually. This would require us to take careful measurements of

the engineering building and would likely require us to develop a simple map making tool. While

the map making tool would probably not be very complex, it would still take up quite a lot of

time and resources that might be better spent in other areas. In the interest of time and future ease

of use, we will focus on exploring the options involving R.A.T. creating its own map. In order to

5

determine our best solution to the challenge of robot mapping, we will be ranking our options in

the following categories:

- Robot Controlled: Does the mapping method rely on the robot to control itself as opposed

to requiring human input?

- ROS Libraries: Does the mapping method have ROS libraries which are maintained, well

documented and easy to use?

- Hardware Limitations: Does the mapping method work with the current hardware

limitations of R.A.T.?

- Stair Avoidance: Does the mapping method grant the ability for RAT to avoid a

catastrophic stair collision?

Now that our criteria have all been laid out, let us begin by looking into what options we are

considering to solve the robot mapping problem.

3.1.1 Options for Robot Mapping
One particular method to tackle the robot mapping problem is using an algorithm called SLAM

(Simultaneous Localization and Mapping). SLAM allows a robot to map out a room on its own

using incoming sensor data to detect obstacles. While the robot is mapping, it is simultaneously

searching for key points on the map in order to determine its location relative to its surroundings.

The robot will explore all paths available to it in the map and eventually will output a file

containing the map. One library that we are considering using for this is the gmapping library for

ROS.

Gmapping implements the SLAM algorithm by having the robot move around the map and take

in sensor data to build the map as new areas are found. During this process, the robot also

self-localizes on the map. Once the robot is finished mapping, gmapping can save the map in a

pgm (portable gray map) file to be used for navigation in the future.

The gmapping library already aligns with our current hardware limitations. Currently, all of the

code for R.A.T. uses ROS and is mostly done in C++, R.A.T. also has wheel counters to measure

6

distance and a kinect to take in some kind of sensor data. While the kinect is not the most ideal

for taking in sensor data there are plenty of documented cases of building a map using gmapping

with a kinect. This will only be made more viable as we look into more high-tech sensors to add

on to our robot. Since there are already several documented projects using gmapping with the

same or similar hardware as R.A.T., the gmapping library will receive a score of five out of five

for the “hardware limitations” section (Table 3.1).

Gmapping would prove very useful as a way to build reliable maps with little human input

needed. Having the robot drive around on its own during the mapping phase would be a great

way to ease us into the robot navigation side of the project. This may ultimately prove to be more

challenging than a human controlled alternative, but it will serve as a great learning experience

which should help us further on in the project. While gmapping allows for robot controlled

mapping, it does require some human control in the beginning of the mapping process in order to

get things going. Therefore, gmapping will receive a score of 4 out of 5 in the “robot controlled”

section (Table 3.1).

Another major benefit of this approach is that the SLAM algorithm, and gmapping in particular

are very well documented. SLAM seems to be the most common way for robot map building,

and gmapping seems to be the most popular implementation of this in ROS. There are several

documented projects using gmapping with hardware which is very similar to what R.A.T. is

using. Additionally, there are pages of in depth tutorials of gmapping on the ROS website to help

get things up and running. Therefore, gmapping will receive a score of five out of five for the

“ROS Libraries” section (Table 3.1).

The layout of the multi-floor layout of the engineering building will provide us with some

additional challenges during the mapping portion of the project. One of the things that we

desperately need to avoid when the robot is moving around the building in any fashion is the

stairs. We are not sure if gmapping, or a SLAM algorithm in general would have the capabilities

of detecting stairs. Seeing as sensors typically are looking to detect and map walls and there are

7

no walls in the beginning of the stairs, this would likely pose a potentially big issue as a failure to

detect stairs could lead to a catastrophic failure. For this reason, gmapping will receive a score of

one out of five for the “stair avoidance” section (Table 3.1).

Another method in which we could acquire a map for our robot is to drive him around the

engineering building manually while it collects sensor data. It seems that this method has far less

support in the ROS libraries. It has proven extremely difficult to find any instance of this method

being implemented within a ROS project, which is a definite cause for concern. Since there does

not seem to be much support for this method within ROS, we would likely have to write a fair bit

of code on our own in order to implement this method. This could prove to be a risky time sink

which could lead to a big setback in the project. Therefore, the human controlled mapping will

receive a score of zero out of five for the “ROS Libraries” section (Table 3.1).

While the lack of support and documentation in ROS could prove to be a problem, having the

mapping process controlled by humans could be a viable solution to the stairs problem presented

earlier. If a human is controlling the robot, they will have the capability to detect the stairs and

thus avoid potential catastrophe. In either case, this would not stop the robot from falling down

the stairs when using the map to navigate, since that would just be an unmapped area. We would

likely have to draw our own line surrounding the stairs to represent a wall and thus making the

stairs unreachable whether we use SLAM or we control the robot on our own. For the purpose of

creating a map, human controlled mapping will receive a score of five out of five for the “Stair

Avoidance” section (Table 3.1).

R.A.T.’s hardware limitations should prove no issue for a human controlled mapping approach.

As long as R.A.T. is able to take in sensor data (covered by the kinect) and has the ability to

move via human input (covered by the motor and xbox controller), a human controlled approach

to mapping has all of the tools needed to be a viable option. Therefore, the human controlled

mapping will receive a score of five out of five for the “Hardware Limitations” section (Table

3.1).

8

Lastly, it should be fairly obvious by now that the human controlled approach to mapping does

not rely on the robot to navigate on its own. If we were to implement this approach, we would

need to follow the robot around throughout the whole engineering building in order to control it

via xbox controller while the map is being built. Therefore, the human controlled mapping will

receive a score of zero out of five for the “Robot Controlled” section (Table 3.1).

3.1.2 Proposed Solution for Mapping
Based on the metrics shown in Table 3.1,

our team will be using the gmapping

implementation of the SLAM algorithm to

build maps for our robot. The SLAM

algorithm will work well with the

kinect sensor that is provided to us and

will work even better with the addition of a

more technically proficient sensor of our choosing. It is also supported and very well

documented in ROS via the gmapping library. Having the robot build its own map would serve

as an excellent introduction for us as a team to robot navigation and localization techniques.

While it lacks the ability to detect stairs during its mapping process, we feel that the ROS support

and documentation will provide us with a much easier time implementing a solution to the

mapping problem.

3.1.3 Future Feasibility Testing of GMapping
We have several methods of testing gmapping’s feasibility going into the future. To begin our

testing, ROS has built-in simulating software which we can use to test the library’s map making

capabilities. While the simulation will help further prove the gmapping library’s ability to build

maps, it may not hold entirely accurate to the problems faced by a real robot in a physical setting.

To accomplish this, we have several smaller robots provided by our sponsor for testing purposes.

9

These robots can act as crash-test dummies to test this mapping software without the risk of

catastrophe at unexpected obstacles such as stairs.

3.2 Wi-Fi Localization
Most localization systems, e.g. phones or robots, use both GPS and Wi-Fi signal to help

determine the exact location of the device. However, unlike most systems our robot will not need

GPS capability to localize itself properly. There are three reasons for this. First, our robot will

not be changing buildings and will only need to know its position relative to the Engineering

building. Second, since our robot will be inside a building that has poor phone signal, the GPS

signal would likely be poor. Third, our budget does not allow for the purchase of GPS

technology. For these reasons, a robust and precise Wi-Fi localization system is necessary for

R.A.T. to define its position in the Engineering building correctly. In order to do this we will

need accurate physical locations of Wi-Fi routers identified on RAT’s internal map, and a way

for R.A.T. to interpret Wi-Fi signal into location data.

There are two ways of adding the physical locations of the Wi-Fi routers onto RAT’s map, add

the routers manually with human input or to have R.A.T. add them based on signal strength. As

discussed in section 3.1, having R.A.T. do the mapping via the SLAM algorithm is better than

mapping via human input. Similarly, having R.A.T. add Wi-Fi routers to its maps will make

R.A.T. much more modular and adaptable than hard coding them.

3.2.1 Options for Wi-Fi Localization
There are a number of proposed solutions to indoor localization using Wi-Fi. Some of them

discuss using AMCL (Adaptive Monte Carlo Localization) in conjunction with Wi-Fi signal

strength data (Sources:

http://wiki.ros.org/indoor_localization, https://github.com/cra-ros-pkg/robot_localization,

https://github.com/RMiyagusuku/ros-wifi-localization,

https://github.com/subpos/subpos_receiver).

10

http://wiki.ros.org/indoor_localization
https://github.com/cra-ros-pkg/robot_localization
https://github.com/RMiyagusuku/ros-wifi-localization
https://github.com/subpos/subpos_receiver

Plenty of these proposed solutions are more than two years old and were developed or proposed

for older versions of ROS. One or two frameworks (not listed) required proprietary IR modules

to be set up in the building. This is far less than ideal. Thus, the indoor-localization ROS

framework and package will be our best bet for accurate and proper localization. While this

package is made specifically for UWB sensor localization, it can be configured with relative ease

compared to the other possible frameworks to work with Wi-Fi localization.

3.2.2 Wi-Fi Localization Framework Scores
The age of a package

(being determined by the

last date package code

was edited) is important,

because more recent

packages are more likely

to have continuing

support from their

developers. For this reason, the Indoor Localization and Robot Localization packages have both

received a 5 out of 5 for their current implementations and up-to-date support (Table 3.2). The

subPOS system was last edited 4 years ago, and thus is probably not outdated but may not be

actively supported by developers should our team have questions. Therefore, the subPOS system

has received a score of 3 (Table 3.2). The ROS_wifi localization package was last changed 1

year ago, and while not currently being worked on will probably still receive support from its

developers thus giving it a score of 4 (Table 3.2).

Another important aspect of determining the package our team will use is the Operating System

that a specific package was developed for. Packages developed for the Kinetic version of ROS

receive a 5, while packages developed for older versions of ROS will receive a score based on

how different from Kinetic that operating system is. The subPOS package is built for arduinos,

and in order to use it our team would need to program arduinos with it and them implement those

11

into our system which could be complex and time consuming. For this reason the subPOS

package received a 2 out of 5 (Table 3.2). The Robot Localization package does not have any

documentation on which operating system it was developed for and thus receives a 0 out of 5 for

being a possible wild-card during development (Table 3.2).

The other scoring categories are Documentation, Modularity, and Ease of Setup. Packages with

more complete documentation receive higher scores in the Documentation category. This

includes the Indoor Localization package’s tutorials on usage (a documentation feature that no

other package in consideration has). Packages that can easily be set up to work in a variety of

environments with a variety of technologies receive higher scores in the Modularity category.

For this section, the focus was on whether a package had a lot of hard-coded values or not. Since

the nature of our team’s work is fairly cutting edge, our team needs packages that will allow

changes without the need for editing package code. For this reason both the Indoor Localization

and subPOS packages received 5 out of 5 for this category (Table 3.2). The final scoring

category is Ease of Setup. This category is based on how simple or complex a package is, and

how straight-forward its installation and implementation process is. For example, the Indoor

Localization package received a 0 out of 5 due to its complexity and the difficulty that may occur

in setting the package up to work with RAT’s systems (Table 3.2).

3.2.3 Chosen Localization Package
Based on the scores in the above figure, the Indoor Localization package will be our best option

for Wi-Fi based localization despite its current usage of UWB technology. The systems in place

for storage of UWB data will be fairly easy to modulate to work with our Wi-Fi systems instead

as the current data structures in place for storage will carry all necessary Wi-Fi information. In

addition to this, writing a system to base Wi-Fi router location for localization and mapping use

will be necessary regardless of the package used due to the nature of our specific project, and can

even be adapted from the UWB framework with relative ease.

12

To demonstrate the ability of Wi-Fi-based position a number of free programs exist for mobile

applications, Windows OS, and Mac OS. These programs can be used to show how distance

from a router can be measured based on signal strength and ping time.

3.3 Sensors
For navigation and mapping, we need sensors to be able to read in data from the surrounding

environment to make decisions. There are many types of sensors that can be used for navigation

and mapping. The two main types of sensors are lidar (Light Detection and Ranging) and

rgb-d(red green blue depth). The criteria we used to compare these two types of sensors were

ability to detect stairs, ROS supported, SLAM supported, and cost. The three sensors we are

looking into are the slamtec RPLIDAR A1, the Microsoft Kinect, and the Intel RealSense.

3.3.1 RPLIDAR
The slamtec RPLIDAR A1 has ROS support packages and supports SLAM navigation.we give

this sensor a 5 out of 5 for ROS support and SLAM support because it is well documented and

there are tutorials on how to get started with this sensor. Since it is a lidar sensor it would not be

able to detect stairs because of the limitations of lidar. The cost of this module is about $160 for

that we gave it a score of 3 out of 5 for cost because it is not the most expensive of our sensors

we are looking into.

3.3.2 Microsoft Kinect
The Microsoft Kinect is a cheap rgb-d camera. It takes a picture and a depth image to determine

if there are obstacles in the area. There are ROS packages that will allow us to take the 3D data

from the depth image and convert it to a 2D scan using the closest points in each column. Using

those converted data we can use it in our mapping and SLAM algorithms. The Kinect can be

used to detect stairs using cliff detection. Since the Kinect can detect stairs we gave it a 5 out of

5 for stair detection. Since we already have this sensor the cost is nothing for this we gave it a 5

out of 5.

13

3.3.3 Intel RealSense
The last sensor that we looked into was the Intel RealSense rgb-d camera. This is produced by

Intel and has ROS support built into it. It is used to just like the Kinect but it was developed

specifically for use with SLAM navigation. We can use it to detect stairs from the 3D data. The

cost of this sensor is from $150-300 to get both tracking modules.

3.3.4 Chosen Sensor
Out of these options we chose to keep using the Kinect sensor as our main sensor. We chose it

because the cost is the lowest and we are still able to move around the building with the data it

can provide. It has the ability to detect stairs very well and it has well documented ROS packages

with tutorials that will help us get started.

 Detect Stairs ROS Support SLAM Support Cost

Salmtec
RIPLIDAR A1 1 5 5 3

Microsoft Kinect 5 5 5 5

Intel RealSense 5 5 5 1

3.4 Multi-floor Navigation
Multi-floor navigation is required to be able to give a full tour of the engineering building. In

order for this to be achieved the robot will need to be able to switch between maps of the

different floors, navigate to transition points between the maps, control elevator commands, and

avoid obstacles that may be in the robots way. There are three main ways we can approach this

problem. The first way is to use the Navigation package from ROS. the second way is to add on

to and update the Multi_map_navigation package. The final approach is to create a ROS package

from scratch that incorporates all of these features that we require to guide the robot.

14

3.4.1 ROS Navigation
This first approach using the Navigation package from ROS will allow us to move the R.A.T

from the start with very little development on our part. We will be able to set up goals for R.A.T

to navigate and avoid obstacles. This package does not allow us to switch between maps while

the robot is navigating around the building.

3.4.2 Multi Map Navigation
The next approach is to update the open source multi_map_navigation pack that is on Github.

Updating this pack will take time and effort to do but will allow us to easily switch between

maps of the building and has an elevator script that can be modified to allow us to control the

elevator. The multi map navigation will be able to navigate to goals on the currently selected

map to other maps stored on the robot.

3.4.3 Build Our Own
The final approach is to create our own navigation package from scratch. This will take the most

time and effort on our end. It would be able to achieve all of our goals that we have set up. It will

also require very in depth knowledge of how ROS works and creating a navigation algorithm.

3.4.4 Chosen Navigation Approach
Our team choice is to modify the multi map navigation package. This option will allow us the

best results because it has a proven navigation algorithm. Updating the package will take some

time but the person

who updated it last

said that they would

answer any question

that we have about it.

15

 3.5 Graphical User Interface
Not only is it important for the robot to be able to know where in the Engineering building it is,

but it is also necessary for an operator to be able to track RAT’s movements and see its location.

In addition, a rather helpful stretch goal of ours is to also be able to see its status, such as whether

or not there’s a problem in its functions or, in the worst case scenario, it happened to fall down

the stairs and was incapacitated. It could send an alert for the operator to see. And so, in order to

do any of this, it is crucial to have some form of a graphical user interface.

Dr. Leverington made it clear that he would like something web-based on a computer platform

rather than a mobile application (not that he couldn’t have use for one in the future) for the GUI.

Other than this, we are not limited by many constraints, since our main goal is navigation.

However, we will still be looking for a GUI framework that would be the most organized when

displaying RAT’s movements on a map, the easiest to implement, and the simplest way to

receive alerts from RAT. For the future, another thing to consider is the ease with which it is

possible to integrate system admin or user accounts. These are the requirements we will use to

compare our options.

First, to investigate two Python GUI frameworks. Python in general was chosen as a

programming language because it’s an interactive programming language and is known to be

fairly simple to use and gaining traction. It also has a wide range of GUI frameworks, but the two

picked from over a dozen options are Kivy and TkInter. Both were listed on a development blog

titled “The 6 Best Python GUI Frameworks for Developers,” Kivy for supporting multiple

platforms including Raspberry Pi which we are using; and TkInter for being commonly bundled

with Python, simple, and having a good GUI itself (Source:

https://blog.resellerclub.com/the-6-best-python-gui-frameworks-for-developers/). CEF Python

and Qt Designer were the environments used for testing based on the list from the Python Wiki

(Source: https://wiki.python.org/moin/GuiProgramming).

16

https://blog.resellerclub.com/the-6-best-python-gui-frameworks-for-developers/
https://wiki.python.org/moin/GuiProgramming

CEF Python wasn’t too difficult to figure out;

a simple “Hello World” program was used

and created a new GUI window (Figure 3.4a).

The code is reminiscent of Python and

JavaScript, which members of the group are

familiar with.

Qt Designer is a bit less intuitive when testing

as it is a form design tool with plenty of

options that made it complicated to see what it

was doing. However, because it gives much

more control to the user as to the formatting,

we can easily see it being a good tool to use in

order to make a simple GUI for RAT’s

operator, and thus it is what we went with.

17

4. Technology Integration
While software is the primary concern for NaviBot Systems, we must also account for

integration with pre-existing hardware. We need to understand the physical capabilities of our

current tools, and what limitations may or may not exist regarding hardware. Not only will

NaviBot Systems need to develop three core features for the functionality of R.A.T., but we will

also need to integrate the functionalities of the main features. Each module will be capable of

collecting necessary information, as well as communicate the information to other modules in a

meaningful format.

18

In Figure 4, a system diagram depicts the envisioned interaction of individual modules planned

for R.A.T. implementation. The three main components, GUI, Navigation, and Mapping, are all

connected. Each module gathers information, calculating their given inputs, and converts the

inputs into readable outputs for other modules in the series.

4.1 Navigation and Mapping Cohesion
Once R.A.T. gains the ability to read map inputs and operate equipped hardware, the navigation

and mapping modules will need to communicate with one another to establish location. This

means that the robot will need to record sensor information, such as hallway distance, reference

points, and other surrounding inputs. After assessing the current area, the robot will transfer the

information to the mapping module, and attempt to match similar layouts to maps stored in the

robots memory. This will allow the robot to determine its location by simply referencing given

data and comparing analyzed data.

Along with localization, R.A.T. will be capable of utilizing the given map to search for a

specified location. This means that the robot can path find to a destination, since the robot will

know its current location after performing a localization assessment. The mapping module can be

seen transferring routes to the navigation modules in Figure 4.

4.2 Navigation and GUI Cohesion
While direct interaction with R.A.T. is required, this iteration of the GUI module will only need

to allow the robot to communicate status updates to the end user. In cohesion with the navigation

module, the GUI will provide the user real-time events. These events include:

- A current action: What movement task is currently being performed by the robot.

- A status: A message containing details of the robot’s current state, such as moving and

idling.

- An error message: Should some occurrence that forces the robot outside of normal

operating conditions, an error must reach the end user.

The integration of inputs both modules utilize can be viewed in Figure 4.

19

4.3 GUI and Mapping Cohesion
Finally, NaviBot Systems will need to provide a method that will allow the GUI module to

communicate with the mapping module. Without allowing the GUI to receive information from

the mapping module, the GUI will not be able to display finer details to the end user. The

mapping module will need to pass R.A.T.’s local information. Once retrieved, the GUI shows the

user the robot’s mapping operations, which includes the current location of the robot and the set

destination for the robot.

20

5. Conclusion
The “Thirty Gallon Robot,” commonly referred to as R.A.T., for Robot-Assisted Tours, is an

ambitious project. This robot is designed to be self-guided, with the ability to provide tours for

future students and educational departments, particularly in electrical engineering and computer

science. NaviBot Systems’ primary goal is to provide necessary software for the current iteration

of R.A.T.; a GUI to allow end user communication; a mapping module to allow localization and

path finding; and a navigational module to enable self-driving capabilities. This document

discusses the technological feasibility of the “Thirty Gallon Robot,” and addresses the multiple

technical challenges that we will face during production.

We are pleased to present our research, which we believe will lead to successful software

integration and implementation of the overall objective of the project:

Technical Challenge and Solution Table

Technical Challenge Proposed Solution Confidence Level

Implementing a navigational
module that will allow R.A.T. to
operate hardware for movement
and environment analysis.

SLAM Algorithm (Gmapping):
Excellent cohesion between
software and hardware
capabilities.

15 / 20 : SLAM Algorithm utilizes
tools that pre-existing hardware
provides.

Implementing mapping and
localization that will allow R.A.T.
to determine its current location
and develop its own maps.

Indoor Localization Package:
Despite variation in hardware,
the package can be modulated
to accommodate current
hardware with included wifi
localization mapping methods.

20 / 25: While it will take extra
time to reconfigure the software
to be compatible with R.A.T.’s
hardware, the Indoor
Localization Package is
promising with documentation
and tools provided.

Acquiring sensor data to
facilitate mapping and
navigation.

Kinect: The kinect provides an
inexpensive way to gather
sensor data.

5 / 5: The Microsoft Kinect
sensor provides useful data
scanning inputs, and related
library support and
documentation is widely
available.

(Continued on next page)

21

Technical Challenge and Solution Table (Continued)

Implementing a navigational
module which can handle
multi-floor navigation.

Multi-Map Navigation Package:
Built in escript will allow R.A.T. to
control the elevator.

20/25: While the package still
does not provide us with
everything needed for multi-floor
navigation, we feel confident in
our ability to modify it to our
needs.

Implementing a GUI that will
provide end users with status
updates and process information
given by R.A.T.

Qt Designer: Although it is slightly
less intuitive to work with, Qt
Designer provides great
formatting options which will allow
us to create the best GUI
possible.

8/10: QtDesigner will allow us to
fulfill all requirements of the GUI
as specified by Michael
Leverington.

The table shown in Figure 5 showcases a list of technical challenges documented. These

challenges are obstacles that NaviBot systems will hope to overcome. Figure 5 also displays

proposed solutions; tools that will help aid in the future development of R.A.T.. These solutions

are accompanied by confidence level ratings, meaning that the research spent in studying the

listed tools have been chosen to help in solution development.

NaviBot Systems is excited to be given the opportunity to work on “Thirty Gallon Robot, Part

Deux,” and look forward to developing and incorporating our proposed solutions elegantly into

new software for this project. While it may take time for us to implement our features, we are

sure any new challenges that arise during development will undergo a similar analysis process to

ensure consistent and reliable solutions.

22

