

NaviBot Systems

Michael Leverington - Sponsor
Scooter Nowak - Mentor

Diva Ferrell, Logan Behnke,
Peter Aaron Giroux, George Cadel-Munoz,

Benjamin Peterson

Software Testing Plan Version 1
04/03/2020

Overview
This document will outline a test plan for the Thirty-Gallon Robot Part Deux project. We at NaviBot Systems
will address how we plan to meet the expectations of our sponsor, and ensure that our implementation
satisfies the functional and nonfunctional requirements described thus far.

Table of Contents
1. Introduction 2
2. Unit Testing 4

2.1 Wi-Fi Scanning 4
2.2 Wi-Fi Localization 5
2.3 GUI and Server Functionality 6
2.4 Mapping 7
2.5 Navigation 7

3. Integration Testing 9
4. Usability Testing 12
5. Conclusion 14

1

1. Introduction

Together, under the mentorship of Scooter Nowak, NaviBot Systems has been working on

further developments of the “Thirty-Gallon Robot,” sponsored by Dr. Michael Leverington. Dr.

Leverington is a lecturer in the College of Engineering, Informatics, and Applied Sciences

program at Northern Arizona University with a masters in both computer science as well as

educational psychology, and a PhD in curriculum and instruction. He has proposed an affordable

alternative to incorporating robotics into a learning environment. Specifically, Dr. Leverington

would like to create a robot that, once complete, will be capable of providing self-guided tours

throughout the Engineering Building located at Northern Arizona University, and we determined

the need of a Navigation module, Mapping module, a Wi-Fi Localization module, and GUI. For

a more in depth look into these components, refer to our Software Design Document.

Testing is an essential part of any large scale software project which involves writing code to

check that all aspects of your application are running as intended. There are many different

methods to testing a software project which lend themselves to different scenarios. For example,

you may write simple functions to assert that the return value of a function is as you would

expect, or you might need a focus group to test out your GUI to ensure that it is intuitive to its

intended users. Regardless of the types of tests being deployed in a software system, they all

contribute to a bigger picture of clean, efficient and easy-to-use code that is working as intended.

For the purpose of the Thirty-Gallon Robot Project, we will start by writing unit tests throughout

each of our modules outlined above. These unit tests will test many key functions in each module

to ensure that they are working as intended and any edge or failures have been properly

addressed. Once our unit tests are implemented and passing, we will write integration tests to

check on the interactions between all of the components. These interactions include data sent

back and forth between the GUI and the Navigation module as well as data sent from the

Mapping and Localization modules into the Navigation module. These integration tests will

work to prove the different components of our project are able to work together efficiently and

2

without error. Lastly we will be performing usability tests on our GUI. In these tests, we will

have various users try our GUI and provide feedback. This will ensure that the user’s

interpretation of our GUI is in line with the way it’s been programmed.

We feel that these three testing methods will work hand in hand to create a very good test

coverage of the entire project. Unit tests will ensure that the inner workings of each component

run as expected, integration testing will show that the interactions among the different

components are handled correctly, and the user testing will show that our GUI is intuitive and

user-friendly. We will begin the discussion of our testing plan with unit testing.

3

2. Unit Testing

Unit tests are vital during the development stages of large scale software projects. They are used

to ensure that the product is being developed to consumer specifications, and to ensure that the

product is being developed correctly. These tests allow us to validate portions of our modules

and ensure that the overall module performs how we expect them to run prior to the integration

phase. Each module—Wi-Fi Localization, GUI and GUI server connection, Mapping, and

Navigation—will have individual unit tests written in their respective language (i.e. Python,

C++, etc.).

2.1 Wi-Fi Scanning
The Wi-Fi scanning module will have unit tests written in Python 2.7, as the scanner itself has

been written in Python 2.7. Utilizing the built-in Python library unittest, tests will be looking for

set requirements as dictated by the user (however, in integration, set requirements will be given

to the scanning module via the Wi-Fi Localization module). For the Wi-Fi scanning module to

pass all tests, the program must be capable of providing the following:

- A comma separated value file with a header. A CSV file stores all information about a

router, including signal strengths, signal names, signal addresses. This file is a necessity

for the Wi-Fi Localization module as it provides vital information to help approximate

R.A.T. in the engineering building.

- A comma separated value file with a specified name created after running the

module. In order for the CSV file to serve its purpose, the Wi-Fi Localization module

should be able to locate the CSV file by a given name and location. This test ensures that

the file will always be found under the specified name/system location.

- A list of scanned routers with legal values. Sometimes hardware can become

inconsistent and provide false or incorrect information. To exclude data from routers

displaying illegal values (such as values < 0% signal strength and values > 100% signal

strength), this unit test will ensure that all values recorded in the table are within desired

bounds, and will continue to rescan routers until the requirements are met.

4

- A list of scanned routers listing greater than 3 routers. For the Wi-Fi Localization

module to provide an approximate location, the minimum requirements for the

localization algorithm requires at least 3 routers. With at least 3 routers, R.A.T. may be

able to triangulate its own location.

- A list of scanned routers with signal strengths bearing values greater than or equal

to a specified value. To provide reliable approximations, the signal strengths of the

routers will have to meet a minimum value in order to be usable information. This can be

set via a command line flag and the unit test will ensure all recorded routers have a signal

strength bearing the specified signal strength value or greater.

With these given requirements, a reliable Wi-Fi scanner will be able to provide countless

amounts of information without sacrificing quality and quantity of data.

2.2 Wi-Fi Localization
The Wi-Fi Localization module will have unit tests written in Python 2.7 to match the Python

version that R.A.T will be running. Testing for this module will use Python’s built in library

unittest. In order to pass the test the Localization module will need to take various pre-generated

CSV files with router information and a pre-generated “map” with coordinates for each router. It

will then need to correctly output the following:

- A dictionary containing correctly calculated distances based off of signal strength

which does not include distances over 25 meters.

- This will test both the calculation of distance from signal strength, and the

removal of outliers. The distance calculation must properly use the following

formula: where FSPL is the Free-Space-Path-Loss01 (F SP L − K − (20 log(f)))/20*

equation. The outlier removal function must remove all distances over 25 meters.

- A dictionary containing correctly formatted router information with the mac

address as a key

- This will test the function that reads a CSV file for router information. It must be

able to read all of the information from the CSV and format this into a dictionary

correctly.

5

- A list of correctly calculated intersections of each distance circle.

- This will test the intersection function as well as the removal of outliers from the

intersection list. Intersections must be calculated using a series of equations, and

thus can be tested in reverse using the Pythagorean Theorem. Once the

intersections are calculated the outlier removal function must remove all

intersections which would leave the predefined building constraints.

- A correctly calculated midpoint

- This will test the final part of the module, where the midpoint is calculated. The

midpoint must be within 5 meters of the predefined location of R.A.T. that was

used to create the test. Ideally the midpoint should equal the predefined location

of R.A.T. however this is not always possible.

For this testing a module will need to be created to generate locations of R.A.T, a CSV of signal

strengths being a communication between R.A.T. and the building routers, and a CSV of router

locations that works properly with the signal strength CSV and the location of R.A.T.

2.3 GUI and Server Functionality
As stated previously, the GUI—named “R.A.T. Tracker”—is the component that an operator will

have the most interaction with. It displays R.A.T.’s location and status, which gets consistently

updated every fifteen seconds. That being said, it is imperative that it is well-tested and that we

catch undefined behavior. We will check the functions that get called whenever a button gets

pressed to see if they are doing their jobs. For example, the “Submit” button for choosing a room

and floor for R.A.T. to go to uses the POST method, and in this method the form is checked to

see if it is valid before it can be referenced in HTML. Values in the database are also checked

before being shown to the user in the frontend. We will also check that the server connection is

consistently stable.

Since much of the GUI functionality relies on an interaction between a database to retrieve or

update certain data, it may be difficult to write unit tests since return values and parameters to

these functions are likely to be different every time. In order to work around this problem, we

6

will use pytest mocking to avoid any real connection to the database. Rather than retrieving the

live data from the database, we will simply mock the function that would access the database to

return a value of our choosing. This will allow us to test the functionality of the GUI

independently of its connection to the GUI server, which will be tested separately in our

integration tests.

2.4 Mapping
For the Mapping module, much of the usability relies on real-world-testing. R.A.T. will need to

be able to read a map input. To test the map readability, R.A.T. will be given a “hand-drawn”

map, meaning a floor plan with defined distance. These tests will need to operate in conjunction

with the navigation module, as correct map reading will prove that the Mapping module is

providing correct instructions to the navigation hardware. In order for the Mapping module to be

deemed complete, R.A.T. will need to perform and pass the following tests:

- Traverse a known distance. An example of a known distance is a hallway. This will

ensure that R.A.T. will be able to travel straight pathways.

- Provide clearance for navigation. R.A.T. is given its own dimensions, which means

that it will have to account for clearance between itself and walls. This will ensure that

R.A.T. will always avoid collisions in perfect conditions (i.e. no obstacles moved in front

of R.A.T. during operation).

- Account for inaccessible areas. This marks areas such as stairwells being inaccessible

for traveling. Doorways are also to be avoided, as tours inside individual rooms are

unnecessary.

Through these tests R.A.T.’s ability to read and interpret the given “hand-drawn” map will be

examined. Each unit will show a different part of R.A.T.’s mapping abilities.

2.5 Navigation
Most of the Navigation module’s usability also relies on real-world-testing. For the unit testing,

it would be the best to run R.A.T. through a series of hallways, rooms, and situations to ensure

7

proper navigation. This means that our team will set up automated scripts to give commands to

R.A.T for various scenarios.

- Scenario 1

- R.A.T. will be placed in a straight hallway and will be told to move various

amounts forward, backward, and to each side. R.A.T must be able to distinguish

between open space and obstacles, and must move as directly as possible.

- Scenario 2

- This will be much like Scenario 1 with the addition of un-mapped obstacles, and

moving people (our team)

- Scenario 3

- R.A.T. will be placed in an open space with various un-mapped obstacles like a

classroom or lab space. R.A.T. will be sent various commands like the commands

in Scenario 1 and must be able to distinguish between open space and obstacles,

and must attempt to take the most direct route possible.

- Scenario 4

- This will be much like Scenario 3 with the addition of un-mapped obstacles, and

moving people (our team)

- Scenario 5

- R.A.T. will be put through a series of combinations of obstacles 1-4 with various

un-mapped obstacles.

- Scenario 6

- R.A.T. will be told to move to the end of a hallway with stairs. R.A.T. must be

able to detect the stairs and either return a warning or at the very least attempt to

avoid the stairs. R.A.T may not sit at the top of the stairs, and thus must move at

least 3 feet away before attempting to process any new commands or information.

These various tests will handle all of the units that comprise R.A.T’s various movement and

navigation capabilities. They will also test R.A.T’s ability to avoid new obstacles, mapped

obstacles, moving obstacles, and stairs.

8

3. Integration Testing

Integration tests are a key part of developing and maintaining a well-running software project.

While unit tests focus on the inner workings of a project’s individual components, integration

tests are focused on ensuring that these components can communicate the necessary information

between each other in a seamless and bug-free manner. For the purposes of our project, there are

several connections between our four modules that will benefit from integration tests. These

connections include those between the Wi-Fi scanning module and the Wi-Fi Localization

module, the Wi-Fi Localization module and the Navigation module, the Navigation module and

the GUI server, and lastly, the GUI webapp and the GUI server.

Integrating the Wi-Fi Localization and Wi-Fi scanning module involves the communication of

commands from the Localization module to the scanner. The Localization module will need to

provide necessary arguments such that the scanning module can account for desired information

and formatting. Since signal strengths have an important role in determining the outcome for a

location approximation of R.A.T., the Localization module will need to dictate the type of signal

strength necessary to provide accurate location approximations to the Navigation module. In

order for the Localization module to read data collected by the scanner module, the Localization

module will need to provide a file name and location that it will be able to access once the

scanner completes its tasks of seeking and recording Wi-Fi signals with appropriate data, that has

also been tailored to the specifications of the command arguments given by the Localization

module.

Once all communications between the Wi-Fi Localization module and Wi-Fi scanning module

have concluded, the Localization module will compute an approximation of R.A.T.. This

calculation will be passed on to the Navigation module, in an attempt to remove extraneous

guesses where R.A.T. could be located. Limiting the amount of guesses the Navigation module

estimates will decrease processing load and increase localization performance. Removing extra

9

load from localization allows R.A.T. to identify its surroundings quickly, and continue with

further navigational operations.

In order to test that the communication between the GUI webapp and the GUI server are

integrated correctly, we must check up on the retrieval and updates on data in the GUI server’s

database. This connection yields very little risk of failure since both of these components are a

part of the same Django project. However, it is still very important that the communication with

the database is running as expected, and therefore we will create integration tests to ensure this.

These tests will be written using pytest and will work on an area of the database set up

specifically for testing. The tests will be relatively straightforward, simply testing that an update

and retrieval of data are carried out successfully when called from the webapp.

The communication between the GUI server and the Navigation module allows a user to send

commands to the robot. As such, it is very important that this communication is implemented

properly to ensure that the robot is receiving and interpreting the correct information in a timely

manner. Failures to pass this information quickly may result in catastrophic failures such as a

robot collision. In order to ensure that these failures don’t occur, we will be running integration

tests on this connection using pytest. These tests will send sample data from the server to the

Navigation module and vise versa.

For tests involving data sent from the Navigation module to the GUI server, we will want to send

sample data (x- and y-coordinates, robot status string) to the server on some time interval since

this is how the program will run in practice. Upon receiving this data, we will check on the GUI

side that the locations are within range of the map, and the status string is valid. We also want to

check that the messages are received on time intervals similar to the ones that the navigation is

sending them with.

For tests involving data sent from the GUI server to the Navigation module, we will send sample

data to the Navigation module (an x- and y-coordinate that corresponds to a room on the map).

10

We will test that the Navigation module has successfully received this information. Once the

information has been received, we will check that the x- and y-coordinates are valid on the map,

as well as check that they correspond to the room that was specified by the GUI server.

11

4. Usability Testing

Unlike previous testing methods mentioned throughout this document, usability testing places its

emphasis on the user experience of a project as opposed to the proper execution of code. Testing

to assure that a programs front end is acceptable by an end user can’t be done by writing code.

Instead, usability testing is often conducted with methods such as focus groups, where

developers of a project can receive real feedback from real users.

NaviBot Systems wants to provide software that will be relatively simple for our client to operate

on a day-to-day basis without having to consult manuals and documentation often. Our GUI is

the only part of the Thirty-Gallon Robot project that an end user will be interacting with.

Usability testing will help us to ensure that our GUI is intuitive and functions according to an

end user’s expectations. Additionally, these tests will help show whether or not our GUI provides

enough functionality for a user to operate the robot effectively.

In order to conduct usability tests on our GUI, we will enlist the help of three different groups of

people, these being Computer Science professors, Computer Science students, and

non-Computer-Science users. It is likely that the end users of this project will have some

computer science background, however this is not guaranteed. The goal of breaking up our test

groups into these three categories is to allow for three different levels of expertise to provide

feedback on the project. Computer Science professors and students may provide helpful critiques

on technical improvements that would create for a better experience, while

non-Computer-Science users may point out design flaws that might otherwise go unnoticed.

In order to allow these groups to test our project, we will present them with our GUI and tell

them to send a robot to a certain room. Once the tester has issued a command, we will ask the

user to read the robot’s status and location to us while it is moving to its location. If the testers

are able to issue a command to the robot without asking for our assistance, this will act as a good

indication that this feature has been implemented in a way that is easy for users to understand.

12

Contrarily, if the users are unable to send a command to the robot without asking for help, this

will likely act as a sign that something about our design is in need of change. If the testers are

unable to read the robot’s status and location from the GUI, then this is an indication that the

information is not presented clearly enough on the screen. After a tester has carried out these two

tasks, we will offer them a chance to provide any feedback about the GUI that they have picked

up on. To help guide this conversation, we will have questions prepared to ask the testers about

their experience with the GUI.

This process will be carried out with as many testers as possible. Having a larger group of testers

will allow for more diverse feedback about the GUI which will help guide us to a polished and

well-working product.

13

5. Conclusion

NaviBot Systems is dedicated to providing an efficient, easy-to-operate, and autonomous robot

for the purpose of showcasing the Engineering Building and garnering attention to both the

computer science program and Northern Arizona University as a whole. The four modules being

delivered are Wi-Fi Localization, Navigation, the GUI, and Mapping. Because these modules are

closely integrated and built off of one another simultaneously, we will put significant time into

testing these components individually in addition to how they work together as a single unit.

The testing of the Wi-Fi Localization module and scanning the routers involves using the built-in

Python library unittest, two of several passing requirements being a list of scanned routers with

legal values and a list of scanned routers listing greater than 3 routers. The Navigation module’s

testing will consist of traveling through straight hallways—both with obstacles and

without—including avoidance for people. As for the GUI’s testing, it focuses more on simulating

what functions called by buttons would access within the database and ensuring that they return a

value that is up to standard. Lastly, the Mapping module’s tests involve the criteria of traversing

a known distance, providing clearance for navigation, and recognizing areas that are off-limits to

R.A.T.

With these benchmarks in mind, we plan to do a thorough job testing the Thirty-Gallon Robot in

order to deliver a working system with as few problems as possible to our client. This is a project

with the potential of inspiring others to inquire more about computer science and robotics, and to

see what kind of learning opportunities can be found at the university. Thus, we are excited and

confident in our ability to provide such a tool.

14

