
NAU–CS Team Project Self-Reflection Worksheet

Overview: At the end of a project, it’s useful to go back and reflect on how the
project went, how the team functioned, how effectively you used tools, and so on.
This worksheet is designed to guide you in this process, and capture the outcomes.

How to fill this out: Hold a final team meeting, after you’ve turned in the last
deliverable and the heat is off. Order a pizza, crack open a beverage. Then sit down
as a team and go through the following worksheet, discussing and filling in each
section. Type up and the result, and email the document to your team mentor.

Grading Metrics: You will not be graded on the content of this document per se.
That is, if for instance, your self-assessment concludes that you “didn’t use version
control tools effectively”, then this shortcoming won’t affect your grade; the point is
that it should be an honest assessment. What you will be graded on is how well you
fill in this document: thoughtful self-analysis gets a perfect score;
cursory/lame/vague self-analysis will score low. We instructors use this document
to help us think about how to encourage more learning and better teaming on
projects, so please help us out!

Team Name: Team LoRa

Team members: Ryan Wallace, Benjamin Couey, Brandon Salter, Mohammed
Alfouzan

Course number and name: CS476: Requirements Engineering/ CS486: Capstone
Design Experience

Semester: Spring 2020 Date this reflection completed: 5/6/2020

Software DESIGN PROCESS

How did your team structure the software development process? Did you choose
a particular formal model (SCRUM, Agile, etc.). If so, which one and why? If not, did
you explicitly agree on an informal process…or was it just pretty random. Explain
briefly.

For the design process we didn’t use a formal structure. Our informal agreement
was that Ryan and Moe would work on the front-end half of the project (the
LoRaMessenger library and demo app) while Brandon and Ben would work on the
back-end half of the project (the proxy server and configuration service).

How did it go? Now briefly discuss how satisfied you were with this process. Did it
work well for this project? Why or why not?

With our informal process we managed to finish the project but it was a bit of a
struggle.

We found that trying to seperate the project into a frontend and backend was
counterproductive. There was a high degree of coupling between the proxy server
and the LoRaMessenger library: neither worked without the other. As such, trying to
seperate the development only obfuscating how the two halves would be
communicating to one another.

What changes might you make in your development process if you have it to do
again? More structure? Less? Different process model?

As a team we definitely could have benefited from having more structure especially
when it comes to due dates for tasks. Oftentimes someone would be assigned a task
but would be quickly forgotten or untouched for a long period of time. Towards the
end of the project we switched to a more advanced and robust Gannt chart that
helped guide our team with due dates.

Software DEVELOPMENT TOOLS
What software tools or aids, if any, did your team members use to support or
organize software development? For each of the following categories, list the tool(s)
used, and briefly describe how the tool was actually used. If you didn’t use a formal
tool, explain how you handled the matter with informal means.

● Source creation tools: IDEs, text editors, plugins, anything used to
edit/create source.
Android Studio
VS Code
Atom

The android team needed to use Android Studio out of necessity as it is the only real
Android/Kotlin IDE. The proxy server team used an editor of their choice. Both
teams used the Git plugin that was compatible with their editor of choice.m

● Version control:
Git/GitHub
GitKraken

Of each development pair for the Android Studio Library and Proxy Server, one

person was in charge of version control. The Android Studio team used the built

in Version Control integrated with GitHub within Android Studio. This made

keeping files up-to-date simple and caused very few merge conflicts. For each

component within the Proxy Server, as someone would update or create a file,

they would push their changes to their own dedicated branch within the Git

repository. After which the version controller would be responsible for accurately

merging the files. This is how our team managed the version control aspect of our

project and kept our files up-to-date.

● Bug tracking: How did you keep track of bugs, who was working on them,
and their status

We didn't do any bug tracking. We never got in the habit of making good

consistent use of a Kanban board or similar organizational tool. Each person was
responsible for fixing bugs along the way during each development phase.

● UML modelers and other miscellaneous tools:

We have used draw.io as our UML builder tool.

How did it go? Comment on any problems or issues related to organizing the
coding process. How might you have managed this better? Were some tools you
used superfluous or overkill? What tools or mechanisms would you try next time to
deal with those issues better?

To improve our team in the future we would use a Kanban board to track issues and
bugs along with monitoring the process of each task. Our team felt that most of the
tools we used were necessary for the project.

TEAMING and PROJECT MANAGEMENT
Without getting caught up in detailed problems or individual blame, take a moment
to think about how your team dynamics worked overall. Here are a few questions to
guide you:

How did you organize your team? Did you have some clear distribution of team
roles (leader, technical lead, documentation lead, etc.) up front? Or was it more just
“everyone does everything as needed”?
Our team’s organization was adequate and equally distributed.

How did you communicate within the team? Comment on each of the following
communication mechanisms:
● Regular team meetings? If so, how often?

We met on Discord or Zoom at least once a week, often more, and also
frequently met after in person meetings with our team mentor or client. Later in the
second semester, we also began having weekly in-person meetings that doubled as a
time for code review and paired programming.

● Impromptu team meetings? If so, roughly what percent of total team meetings

were of this sort?

We had a handful of impromptu meetings, but most of them were planned 24 hours
in advance. I would say on average 20% of our meetings were "impromptu".

● Emails to all members? If so, explain briefly: about how often, what used for?

Emails to all team members were generally used when sharing documents with
everyone, or CCing everyone when sending off an important email to the team
mentor or client.

● Software tools? Were any of the software tools you mentioned above (e.g.

bug/issue tracking) using to communicate and organize tasks, e.g., in lieu of
emails or other discussion?

We made very frequent use of Slack as a way to quickly send short messages to
everyone on the team, coordinate meetings, etc.

Besides that, we gave names to our git commits and commented our code but this
was never relied upon as a means of communication.

● Other communication channels used? Facebook, wiki, text messages, phone

conferences, etc.

Occasionally, individual team members would communicate with text messages or
private messages on discord.

How did it go? Did you feel that intra-team communication overall went well?
Were there breakdowns, e.g., where someone didn’t know something was due,
didn’t realize a task had been assigned to him/her, did not know about a deadline,
etc.? Without getting into details, simply comment on whether such breakdowns
occurred, what the overall cause was, and how serious (if at all) the consequences
were.

Communication overall went well. Everyone was always up-to-date on assignments
and their due dates. Our team always gave everyone plenty of time to work on their
assigned tasks. We never missed a deadline for any assignment.

What could you do better? More structured leadership? A more formal task
assignment/tracking system? Using better/other communication mechanisms?
Generally just think about what you all would do next time to improve
communication and avoid breakdowns mentioned.

A more formal task assignment and tracking system would have been very helpful. I
feel both to organize our work and hold ourselves accountable for what we had to
get done.

Past that, we had an issue with Benjamin being a bit of a “do-everything-myselfer”
which later down the road led to issues with him have a deeper understanding of
much of the project than other team members. He also didn’t do a good enough job
of informing his team about all the things he did on his own. In the future, Benjamin
needs to both hold himself accountable for explaining the parts of the codebase he
developed.

Brandon’s schedule was a bit difficult to work with; he was only available in the
evenings which sometimes made things a little rushed to finish. In the future we
might consider doing a better task management system, like a kanban board, for
task assignment so that members with time difficult schedules could be assigned
work ahead of time and check it during their free time, rather than wait for a
meeting.

Nice work! Congratulations on finishing your project! Please enter all of your
answers in this electronic document and send it off to your instructor or team

mentor.

Some closing thoughts…
Spend a little more time on your own percolating on the answers you gave in this
self-reflection exercise. Being effective as a project team is not easy (!!), and is a
skill that we all have to work on continuously. There is rarely any single or simple
reason why a project was a bumpy ride; usually it’s a combination of factors…of
which is YOU. Regardless of project or team, there are things that could have been
done differently to make it flow better. Recognizing those things through thoughtful
reflection post-facto is the key to improvement!

