
Final Report

GNomes

Members

Jacob Christiansen

Allen Clarke

Yuanyuan Fu

John Jackson

Mentor

Mahsa Keshavarz

Clients

Dr. Toby Hocking

Christopher Coffey

Version 1.0
May 7, 2020



Contents

1 Introduction 2

2 Process Overview 3

3 Requirements 5

4 Architecture and Implementation 8

5 Testing 16

6 Project Timeline 18

7 Future Work 19

8 Conclusion 20

9 Appendix A: Development Environment and Toolchain 22

1



1 Introduction

We have very little knowledge of our own genome. Many diseases are caused
by mutations in our DNA, but we have no idea how to alleviate symptoms,
much less cure or prevent these diseases. If there were a way to determine
what genetic diseases (like cancer) someone was susceptible to before the
disease has progressed far enough to show symptoms, we could effectively
prevent these diseases well before they are life-threatening. This could be
possible through the study of our own genome.

The genomics industry is so new and cutting-edge that there are not very
many developed tools to help scientists analyze genomic data and understand
these diseases. To learn more about genetic diseases, a massive amount of
data would have to be analyzed by biologists, charting which genes are active
in patients with diseases by hand and establishing correlations between sick
patients and their DNA. Those trends would have to be compared to the
trends in the DNA of healthy patients to establish further trends. This is
a very tedious process and distracts biologists from more creative research.
This is where Dr. Toby Hocking sees an opportunity.

Dr. Hocking is an assistant professor at NAU and is also the Machine
Learning Lab Director. He works with other researchers to develop machine
learning algorithms for other fields of study. One of his main fields of interest
is genomic research data. Dr. Hocking has already completed multiple
research projects looking at DNA data and coming up with algorithms to
graph the data in a similar way to how scientists do so now. The goal is to use
supervised machine learning to look at genomic data and to bring scientists
and statisticians together.

Dr. Hocking wants to bridge the gap between biologists and statisticians,
improving the field of work for both parties. Statisticians have the tools to
write complex models to analyze data, but they need new datasets to analyze.
Having new analysis tools will help biologists analyze larger pieces of data
much more efficiently, after having put in some labels about the data for the
statisticians to use as a key to compare models against. Overall, the sharing
of genomic data is clearly beneficial in uniting both parties’ investigations
into genomic diseases.

Team GNomes is working with Dr. Toby Hocking to create PeakLearner,
a machine learning web app to process genomic data. This new tool will help
scientists save time combing through data and allow them to get back to
making new medical research breakthroughs by getting biologists data into
the hands of a statistician’s machine learning algorithm.

2



2 Process Overview

Before we go into detail about our process, we will start by introducing our
team members, their roles and the tools we are using.

2.1 Roster

• Jacob Christiansen: Team Leader, Coder

– Jacob was elected as the team lead for two reasons. First he has the
most leadership experience, being a manager in past jobs as well
as the leader of his boy scout troop for several years. In addition,
Jacob’s well rounded skillset makes him a prime candidate to
oversee and assist the other roles.

• Allen Clarke: Architect, Coder

– Allen has chosen to make the structural decisions about the overall
framework of the code because of his experience working on server
code for a year. He has a good idea of what code structure is
maintainable long term and what structure is not.

• Yuanyuan Fu: Release Manager, Coder

– Yuanyuan is responsible for managing, planning and controlling
the Git repository, including testing and deploying. She is familiar
with various operations of GitHub.

• John Jackson: Document Editor, Coder

– John has adopted this role because of technical document experi-
ence and his exacting approach to editing and revision.

2.2 Roles

• Team Leader. The Team Leader is responsible for running team
meetings and assigning tasks to group members. They are also respon-
sible for making sure the team is working well together and providing
initial conflict resolution among team members if needed.

• Architect. The Architect is responsible for making sure that the
code is implemented as it was planned. They are also responsible for
making sure the code is clean, maintainable, and consistent.

3



• Recorder. The Release Manager is responsible for maintaining the
Git repository, ensuring the commit logs are cleaned, and configuring
the build tools to prepare for the release of the product in each stage.

• Document Editor. The Document Editor is responsible for delivering
finished documents. This involves line-editing and revising copy and
managing section assignments.

2.3 Team Meeting Format

1. The meeting starts with each team member covering what goals they
finished and what goals they were stuck on over the past week. This
should be similar to a scrum meeting, with the team lead acting as
scrum master.

2. As a team, we examine the goals that each team member was stuck on
in the past week. We focus more on the logic of a section than on the
actual code as we will do a coding workshop later in the meeting.

3. Open time managed by team leader to:

• workshop code

• discuss long-term plans

• ask clarifying questions

• review client requirements

• redistribute work as needed

• hold internal evaluations

2.4 Tools and Document Standards

2.4.1 Version control

We used a Git repository for this project, hosted on GitHub. Each person
had a development branch of their own to work on and push their incremental
changes and run small tests the branches could be merged into the master
branch. The master branch would always be up to date with code that just
needs final testing before ready for a real release. While it is acceptable for a
members personal branch to have build errors, this code should never make
it onto the master branch as it has been run and tested multiple times before
being committed to the master branch.

4



2.4.2 Issue tracking

We used our Slack channel both to communicate outside of in-person meetings
and to maintain the project. The tasks were broken up by category into the
front end, back end and any general tasks that need to be done.

2.4.3 Word processing and presentations

Any documents that needed to be worked on collectively or shared were
dropped into the Google Drive folder. For presentations, we used Google
Slides to manage the presentation and collaborate on it as needed. For virtual
presentations, we used Zoom’s ”share screen” and ”record” features to record
our individual parts, which we sent to the Team Leader who assembled the
final videos.

2.4.4 Composition and review

We assigned deadlines for larger documents 48 hours prior to the due date to
give our Editor sufficient time to look over the document and ensure continuity
among sections. It was his responsibility to request that a team member edit
their own section to make it more continuous with the rest of the document,
as well as make small edits to improve the overall writing quality.

3 Requirements

In this section we will survey the functional and performance requirements of
our project. The functional requirements specify what operations our web
app should be able to perform. This will be followed by the performance
requirements (also known as the non-functional requirements), which are the
intended quality attributes of PeakLearner.

We compiled this list of requirements in three distinct ways. The first
was through our weekly meetings with Dr. Hocking, where we discussed the
functional and performance requirements PeakLearner must meet. With this
basis, we began to investigate more specific performance requirements using
the developer tools for Mozilla Firefox and Google Chrome.

5



3.1 Functional Requirements

In this section we will consider the functional requirements for PeakLearner.
These requirements are broken up into distinct categories to describe what a
user can do with PeakLearner. Each use case is an operation PeakLearner
can perform and covers one possible scenario a user may encounter. These
functional requirements are structured in order of frequency, where the first
requirement is the most frequently used and the last requirement is the least
frequently used by an average user.

3.1.1 Interactive web interface

PeakLearner is a web app, and the basis of this webpage is a software
tool called a genome browser. Biologists already use genome browsers to
graphically show information about an uploaded genome. Since no current
genome browser can both natively show multiple information files on a single
“track” and allow for highlighting regions in the way that we need, we’ve
augmented a browser to show the information that our servers generate.

3.1.2 Ability to add and modify labels

The ability for a user to add “labels” to the information is the basis of the
machine learning that will generate the peak prediction models. These labels
are created by biologists highlighting where peaks are and are not supposed
to be. These are used by our backend server to judge how good a model is
by marking if said model aligns with where a user says a peak should be.
The one with the lowest error, the least amount out of line with the user
labels, is the model we show. To do this, we need to implement two things.
First, we need a way to show where a user has already added a label as well
as differentiating what type of label has been added. Second, we need a
highlighting tool for a user to be able to interactively add new labels as well
as change existing ones.

3.1.3 Dynamic model generation

The ability to dynamically generate models is a critical feature to the system.
peak models are simple graphical representations of where peaks should and
should not appear along a genome. These models should be regenerated
every time a new label is added to make sure the model displayed is the most
accurate known model in the system. The dynamic model generation can be
divided into two parts. First, we need to be able to pick the most accurate
model out of the database based on the error matrix. Next, we need to be

6



able to determine a new lambda value to pass off to Monsoon. This model
will need to be incorporated into our error matrix as soon as we get it back
from Monsoon.

3.1.4 Upload capability

Scientists need to be able to upload their data to the PeakLearner system.
This is one of the most important requirements because if a user can not add
data, then they would have no reason to make models or add labels. Clearly,
it is imperative that users are able to upload their own datasets into the
system.

3.1.5 Download capability

The models that PeakLearner generates are useful only in comparison. The
power of these models lies in comparing among many samples to identify
which genes correlate to which diseases. For example, the model of a sample
of someone with cancer is only useful when compared to one that is healthy.
To facilitate this easily, we will allow a user to download a generated model
as a bigWig and as a bigBed file for storage and future use.

3.2 Performance Requirements

3.2.1 Speed

Speed is the overarching requirement for this project, and with that in mind,
we have come up with a few benchmarks that our web interface should meet
in order to be deemed “fast enough.” The expected overall time should be
less than 0.2 seconds between new label input and showing the most accurate
model to a user. If a user does not see immediate feedback on their input,
they will be disinclined from adding more input to the system, which defeats
the purpose of PeakLearner.

3.2.2 Simplicity of operations

An average user may add dozens of labels to a single dataset, making it one
of the most important areas to optimize when designing out web application.
We will use the following four approaches to simplify the process of adding a
label and overall user interface.

7



3.2.3 Accuracy of model

Accurate model generation is another critical requirement of the system.
Adding labels and using a simple interface is meaningless if a user does not
get back an accurate model to fit all of the newly created labels. With that
in mind, we have a plan to ensure we are always returning the most accurate
model from our database. We are representing accuracy as a number of errors.
Since the user is always right, we define an error as an instance when a given
model contradicts a label set by the user.

3.2.4 Calculating new models

Sometimes there is no model with a perfect error score of 0 in the system. This
is where NAU’s cluster, Monsoon, comes into play. We will be using Monsoon
to calculate new, and hopefully more accurate models for the database should
we not be able to find an accurate model already in the system. However,
Monsoon is a shared resource and we can not spend hours having it calculate
millions of models, so we must be strategic with the data sent to Monsoon to
not waste time calculating useless or duplicate models.

4 Architecture and Implementation

Now that we have looked over the basic implementation of the system, we
will now take a look at the architecture of the system. First, we will look
at the overview of the entire system and spend the rest of this section going
into detail about how each of the components communicates with each other.
Finally, we will discuss how PeakLearner differs from what we intended to
build.

4.1 Architecture

The key components of our system are:

• web browser - the front-end of the system. Users will load their data
into JBrowse on the front-end and interact with the web browser to add
and modify labels on their genomic data. JBrowse has many sub-pieces,
like WiggleHighlighter and MultiBigWig, which are used so a user can
properly see and interact with the data.

• web server - the central controller of the system. The server will act
as a middleman to pass information from the browser to the database

8



and back again. The server will also pass data along to the GPU Cluster
when the system needs new models to be calculated.

• database - stores past models and labels that were created on the web
server. Models displayed on the web browser are stored in the database
and passed to the browser through the web server.

• GPU cluster - calculates new models for the database. When the
server finds no optimal models in the database, it sends information to
the cluster so it can calculate new models.

4.2 Operational Flow

Referring to Figure 1, every arrow is numbered to accurately describe the
interactions between each major component of the system.

Figure 1: An overview of our system architecture.

1. Users interact with the web browser by uploading their data. Users
can click and drag over their data in the JBrowse genome browser to add

9



labels to their data. These labels can denote one of four things: Peak,
NoPeak, PeakStart, or PeakEnd. These labels are used to generate
models and are passed on to the web server in step two.

2. Following these labels along, the information about the labels is sent
from the web browser to the web server. This will be done using
something like AJAX to send data to the server using GET and POST
requests. The purpose of this step is sending along the information
users input to the server so that it can be processed accordingly and an
accurate model can be found/created.

3. After receiving data, it is the server’s job to pass models and labels
into the database. The database is then responsible for storing the
model and using labels to find the most accurate model in the database
that fits the given labels.

4. Once the database has received the data, it must use the labels entered
by the user and provided by the server to send the optimal model
back to the server. If there is no optimal model, then the server triggers
steps 5 and 6. If there is a model returned, the server skips to step 8.

5. If the database does not have a model to display that accurately fits
the labels, then the server sends the labels and data off to the GPU
cluster. The cluster needs to take the data and labels and calculate
a new model for the user to see that accurately fits the labels.

6. Once the GPU cluster has calculated a new model, it sends the
model back to the server. This new model was calculated by the user
inputted labels that were given to the server in step 2. After this model
is calculated, it is also sent to the database to be stored and retrieved
in future model calculations, which is a subfunction of step 3.

7. At this point, the server has received a model that is fit for display to
the user (from either step 4 or 6). This model is then encoded and sent
back to the web browser as a response to the POST or GET request
sent in step 2.

8. Once the web browser has gotten a model from the server, it is
decoded and then displayed in the embedded JBrowse window. This
is the means of getting a new and updated model back to the user so
they can view a model that fits all of their given labels.

10



4.3 Module and Interface Descriptions

4.3.1 JBrowse

Figure 2: A diagram of JBrowse’s functions.

One of the most important components of the system is the genome
browser we are extending called JBrowse. Shown in Figure 2 is a diagram
illustrating the elements of JBrowse that are salient to this project. JBrowse
has four very important jobs, as it is the only point of contact between the
rest of the system and the user. Its jobs include taking in the files the user
wants to display, displaying the data, letting the user create and edit label
data, and finally passing the appropriate data off to the back-end server.

Firstly, we must be able to take in the data the user wants to display.
This means having the user pass in a URL to the bigWig data they want to
show and analyze. To accomplish this, the plan was to have an input box
where the user can either pass in a URL to a specific file to display a track
hub, which is a collection of many files. The track hub option will allow many
tracks to be generated at once rather than sequentially. Once the user inputs
the URL, a script sends the tracks configuration file with the URL and all
other information in order to appropriately show the data to the user. Some
of this information is in two other files that the back-end server needs to
create. The first file is the model that we are computing, and the second is

11



the empty bigBed file to store the labels the user will input. The model will
be generated by an algorithm given to us by Dr Hocking. To summarize, the
user will input a URL containing the information they want to analyze. This
causes JBrowse to ask the back-end server for two more files, the first the first
model based off of the URL data, and second an empty file to hold the users
labels. Finally, when JBrowse gets all of this information together, it appends
to a configuration file to create the track that will show the information the
user input and the first guess model.

Secondly, the browser acts as a display. Through the help of JBrowse,
the browser is able to display the BigWig file in a way that is visually easy
to interpret and much simpler to look at than the original file format. The
JBrowse display is showing multiple things simultaneously, which include: the
user’s original data provided from the URL, an optimal model that best fits
the data and labels, and labels added by the user to modify the model. This
graphic representation of all three pieces is very important to the system, since
without a visual display to clearly see peaks, there is no point in having users
add labels to modify the data since they wouldn’t be able to see their updated
results. To do this we have created the plugin InteractivePeakAnnotator
(IPA) which extends the two plugins MultiBigWig and WiggleHighlighter.
This plugin turns these two static plugins into a dynamic one. IPA uses the
built-in highlight tool in order to add, manage, and remove labels.

Thirdly, the browser must allow for a user to edit their data. This is
done by adding labels on top of the model drawn with JBrowse. These labels
will be colored rectangles drawn over the data, and each color represents a
different one of the four labels (Peak, NoPeak, PeakStart, PeakEnd). By
adding these labels on top of the JBrowse display, the user can take note of
which labels are affecting which region of the sequencing data that is displayed.
This is accomplished by creating a listener for the built-in highlight tool of
JBrowse to capture when a user highlights a section and where in the genome
it is. As for switching between kinds of labels we will override the onClick
behavior of the track in order to be able to cycle through the four options.
This information is used by the final responsibility of the browser.

Lastly, the browser must be able to send data off to our server. This is
another critical feature of the system as, without it, the browser would not
be able to receive updated models to show the user. In this step, the browser
takes all of the user added labels and encodes them into a JSON object, which
it then sends through an AJAX call to a special route built on the server
designed to listen for this object. Once the user adds labels and the data is
encoded and sent, the browser waits for a response to its POST request from
the server, which will contain the new and improved model to display back
to the user.

12



4.3.2 Server

Figure 3: A diagram of the back-end.

The server is the next major piece of the system, outlined in Figure 3.
The purpose of our server is to act as a controller. The server will be written
in python as it is an easy to use language that can communicate well with
the web browser and can also communicate with the Database and with the
GPU cluster. Most of the work happens server-side because the server needs
to know where to send data at all times.

The first thing the server does is listen for the browser to send data.
Once the browser has sent over some data in the form of a JSON object, the
python server decodes it. It then takes this decoded data, more specifically
the labels from the data, and passes them off to the database. The database
will then return a model and an error number This error number is essentially
saying that the model that the database provided disagrees with exactly some
number of the labels that were given. The server now has a choice. If the
error number is low enough to be below some threshold, or based on the
models in the database we know that a more accurate model does not exist,
then the server will encode the model into a JSON object and send it back to
the browser to be displayed. On the other hand, if the server deems the error
number as too high, then it will instead pass the labels and model data to a
GPU cluster to calculate a new model. Once the cluster has calculated a new
model, the model is sent back to the server so it can be put into the database
and it is also passed back to the browser by encoding it as a JSON object
and sending it as a response to the data the server originally received from
the browser.

13



Overall, the role of the server is to pass data around. It is taking in data
from the browser, and directing it to the Database. Once the database sends
back a model, then the model is either sent back to the server or the GPU
cluster receives a copy of the labels and data to calculate a new model. After
the cluster has calculated a new model, it is sent both to the user and to the
database for use in future calculations.This is clearly shown by the diagram
above because of how the server is right in the center of the diagram and has
all of the arrows pointing both to the server and away from the server.

4.3.3 Database

For this project we chose a BerkeleyDB database. This is a non-relational
database, so while it gives up some of the luxuries of a traditional database,
like ease of use and readability, it has more than enough speed. This is
important because we are trying to get model data to the user as quickly
as possible. The reason for the speed is so that users can add labels and
immediately see changes in the model they are looking at to reflect the newly
added labels, encouraging them to add more labels and further improve the
model. The database has three main features that it must be able to do.

First there must be a way to add a new model to the database. This
new model is given to the database by the server and needs to be stored as a
relevant model to compare all incoming labels against as there is a chance
the new model is the most accurate model. Any new model is assumed to be
stored indefinitely unless explicitly told otherwise.

Second, the system needs a way to compare the models against the labels
for accuracy. In every case, either a label conforms with a given model, or
it does not. For example, a label denoting NoPeak in a region of the data
is either accurate or inaccurate. There is no way for a peak to only halfway
in the NoPeak Label, as a peak halfway in should have either a PeakStart
or PeakEnd Label instead of a NoPeak Label. After breaking down whether
a label is correct or inaccurate based on a given model, we can simplify the
accuracy correction down to a 2-Dimensional Array and some addition. We
will define a 2-D Array, where every column denotes one of the models in
the database, and every row represents one of the labels given by the user
in JBrowse. Next, we will populate that array with 0’s and 1’s where a 1
denotes that the model in that column does not agree with the label in that
row. Similarly, a 0 signifies that the model and label do agree at that specific
position. Since we know that user labels are always right, we want to return
the model that agrees the best with a given set of user labels. That is, we
can sum up the total number of 1’s in each column, and the column with
the lowest total score is the most accurate model. The score represents the

14



number of labels that are provided that do not agree with the model we are
comparing the labels against.

Once we have found the best model in the system, the database must be
able to send the model and its corresponding error number (score) back to
the server. The server will then decide to pass the model back to the browser
or to enlist the help of the GPU cluster to calculate a new, more accurate
model.

4.3.4 GPU Cluster

The last major component is the GPU cluster. The cluster is responsible for
calculating new models for the database when there is no accurate model
already in the system. The cluster is designed to share resources across many
projects, and so we are only using it when the server deems that none of our
models are accurate enough to return to the user.

The majority of the work has already been given to us in the form
of Dr. Hocking’s machine learning algorithm for calculating new models
(https://github.com/tdhock/PeakSegOptimal). This algorithm takes in
the coverage data of a section of the genome as well as all of the user’s labels
passed from the server. It then returns a model in the form of a bigWig file
and a loss.tsv file, which denotes the error in the model. This is incredibly
important because the cluster is the only thing capable of generating new
models to add to the database, and without new models, it is very unlikely
that we will always have an accurate model to display in JBrowse.

Since the GPU cluster we will be using, Monsoon, is a shared resource, it
is important that we do not overload it with requests to create new models.
By requirement of NAU, we will be using SLURM, a job scheduling language
to send job requests to Monsoon. This will allow the GPU cluster to prioritize
the generation of models against other jobs that are sent from other projects
across campus. This prioritization can change based on the amount of clusters
available, the size of the job we are requesting and the frequency we are asking
for new models.

By using SLURM properly we should be able to get back models when
needed. Ideally, a listener process will send off requests to calculate potentially
accurate models before they are requested, so when the browser sends updated
labels, the most accurate model is already in our database. This will reduce
latency in retrieving a new model.

15



5 Testing

In order to adequately test our software, we will be implementing three
different forms of testing to make sure every component is working as intended.
Each of these tests will take place at a different level of the software.

5.1 Unit Testing

The first of the three levels will be the Unit Testing level. Unit testing is
defined as testing at the lowest level, where a test covers a single unit of the
code. These units can vary in size and complexity slightly, but a good unit
test is usually about the size of a single function. These tests are done by
developers while developing in order to make sure each function is working as
intended.

Now that we have a base understanding of what Unit Testing is and why
we are trying to use it, we need to know what tools are used to accomplish
these goals. Since the majority of our server code is in Python, we will be
using the Python unittest library to manage our unit tests. It was inspired
by the common Java Unit Test library JUnit, and has a similar look and feel.
Thus, unittest uses an object oriented approach to its unit testing, which
is much easier to understand conceptually than a functional unit testing
approach. The way unittest works is we import unittest and define tests on
a per class basis. Then we run the test.main() function when we are ready
to test our code and it will go through all of the predefined tests and run
them against their predetermined answers. If any test of a function does not
return the value that is expected, then that test fails and an error is displayed.
Traditionally, all of this is done using the command line, but since we are
implementing a continuous integration server, Travis-CI, these unit tests will
run on every commit pushed back into our repository on GitHub.

5.2 Integration Testing

Integration testing is defined as testing the interaction of different units. For
the scope of our project, integration testing will be done to ensure that the
different pieces (browser, server, database, cluster) are working together as
intended. For a picture of how these components are connected, the reader is
referred to Figure 1 in section 4.2.

To run integration tests and simulate communication between the server
and the cluster, we used a Travis-CI environment that installed the SLURM
scheduling software. Travis-CI uses a configurable .yml file that’s located in
our GitHub repo’s topmost directory. It’s in here that we specify the tests

16



to be run, the packages to be installed in the virtual environment, and the
method used to notify us of the results. We decided to send a notification to
a dedicated Slack channel in our workspace each time a commit was pushed
to a specified git branch (either master or a testing branch.

5.3 Usability Testing

Usability Testing is the process to ensure that the standard user of a product
will be able to easily access the features it provides. For PeakLearner our
standard user is not someone with a programming background, but rather a
biologist doing research on human genomic data. This means that all features
we provide must be easily accessible through normal means, i.e. a mouse and
keyboard, and not the command line.

There were two components of usability testing that we needed to test.
First, we want to watch a user upload some data into the JBrowse plugin
to make sure that it is intuitive and easy to use for scientists. Second, we
want to be able to ensure that a user is able to easily add the correct type of
labels on top of their data. To test these two cases, we planned to find three
users, one who is another Capstone student, one who has some knowledge of
biology and genetics, and a third user who is completely random. To assess
the effectiveness of the testing, we will provide a URL to the user which will
access our webpage. Next we will video call them using Zoom, and have the
user share their screen with us. Finally, we will give the user a to-do list, like
the one that follows below:

User TODO list

1. Open PeakLearner in a new tab

2. Upload this data

3. Add a Peak label

4. Add a NoPeak label

5. Delete your Peak label

We originally planned to have people sit down with a computer with
PeakLearner installed and see how well they could use it. However, because
of the lockdown we needed to adapt our testing strategy. We didn’t want to
have people need to install everything themselves as, if there were any issues,
it would be hard for us to help, and it would be difficult to determine if the
issue was usability or if PeakLearner was installed incorrectly. We decided to

17



share the screen of a computer with a known valid installation of PeakLearner
with the test subject. Then we would go over what we wanted them to do
verbally, then have the test subject give us instructions on what to do to
complete the tasks.

Our test subjects had a range of familiarity with the subject. We tested
several Biology and Computer Science majors for an assumed “familiar” group.
We then tested several unrelated majors and people not in university for
an assumed “unfamiliar” group. As we expected, the “familiar” group took
less time to figure out how to use PeakLearner than the “unfamiliar” group.
However, given the time to initially figure out how it worked the “unfamiliar”
group was also able to start working competently with PeakLearner. The
main issues seemed to be initially finding the highlight button and then how
to change the type of label being added. However, it helped when a user was
given a key of what the button looked like and what each label was colored.
There’s likely to be be a steep learning curve for picking up PeakLearner, but
once a user knows how to use it they will be fine.

6 Project Timeline

There were six important phases to our project, as shown in Figure 4.

Figure 4: Our project timeline

18



1. Understanding the project. In this phase, we formed a team and held
meetings with our mentor and client to get a preliminary understanding
of our project. We also read relevant papers and literature to understand
the knowledge related to the project.

2. Preparation. After getting a deeper understanding of our project,
we started to consult the materials and write documents about the
functional and technical aspects of the project.

3. Beginning to code. We had known about what we would do in this
project and got a clear plan. So we set up JBrowse and implemented
the basic highlighter tool on it. During this phase we consulted an
outside expert on the team that maintains JBrowse.

4. Reviewing the project. After a long break, we spent two weeks reviewing
and continuing the project. And we also made a detailed plan for the
Spring semester. In this semester, we had more long-time meetings as a
team and sub-teams which allowed us to really work together on the
project.

5. Continuing the project. At this stage, we spent a long time on our
project entity. We divided into two groups, one responsible for JBrowse
and one responsible for the back-end. In the process of carrying out
the project, we had weekly meetings with our client to ensure that the
work direction was correct.

6. Finishing up. In the last stage of the semester, we conducted overall
testing and unit testing on the completed projects. In addition, we
also recorded the presentation to introduce our project and produced a
project poster.

7 Future Work

Some of the future plans could include finishing the setup to allow the system
to interact with Monsoon. This would be a significant improvement as the
system could calculate new models much faster with access to a GPU cluster
than it could as a single machine. A proof of concept test was done using
Travis-CI to show the system is capable of running R code and getting back
models, however due to time constraints we did not get permission to use
Monsoon.

19



Another feature to implemented is the true/false positive matrix in the
server. This is used to calculate the best model, and if one isn’t found then
send to the cluster to generate a new one. This should be done inside of the
”send Post()” method inside ourServer.py. This is the function that handles
the incoming labels from the browser.

8 Conclusion

PeakLearner is a tool that simplifies the workflow of biologists studying
genomic data. It will be able to generate peaks, predicting what areas of a
sample genome are being used the most. Currently, the only way for a biologist
to do this work is by hand, going through millions of genes in a chromosome
and marking peaks in an Excel spreadsheet. This is a hindrance to biologists
for two reasons. The first is that this is a long and time-consuming process,
and the second is that it is difficult to compare these data sets between
samples. PeakLearner will simplify this workflow by being interactive and
using machine learning to accurately predict peaks in the data using only a
small number of user-generated labels.

We worked with Dr. Toby Hocking, a researcher at NAU who looks
into how machine learning can support early detection of genetic diseases.
He envisioned PeakLearner as a machine learning web app to help process
genomic data for scientists. For Dr. Hocking, PeakLearner supports two
main purposes. First, with an increase of understanding of our genome, many
genetic diseases could be alleviated, cured, or caught earlier. Second, he
aims to advance the field of machine learning by facilitating collaboration
between genomic biologists and statisticians. There is a lot of information
and many experts to learn from, but little of this information is available to
train machine learning algorithms on.

20



Glossary

bigBed : a binary indexed file format used in genome browsers for qualita-
tive/categorical data. bigBed files are created initially from BED files, a
plain text file format used in genome browsers for qualitative/categorical
data. 7

bigWig : a binary indexed file format used in genome browsers for quantitative/real-
valued data. 7

genome browser : a software tool for graphically displaying genomic data.
6

label : a graphical annotation marking regions of interest, including peaks.
6, 7

peak : an area of increased activity in a genome. 6

track : a sub-window in a genome browser displaying one sample. 6

21



9 Appendix A: Development Environment and

Toolchain

9.1 Hardware

Our team developed the software primarily on a Linux Ubuntu 16.04 machine.
However, the server can be run on any device as long as the necessary packages
are installed properly. We have also tested the system on a Mac running
version 10.15.4.

9.2 Toolchain

These are the languages and tools we used in our implementation.

9.2.1 Web interface

• languages: HTML, CSS, Javascript

• JS framework: Dojo

• JBrowse plugins: WiggleHighlighter, MultiBigWig, InteractivePeakAn-
notator

9.2.2 Server

• language: Python

• libraries: NumPy, bsddb3

9.2.3 Database

• library: Berkeley-db

9.2.4 Cluster

• workload manager: SLURM

• R package: PeakSegDisk (https://github.com/tdhock/PeakSegDisk)

22



9.3 Setup

The setup process that we are about to walk through is for an Ubuntu 16.04
system. First install the following packages to prepare the system to run the
backend server. Use apt-get install unless otherwise noted.

• nodejs

• berkeley-db version 6.1 (install this using brew)

• python3-bsddb3

Once all of these packages are installed properly, you will have everything
needed to set up the server used to communicate with the web browser.

The next step is going to the PeakLearner GitHub repository, https://
github.com/yf6666/PeakLearner-1.1 and cloning the master branch, as it
is the most stable branch. Once this is done, you will have to configure JBrowse
to work properly, which is explained below. For additional information on
setup and installation, read the README files in the jbrowse folder and the
outermost directory.

9.4 Production Cycle

The source code can be found here to reinstall/setup the system:
https://github.com/yf6666/PeakLearner-1.1

Separately, the majority of the action for the server is found in the
ourServer.py file. The send post is what handles adding labels to the database
and is also where the code skeleton to hook up the system to a GPU cluster
can be found. The majority of the server should be very stable, but any
server issues can be handled in this file.

The code we have added to JBrowse can primarily be found inside of
the main.js and MultiXYPlot.js files inside of InteractivePeakAnnotator.
The links to the repositories that this code releases on can be found in the
README inside of the JBrowse folder of PeakLearner.

Inside of main.js you will find the event listener to watch the highlight
tool of jbrowse to create new labels. MultiXYPlot.js has the code to edit and
remove labels.

The only other thing JBrowse will rely on would be the restAPI.py file.
Note this is only used by tracks with the rest store class, including the setup
discussed above for interactivePeakAnnotator tracks. For more info about the
JBrowse REST API you can look here: https://jbrowse.org/docs/data_
formats.html.

23


