
Team Astraea

Adam Schilperoort, Brandon Horner, Michael Partridge, Peter Kurtz, Trey Tangeman

Client: Navy Precision Optical Interferometer (NPOI) **Sponsors:** Jim Clark (Navy Research Laboratory), Teznie Pugh (Lowell Observatory) **Mentor:** Isaac Shaffer

Astrometry

+

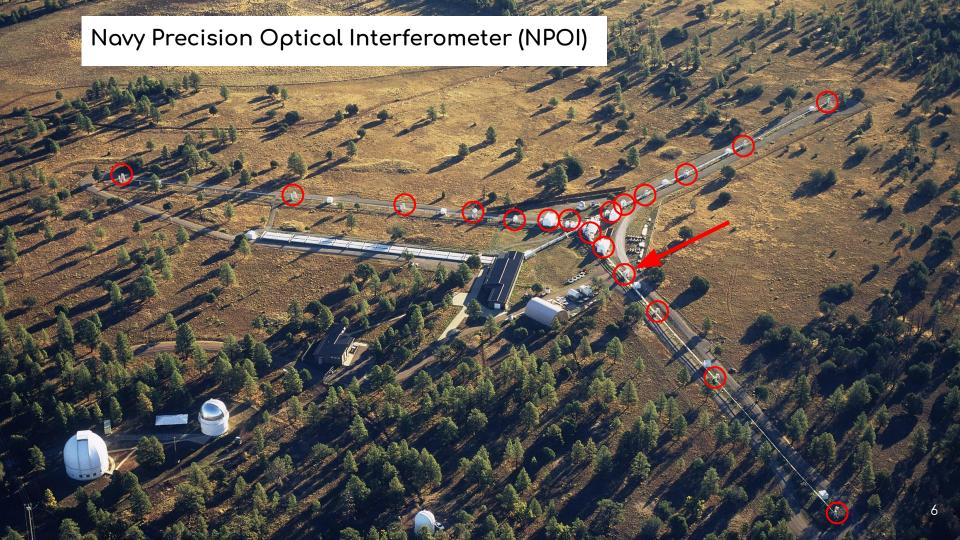
Exoplanet Detection

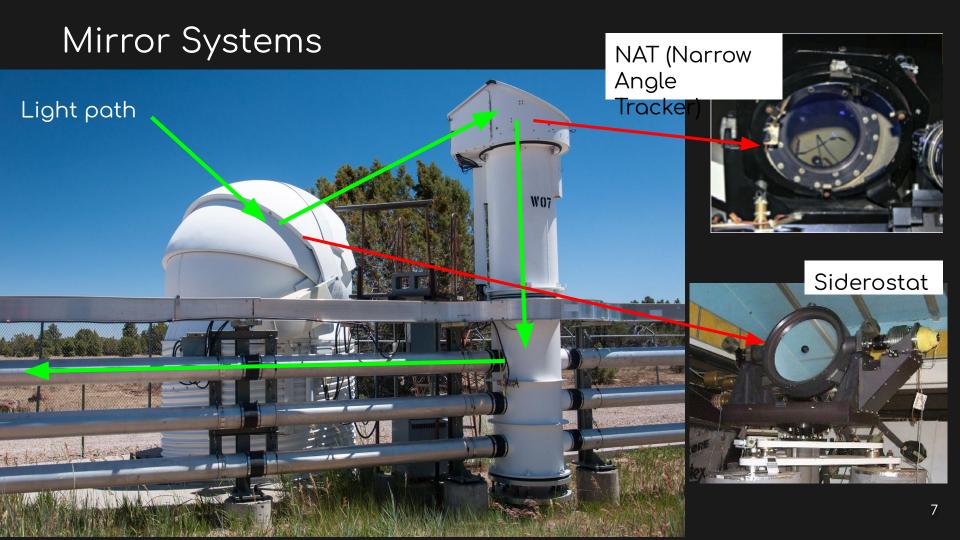
Positioning of Satellites

Measurements of Stars

Recent Innovations

Hubble Space Telescope




Keck Observatory

Very Large Array

Navy Precision Optical Interferometer (NPOI)

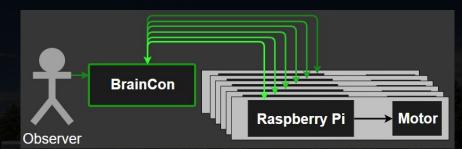
Problem: Overview

- Redundant Racks

 Multiple Computers
- Overcomplicated Connections

Problem: Overview

- Failing Hardware
 - o 20 years old
 - Custom Hardware
 - Insulation Issues
- Software Complications
 - Multiple OS's
 - Bloated Files
 - Redundant


Problem: Overview

- Failing Hardware
 - o 20 years old
 - Custom Hardware
 - Insulation Issues
- Software Complications
 - Multiple OS's
 - Bloated Files
 - Redundant

Solution: Vision

Hardware

- Centralized computer: BrainCon
- Microprocessor (Raspberry Pi) at each station
- Software
 - BrainCon handles networking to each station and data processing
 - Raspberry Pi handles driving the stepper motors.

Solution: Justification

- Replace failing custom hardware
- Reduce points of failure
- Alleviate software redundancy
- Finer control over the system

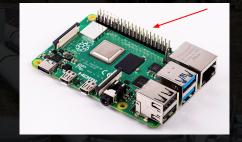
Requirements: Overview

- BrainCon (Dell server rack)
- Raspberry Pi

BrainCon (Dell server rack)

Raspberry Pi

Requirements: Functional


Raspberry Pi:

- Drive the NAT and Siderostat
 - Drive stepper motor
 - Drive piezoelectric motor
- Send feedback across network to BrainCon
 - Motor step counts
 - Limit switch feedback
- Electronic insulation

Requirements: Environmental Constraints

Raspberry Pi:

- Interface with existing hardware
 - Existing network
 - Limit switch wiring
 - Output to stepper motor
 - Output to piezo motor

• Temp tolerance -20 to 115 °F (-28 to 46 °C)

Requirements: Performance

Implemented System:

- Maintain precision of the system
- Send/receive signals at above 2400 Hz.
- Communicate with 6 stations
- Control 2 stepper and 2 piezo motors per station.

Requirements: Acquisition

- Weekly meeting with client
- Frequent visits to NPOI
- Analyzation of hardware
- Review of relevant documentation
- Meeting with observer

Requirements: Moving Forward

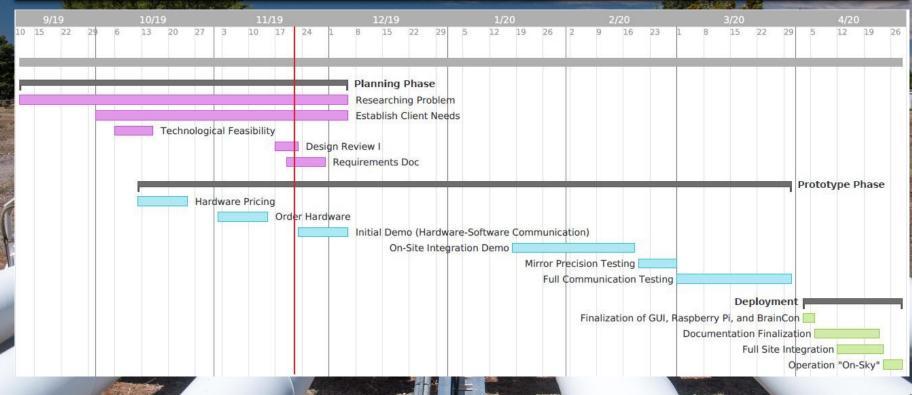
- Requirements will evolve alongside the project
- Only constant in software is change

Risks and Feasibility

- New/overlooked requirements | medium impact (25% chance)

 Mitigation: prototype feedback

 Raspberry Pi communicating over local network to BrainCon |


 medium impact (5% chance)
 - Mitiaation: client communicati
 - Mitigation: client communication

Environmental Risks

- Lightning strikes | high impact (0.001% chance)
- Humidity | high impact (0.1% chance)
 - Mitigation: Insulated Raspberry Pi

Development

Conclusion

- Astrometry, precise mirror control is important to client
- Problem: antiquated system, failing hardware
- Solution: redesign mirror control system
 - Remove redundancy
 - Centralize data processing
 - Create off-the-shelf solution

Conclusion

• Requirements

- Acquisition: Meeting with client weekly, traveling to site
- Environmental: Interfacing with existing hardware
- Functional: Drive NAT, Sid, communicate w/ feedback loops
- Performance: Maintain precision of the system
- Risks/Feasibility:
 - New requirements, network complications, lightning/humidity
- Next Steps: Demo
 - BrainCon Raspberry Pi Stepper Motor Limit switch

Questions?