

Contents

1. Introduction 1
2. Technological Challenges 2
3. Technology Analysis 3

3.1 Ingestion of meta-data 3
 3.1.1 Intro The Issue 3

3.1.2 Alternatives 4
3.1.3 Chosen Approach 6
3.1.4 Proving Feasibility 6

3.2 Model Training Framework 7
 3.2.1 Intro The Issue 7

3.2.2 Alternatives 7
3.2.3 Chosen Approach 9
3.2.4 Proving Feasibility 10

3.3 Type of learning 10
 3.3.1 Intro The Issue 10

3.3.2 Alternatives 11
3.3.3 Chosen Approach 14
3.3.4 Proving Feasibility 14

4. Technology Integration 15
5. Conclusion 15

1. Introduction:
We are Smart Cloud Shield, our team members are Cole Neubauer, Zhaolu

Yang, and Austin Torrence, and our mentor is NAU graduate student Jun Rao. Our
project is sponsored by Daniel Boros, a staff software engineer in the Spectrum
Protect Server Development department of IBM.

When data is uploaded to one of Spectrum Protect’s storage options, it
needs to be categorized into a storage tier. These storage tiers are varying degrees
of hot or cold. Hotter storage allows for quick access to data and is generally for
data that is frequently used. Colder storage takes longer to access data and is
usually only used for rarely accessed data. The problem for our client is the same
for all storage services in the market, the miscategorization of data into the
wrong tier.

IBM Spectrum Protect focuses on data protection for large amounts of data.
They offer data hosting in physical, virtual, software-defined, or cloud
environments. Our project will be focusing on all of the storage options.

Currently, backup administrators at IBM manually configure policies to
allow for data to demote from hot to cool storage. This system has the following
issues:

● Increases overhead costs by having data unnecessarily sit in hot
storage before being demoted

● Wastes work hours by forcing backup administrators to configure
policies for correction

● Hot storage costs more, so data going into hot storage unnecessarily
before being demoted raises operating costs

We have been tasked with designing a product that preemptively

categorizes data uploaded to Spectrum Protect into its correct storage tier to
avoid unnecessary overhead costs. We envision an end-to-end application which
will ingest file metadata and use a machine learning framework to create a
model which then can be used to classify data into storage tiers. Our solution will
be able to:

● Read extracted features from metadata, potentially petabytes at a
time

● Use a machine learning algorithm to classify incoming data
● Gather data as it runs to continually test the accuracy of the model
● Automatically use run-time prediction accuracy results to

continually improve learning module

1

The purpose of this document is to present our expected challenges and
our anticipated solutions for these challenges. The first section is the
Technological Challenges section, where we will analyze each major
technological challenge we expect to encounter and the solutions we plan to
implement. This is followed by the Technology Analysis section. In this section,
we will look at the previously described problems, examine any solutions to
handle the problem, and explain why we chose to go with our chosen solution.
The following section, Technology Integration, will bring together all the
solutions described in the Technology Analysis section into a coherent overall
solution. Finally, we will conclude this document summarizing why we have
chosen our proposed solution.

2. Technological Challenges

We have come up with a solution to our problem outlined in the last

section and have foreseen some technological challenges regarding the types of
technologies we will use and methodologies we will incorporate. We have created
a rubric to be able to judge each technology based on the requirements we have
for the project to be successful. The challenges we expect to be the most
challenging follow:

1) Ingestion of meta-data
Our first problem involves the ingestion of given meta-data. The
meta-data has been extracted for us, but we will need to be able to
load, pre-process, and process the data. Our solution needs to be
scalable so it is a necessity the solution can distribute across nodes.

2) Model Training Framework
The second problem we will face will be in the training of our model.
We will need to find a tool to properly apply machine learning
methods to the data to be able to produce an accurate model. We can
not be sure which methods will produce the best result as we have
not seen the data. Because of this, we will need a tool that has the
option to explore different machine learning methods to avoid
changing frameworks if we find the data’s characteristics do not
match our expectations. We will also need a tool that is flexible in
how it interprets features as a requirement is we need to allow for
easy manipulation of which features are used.

2

3) Type of Learning
We need to decide on a type of learning for this project. As we have
not seen the data, we must currently work off of what we know from
our client and make some informed assumptions about the data. The
learning type will greatly change the outcome of our model and
deciding on the best one will be dependent on how the model fits
into the learning type and the characteristics of our data. Because we
are making assumptions about our data, we do need to plan for the
case the data does not match our assumptions. Planning for this
potential challenge now will allow us to seamlessly switch learning
types without changing our system architecture and not waste
valuable development time.

3. Technology Analysis:

3.1 Problem 1: Ingestion of meta-data

3.1.1 Intro to the Issue

The first large problem our team needs to address is the ingestion,
pre-processing, and processing of meta-data. We will need to be able to process
amounts of data that exceeds the amount of memory at our disposal. To do so, we
need a tool that can handle data on disk and in memory. We have defined a set of
requirements for a tool to be viable for our project, some being more necessary
than others. The tool should preferably be easy to use and accessible in case we
need to alter the source code of the product. The tool’s environment needs to be
easy to set up as our project will be deployed on machines by our sponsor. Its
scalability is another important aspect as it needs to be able to handle petabytes
of data once we hand over our product to our sponsor. One of the IBM Spectrum
Protect’s key selling points is the safety of their clients’ data, so security should be
of the utmost importance. Memory efficiency and long-term support are also
necessary. Lastly, all of the tools we may use needs to be either open source or
free to use.

3

3.1.2 Alternatives

There were many possibilities we considered before making a final
decision. Apache Spark, Amazon Redshift, Apache Hive, Presto, MemSQL, and
Upsolver were all viable options at first glance but, after careful consideration,
there was an obvious choice for our project. Some tools may have outscored our
choice in specific categories but overall did not satisfy all of our requirements.

Upsolver is a data lake platform that manages, integrates, and prepares
streaming data for analysis. This tool has a reputation for being very secure
which is a necessity for our sponsor. Its UI is very user-friendly and has extensive
directions on setup which are also very easy to follow. It is also fairly easy to
integrate with other tools such as Apache Spark or Presto. Its ability to run locally
or on the cloud is also a very desirable feature. Speed is not an issue with this
tool, but it does not have a reputation for working on big projects. The biggest
issue with we found with this tool is that it is not free. Its demo version does not
provide all the functionality we need for this project, and its cost breaks our
requirements.

MemSQL is a database management system for processing large amounts
of data quickly and efficiently. It is one of the most secure software as it even
offers protection from “insider threat.” This tool is very easy to use as it has a
very user-friendly UI along with command line capabilities. A detailed
instruction manual on setup is also provided on their website. MemSQL can
handle processing data in memory or on disk, although its speeds for processing
data on disk are not as fast other tools we are surveying. One downside to this
software is that the server can only run on Linux which lessens the versatility of
the end product. It is a paid tool which also breaks one of our requirements.

Apache Hive is a data warehousing infrastructure tool based on Apache
Hadoop. This was probably the least promising software as it is only able to be
run locally and not on the cloud, it does not provide innate processing so it would
bottleneck data queries, and it doesn’t do much other than act as an SQL
database. There are just too many issues with it to even consider it at this time.

Presto is an open source distributed SQL query engine. This tool has a
reputation for being used with large companies such as Facebook, Airbnb, and
DropBox and is open source. This tool is extremely secure with multiple forms of
authentication at varying levels and has secure internal communication. One

4

downside to Presto is that it can only be interacted with on a CLI or through some
convoluted Java that does the CLI calls directly. It has an easy setup with no
requirement on specific data storage and can pull from different types of data
storage on one query. Its speeds consistently exceed those of its competitors such
as Apache Hive in benchmarks. The biggest issue is that it is not supported for
machine learning as we would like it to. Using this tool for machine learning isn’t
necessarily impossible but would be difficult as this would be something this tool
has never been used for before or at least documented on. Although it has fast
speeds and is open source, the machine learning aspect is the main reason as to
why this tool was not our chosen solution.

Amazon Redshift has met almost all of our standards, and at first, glance
appeared to be a prime choice for our project. It is easy to use with a
user-friendly UI, is known to have been used in projects related to large
healthcare, retail, and government workloads and is more secure than any of the
tools on this list. It is easily scalable for large amounts of data without slowing
speeds with increases in nodes. This is capable of processing petabytes of data at
extreme speeds but the one major downfall, like most of the tools in this list, is
the fact the software is paid and only offers a free two-month trial. This is a big
flaw as we are looking primarily for open source or free to use the software.

Finally, our most promising tool we surveyed is Apache Spark. Apache
Spark is an analytics engine for large-scale processing. This software met each of
our requirements and almost all of our preferred features. This product is a very
active open source project meaning this tool will most likely be supported for
years to come. It has a few security vulnerabilities, but each is extensively
documented on their website and won’t be an issue as these attacks require the
attacker to either have access to the users account information, be another local
user on the machine, or use social engineering to acquire information or trust
from the user. This tool is very user-friendly but has an extensive setup process.
The instructions are clear, but when following them on a machine we tested it on,
there were many errors we had to fix which added extensive time to the setup.
This tool has been used on hundreds of large projects and has been or is
currently being used by over 1000 companies. Its ability to process petabytes of
data is its most desirable feature, and it has been known to use clusters with 8000
nodes. This tool can also be run either locally or on the cloud. It also balances
memory and disk usage better than most of the tools we surveyed. Apache Spark
also has a built-in machine learning library that will be very useful when used in
combination with the chosen learning solutions.

5

3.1.3 Chosen Approach

Our chosen approach is Apache Spark. Apache Spark met each of our
requirements and almost all of our preferred features. As detailed above Apache
Spark was the most impressive product we researched. Its superiority to our
other options is clearly outlined in the Table 1 below.

Apache
Spark

Amazon
Redshift

Apache
Hive Presto MemSQL Upsolver

Security 4 5 4 5 5 5

Ease of Use 5 5 3 3 5 5

Ease of Setup 3 5 4 5 5 5

Accessibility to Product 5 1 5 5 1 1

Scalability 5 5 5 5 5 3

Capability 5 5 3 3 4 3

Future Support 5 5 5 5 5 5

Memory Efficiency 5 5 5 4 5 4

Total Ranking 4.75 4.5 4.125 4.375 4.375 3.875

Table 1. Research Rubric for Data Tool

3.1.4 Proving Feasibility

1. Creating a Demo
We will create a demo that can ingest and process data too large to
be done in memory. This demo will be around 50 GB and will be data
given to us by our sponsor.

2. Testing Pipeline
We will check that the data tool can properly communicate with
some machine learning framework.

3. Check for properly formed output
We will then check that the model produced in the end is properly
formed.

6

3.2 Problem 2: Model Training Framework

3.2.1 Intro the issue

Our second problem is the model training. We need to design and train a
machine learning model to correctly assign new data into one of the five data
storage tiers offered by Spectrum Protect service. We need to determine the most
suitable machine learning product for our project. We require the learning
product to support many machine learning methods, be scalable, and have
long-term support. We are also grading based on the ease of use and ease of
setup, although these are not requirements. The tool should also support deep
learning as well as traditional machine learning as we may find our data may not
match our expectations.

3.2.2 Alternatives

There are many possible options to our problem, and after researching the
problem better, we were able to narrow down the scope of those options down to
six. Our first option is Tensorflow, a popular machine learning framework
developed by Google. Our second option is Microsoft Cognitive Toolkit (CNTK),
which is an excellent open-source toolkit for distributed deep learning. Keras is
the third option, and it is a high-level API to build and train deep learning models.
MXNet will be the fourth option, and it is a good deep learning framework
designed for maximizing the efficiency and productivity of the product. The fifth
option is Caffe, a deep learning framework made with expression, speed, and
modularity. PyTorch will be the last option since it is a good deep learning
framework for designing and evaluating deep learning models.

Tensorflow is a popular machine learning framework developed by
Google. It is an open source software library that uses dataflow graphs for
numerical calculations. The advantages of the framework are its scalability with
multi-GPU distributed training, easy to use interface with model visualization in
TensorBoard, and versatility with various kinds of third-party libraries
supported. Cons of the tool are the cumbersome underlying interface and
inflexible high-level APIs. If we want to train the model using our custom
functions, it is very inconvenient based on predefined high-level APIs.

Computational Network Toolkit (CNTK) is an open source deep learning
framework developed by Microsoft Research. It depicts the neural network as a
series of computational steps through a directed graph. CNTK has many neural
network components that allow users to easily design new complex layers by

7

combining these components without writing the underlying code of C++ or
CUDA. It is easy to set up with lines of code using pip in Linux system. In addition
to these advantages above, it has great scalability because it allows for distributed
learning and makes it very easy to set up for parallel training. However, it has
massive documentation with different series of tutorials to ease us into the
system.

Keras is a high-level API running on the top of Tensorflow to build and

train deep learning models for fast prototyping, advanced research, and
production. It has several key advantages. It is super easy to set up based on
Tensorflow environment since it is running on the top of it. Also, It is easy to
make models by connecting configurable building blocks since it provides a
simple and user-friendly interface optimized for common use cases, with few
restrictions. At last, it is scalable and easy to extend by writing custom building
blocks. However, this tool is required to take up too many GPU memory resources
and more compile time to train a model.

MXNet is a fast, full-featured, and scalable deep learning framework that

supports the most advanced deep learning models. It is originated from the labs
of Carnegie Mellon University and the University of Washington, Its most
prominent advantage is the combination of symbolic programming and
imperative programming. It uses symbolic programming to build various
networks with high speed and uses imperative programming to better handle
complex environments. However, documents for some APIs are limited and not
clear. There appear to be limited plans for future support. Also, it is not easy to
set up since it needs to install packages like CUDA and OpenMP, and configure
environmental variables.

Caffe is an open-source deep learning framework developed by Yangqing
Jia, a doctor at the University of California, Berkeley and it supports many
different types of deep learning architectures geared towards image classification
and image segmentation. Caffe is of great scalability and is being used in
academic research projects, startup prototypes, and even large-scale industrial
applications. But it mainly focuses on applications in processing vision, speech,
and multimedia. So it might be not a good choice for our project. Additionally, it
is not easy to set up, especially in CUDA, CUDNN path setting and opencv version.

8

PyTorch is an open source machine learning library for Python, based on
Torch, used for applications such as natural language processing. It is primarily
developed by Facebook 's artificial-intelligence research group. Even though its
advantages of quick setup and training with a few lines of code, it is a brand new
tool. It does not have a long history of support although there are plans for future
support. As one of popular machine learning framework, PyTorch seems like
something that would be interesting, but we can't trust and choose it at this stage.

3.2.3 Chosen Approach

We have chosen Tensorflow as our solution because there are many useful
and efficient APIs and predefined functions provided for us to easily create and
train a machine learning model. As the most popular machine learning
framework developed by Google, Tensorflow has the most active development
community where programmers globally work together to develop and improve
Tensorflow.There are now various kinds of useful and powerful third-party
python libraries which help us ingest metadata from our data tool. Additionally,
with well-designed and informative documents, users can easily set up a runtime
environment and design the neural network model with several lines of code.
Another important factor is its great scalability and portability. It is easy to
deploy models to PCs, servers, and even mobile devices with any number of CPUs
or GPUs, which then we can apply built-in parallel programming methods to
speed up the training process. There exists a user-friendly GUI in the form of
TensorBoard, a powerful visualization component of Tensorflow, which is useful
for visualizing our neural network structure and training process. Tensorboard
can provide guidelines for us to help improve and train the model. We came up
with a rubric to grade each tool which led Tensorflow to be chosen as our
solution; the rubric is represented in table 1, the rating of each value is on a 1-5
scale; 5 being best.

9

 TensorFlow CNTK Keras MXNet Caffe PyTorch

Ease of Use 4 4 5 4 4 5

Ease of Setup 5 5 5 4 3 3

Scalability 5 5 4 5 5 3

Speed 5 5 4 5 4 5

Capability 5 4 4 4 3 3

Future Support 5 5 4 4 4 4

Deep Learning 5 5 5 5 5 5

Total Ranking (Average) 4.8 4.7 4.4 4.4 4 4

Table 2. Research Rubric For machine learning Tool

3.2.4 Proving Feasibility

1. Testing Pipeline
We will check that the machine learning framework can ingest the
extracted features from our data tool.

2. Train the model
We will attempt to train a model using said features and check that
the output is well-formed.

3.3 Problem 3: Type of Learning

3.3.1 Intro the Issue

A requirement of our project is to use machine learning techniques to
produce a machine learning model. To be able to create a proper model we first
need to find which type of learning is most appropriate. The type of learning
defines the overall process our system will use to create the model. The type of
learning will be determined by looking at three main factors, the data we will
analyze, the desired behavior of the model, and the complexity of the learning
type. However, since we have not had access to the data set we must work off of
informed assumptions; because of this, we may find our initial decision to not be
the best choice when we begin prototyping.

The goal of our model is accurate classification. We expect our model to be

given metadata and then be able to use that to correctly give one of five
classifications of data storage. Classification is a classic machine learning
problem, and most of the learning lends itself to classification fairly well. Because

10

of this, our decision will need to be based more on the data and the complexity of
the learning type.

We know the data we will work with is metadata extracted from IBM’s

cloud service users’ data. We are making the following assumptions: the
metadata is well formed making feature extraction easy and efficient, the data is
correctly classified, the data is not balanced, and the data will require
preprocessing before learning can begin. We make these assumptions based on
what we have been informed from our sponsor but cannot guarantee because we
have not been seen the data.

We are considering the complexity of the learning type to be able to avoid

unnecessary complexity. For example, if we have two options that fit our model's
behavior and the data equally well, we would want to be able to formally discern
between them based on the complexity of their processes.

Using what we know about the desired behavior of the model, the expected

characteristics of the data, and the complexity of the learning type we can begin
comparing our options for learning types.

3.3.2 Alternatives

The four main types of learning are supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning. These types are
known informally, and perhaps more recognizable, as machine learning, deep
learning, mixed learning, and reinforced learning; respectively. Each type defines
its unique process of creating a model and are most useful when applied to
certain characteristics of data and model behavior.

Supervised Learning
The most well-known choice is supervised learning. Also known as

traditional machine learning, this learning type has the easiest to follow process
for creating a model. This process predicates the data must be well-labeled
observations to make for proper input and output. The data is then split into two
categories: test data and training data. The test data is fed into a machine learner
and after sufficient data has been passed through a model is created. This model
is then tested for accuracy using the test set. The stats of the model's performance
are sent to the learner to improve the teaching of the model. This process is
repeated until the model is acceptably accurate.

11

This process lends itself to classification problems where features used for
classification are well defined. Specifically, when there are a finite number of
input parameters that determine a single objects classification into a finite
number of outputs. As noted above, this process requires the data to be well
labeled and well-formed. Without the data structured this way, the process is
unable to define traits that can be used to classify the object or have reliable
training and test data.

If our assumptions are correct, then there will be extra overhead involved

in choosing supervised learning. The creation and designation of training and
test data will require preprocessing before we can begin creating a model.
However, supervised learning’s most common use case is classification. Because
of this, we would have more documentation and resources available to us
compared to the other options. The process is also much more deterministic than
other choices making it easier to recreate and confirm our work as we progress
on the system.

Unsupervised Learning
Our second option is unsupervised learning or deep learning. This learning

type is most similar in concept to a black box. We know the input going in and
know what output to expect, but determining what is going on in any specific
case is difficult; if not impossible. The process has no specific requirements of
data. This lack of requirements allows deep learning to be applied to unlabeled
data where features are not well defined. Examples of this are things that are
difficult for a person to define such as a human face.

The general process works by first providing a dataset that has no specific

outcome or correct answer accompanying the data. The data is then passed
through a neural network, the learning algorithm that will be used to model the
input-output relationship. The neural network will then attempt to automatically
find structure in the data and extract useful features from the structure it finds.
This would allow us to get an accurate model if it is difficult to extract features
from our data or too difficult to define useful features.

Following our assumptions, this would not be the best option for us.

Because we are making the assumption our data will have easily defined
features; we are making an unnecessary tradeoff. We lose the deterministic

12

behavior in the process, but because the pros for deep learning relate to defining
features, we do not appear to gain anything of immediate value.

Semi-supervised Learning
The next option is semi-supervised learning. Also referred to as mixed

learning, this process uses some data that is labeled and some that are not for
training. This is usually used when data can be well defined but is very time
intensive or expensive to define making it so getting enough data is near
impossible. This would occur situations where an expert is necessary to label the
data such as medical images or thermal anomalies in volcanic flows. The most
common implementation of semi-supervised learning involves using general
adversarial networks.

General adversarial networks or GANs put two deep learning networks in a
system of competition. One network works to create an image that mirrors the
training set, and one network attempts to designate given input as either from
the original dataset or produced from the generating network. The system
repeats this process, improving both networks.

This option will most likely not apply to us. From what we know of our
data it has its features already defined in the form of metadata, the questionable
part is whether we can define the useful features. If we can, we would more than
likely use supervised learning. If we cannot then deep learning would be a more
appropriate option than semi-supervised learning. It would add, as can be seen
above, unneeded complexity to the process without benefit.

Reinforcement Learning
Reinforcement learning is used to improve a process or technique with an

end goal. It is not given data to train or test with but instead uses an AI and is
given an environment to experiment in. The AI has a base set of operations which
it may use randomly in the environment to start. As it gets closer to an end goal,
the AI is incrementally rewarded; leading the AI to an end goal and a larger
reward state. Each trial is saved, and the AI tries to recreate trials that were
rewarded more optimally. This process repeats until the AI is optimal at working
through similar environments or tasks.

13

This type of learning can be definitively ruled out. Its use cases do not
apply to our end model goal and therefore can not be used to satisfy one of our
known requirements.
3.3.3 Chosen Approach

The following table (Table 3) outlines the comparison (0 - 5) of the
considered approaches and their scoring relating to how well they applied to our
end model behavior, how well the type fit our data’s expected characteristics, and
the complexity of the type’s processes.

 Supervised Unsupervised Semi-supervised Reinforcement

Fit desired model
behavior 5 5 5 0

Fit expected data
characteristics 4 3 2 0

Relative Complexity 5 3 4 4
Total Ranking
(Average) 4.6 3.6 3.6 1.3
Table 3: Research Rubric For Learning Type

From Table 3, it appears clear the best option is supervised learning.

Supervised, unsupervised and semi-supervised all fit our desired model behavior
very well as they all could produce a classification model. However, the
supervised expected input most closely resembled the expected characteristics of
our data only losing one point because it does create overhead from requiring
preprocessing and designation into different data pools for testing and training. It
also seemed to be the least complex of our options because the process steps are
well defined, deterministic and mostly well understood. We do acknowledge that
unsupervised could end up fitting our data more because the actual data
characteristics could potentially not match our assumptions. In this case, we do
not see it as a potential issue switching because of our options for learning
products support supervised and unsupervised learning.

 3.3.4 Proving Feasibility

1. Compare Expected Characteristics of Data
We will first compare the actual characteristics of the data
with our previous assumptions. If there are major

14

discrepancies, we will re-evaluate our best option for learning
type.

2. Testing Process on Data

We will test that our process works as expected. We will do so
by using only the chosen learning framework or library to
avoid potential missteps in our pipeline. We will use a smaller
group of data and confirm it is going through our process as
expected.

3. Check for Properly formed Output

We will check that the output is properly formed. This is
because in this early state we do not expect an accurate model,
so we will only check that a model was produced.

4 Technology Integration:
The primary challenges with our project are finding the right technology to

use. The technology we have proposed in our document will need to come
together to create one cohesive system that will be able to create a model to
classify data.

First, our application will read in meta-data collected on users data. Using
Apache Spark, our application will analyze the data and determine if any
preprocessing or balancing needs to occur. We will then process the data as
needed to extract the required features.

After extracting our features, we will pass the features from Apache Spark

to our machine learning framework, TensorFlow. With the release of Apache
Spark 2.3, TensorFlow is inherently supported by Apache Spark and allows for
seamless integration through their Python APIs. Here we will use supervised
learning to iteratively create an increasingly accurate model. We will continue
this process; testing the accuracy of our model. We will continue this process
testing and documenting the results with a goal of creating a model with at least
80% accuracy.

15

5 Conclusion:

In conclusion, data uploaded to IBM’s Spectrum Protect product is often
miscategorized into the wrong storage tier. This requires manual intervention by
system administrators to correct miscategorizations after the files have been in
the wrong tier for too long. The general solution to our problem is as follows:

1) Ingest metadata and extract features from the metadata. Then use
the features in a machine learning framework to create a model
which can be used to classify data correctly.

2) The model will then be exported to be used to correctly classify the
data in storage and then classify any new data uploaded.

The purpose of this document has been to identify our potential technical

challenges and identify solutions to those challenges. The following table outlines
are solutions and how confident we are they will work for our challenges scaled
from one to five where five is the best.

Technical Challenge Proposed Solution Confidence Level

Ingestion of Meta-Data Apache Spark 5

Model Training Tensorflow 4

Learning Type Supervised Learning 3

Table 4. The confidence level for solutions

We will have an application that will use machine learning to correctly
categorize data into its respective tier. We are confident we will be able to
produce a product that will help IBM designate data into correct tiers. This will
decrease the number of unnecessary costs accrued by IBM and allow IBM to use
fewer work hours fixing miscategorizations of data.

The next major milestones of our work will be initializing our pipeline

setup, getting our data, and getting our application to produce a well-formed
model. We do anticipate there may be discrepancies with the expectations of our
data and our data’s actual characteristics. We have researched accordingly and
have versatile technologies to allow us to switch our machine learning
methodology without changing our application infrastructure if we run into this
challenge. We currently have a plan of getting our data from our sponsor, Daniel

16

Boros, on November 29th, 2018 during a face-to-face meeting. Because we will not
have our data until later in this month, we will build up the infrastructure of our
application before to allow us to immediately begin refining our prototype when
we receive the data. After extensive research, this pipeline of technologies will
produce the best solution even with the anticipated upcoming challenges;
resulting in a well-designed end product that will be able to predict appropriate
storage tiers of data during data ingestion.

17

