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1. Introduction: 
We are Smart Cloud Shield, our team members are Cole Neubauer, Zhaolu 

Yang, and Austin Torrence, and our mentor is NAU graduate student Jun Rao. Our 
project is sponsored by Daniel Boros, a staff software engineer in the Spectrum 
Protect Server Development department of IBM. 

When data is uploaded to one of Spectrum Protect’s storage options, it 
needs to be categorized into a storage tier. These storage tiers are varying degrees 
of hot or cold. Hotter storage allows for quick access to data and is generally for 
data that is frequently used. Colder storage takes longer to access data and is 
usually only used for rarely accessed data. The problem for our client is the same 
for all storage services in the market, the miscategorization of data into the 
wrong tier. 

IBM Spectrum Protect focuses on data protection for large amounts of data. 
They offer data hosting in physical, virtual, software-defined, or cloud 
environments. Our project will be focusing on all of the storage options.  

Currently, backup administrators at IBM manually configure policies to 
allow for data to demote from hot to cool storage. This system has the following 
issues: 

● Increases overhead costs by having data unnecessarily sit in hot 
storage before being demoted 

● Wastes work hours by forcing backup administrators to configure 
policies for correction 

● Hot storage costs more, so data going into hot storage unnecessarily 
before being demoted raises operating costs 

 
We have been tasked with designing a product that preemptively 

categorizes data uploaded to Spectrum Protect into its correct storage tier to 
avoid unnecessary overhead costs. We envision an end-to-end application which 
will ingest file metadata and use a machine learning framework to create a 
model which then can be used to classify data into storage tiers. Our solution will 
be able to: 

● Read extracted features from metadata, potentially petabytes at a 
time 

● Use a machine learning algorithm to classify incoming data 
● Gather data as it runs to continually test the accuracy of the model  
● Automatically use run-time prediction accuracy results to 

continually improve learning module 
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The purpose of this document is to present our expected challenges and 
our anticipated solutions for these challenges. The first section is the 
Technological Challenges section, where we will analyze each major 
technological challenge we expect to encounter and the solutions we plan to 
implement. This is followed by the Technology Analysis section. In this section, 
we will look at the previously described problems, examine any solutions to 
handle the problem, and explain why we chose to go with our chosen solution. 
The following section, Technology Integration, will bring together all the 
solutions described in the Technology Analysis section into a coherent overall 
solution. Finally, we will conclude this document summarizing why we have 
chosen our proposed solution. 

 

2. Technological Challenges 
 
We have come up with a solution to our problem outlined in the last 

section and have foreseen some technological challenges regarding the types of 
technologies we will use and methodologies we will incorporate. We have created 
a rubric to be able to judge each technology based on the requirements we have 
for the project to be successful. The challenges we expect to be the most 
challenging follow: 

 

1) Ingestion of meta-data  
Our first problem involves the ingestion of given meta-data. The 
meta-data has been extracted for us, but we will need to be able to 
load, pre-process, and process the data. Our solution needs to be 
scalable so it is a necessity the solution can distribute across nodes. 

 

2) Model Training Framework 
The second problem we will face will be in the training of our model. 
We will need to find a tool to properly apply machine learning 
methods to the data to be able to produce an accurate model. We can 
not be sure which methods will produce the best result as we have 
not seen the data. Because of this, we will need a tool that has the 
option to explore different machine learning methods to avoid 
changing frameworks if we find the data’s characteristics do not 
match our expectations. We will also need a tool that is flexible in 
how it interprets features as a requirement is we need to allow for 
easy manipulation of which features are used. 
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3) Type of Learning 
We need to decide on a type of learning for this project. As we have 
not seen the data, we must currently work off of what we know from 
our client and make some informed assumptions about the data. The 
learning type will greatly change the outcome of our model and 
deciding on the best one will be dependent on how the model fits 
into the learning type and the characteristics of our data. Because we 
are making assumptions about our data, we do need to plan for the 
case the data does not match our assumptions. Planning for this 
potential challenge now will allow us to seamlessly switch learning 
types without changing our system architecture and not waste 
valuable development time. 

 

3. Technology Analysis: 
 
3.1 Problem 1: Ingestion of meta-data 

3.1.1 Intro to the Issue 

The first large problem our team needs to address is the ingestion, 
pre-processing, and processing of meta-data. We will need to be able to process 
amounts of data that exceeds the amount of memory at our disposal. To do so, we 
need a tool that can handle data on disk and in memory. We have defined a set of 
requirements for a tool to be viable for our project, some being more necessary 
than others. The tool should preferably be easy to use and accessible in case we 
need to alter the source code of the product. The tool’s environment needs to be 
easy to set up as our project will be deployed on machines by our sponsor. Its 
scalability is another important aspect as it needs to be able to handle petabytes 
of data once we hand over our product to our sponsor. One of the IBM Spectrum 
Protect’s key selling points is the safety of their clients’ data, so security should be 
of the utmost importance. Memory efficiency and long-term support are also 
necessary. Lastly, all of the tools we may use needs to be either open source or 
free to use.  
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3.1.2 Alternatives 

There were many possibilities we considered before making a final 
decision. Apache Spark, Amazon Redshift, Apache Hive, Presto, MemSQL, and 
Upsolver were all viable options at first glance but, after careful consideration, 
there was an obvious choice for our project. Some tools may have outscored our 
choice in specific categories but overall did not satisfy all of our requirements. 
 

Upsolver is a data lake platform that manages, integrates, and prepares 
streaming data for analysis. This tool has a reputation for being very secure 
which is a necessity for our sponsor. Its UI is very user-friendly and has extensive 
directions on setup which are also very easy to follow. It is also fairly easy to 
integrate with other tools such as Apache Spark or Presto. Its ability to run locally 
or on the cloud is also a very desirable feature. Speed is not an issue with this 
tool, but it does not have a reputation for working on big projects. The biggest 
issue with we found with this tool is that it is not free. Its demo version does not 
provide all the functionality we need for this project, and its cost breaks our 
requirements. 
 

MemSQL is a database management system for processing large amounts 
of data quickly and efficiently. It is one of the most secure software as it even 
offers protection from “insider threat.” This tool is very easy to use as it has a 
very user-friendly UI along with command line capabilities. A detailed 
instruction manual on setup is also provided on their website. MemSQL can 
handle processing data in memory or on disk, although its speeds for processing 
data on disk are not as fast other tools we are surveying. One downside to this 
software is that the server can only run on Linux which lessens the versatility of 
the end product. It is a paid tool which also breaks one of our requirements.  
 

Apache Hive is a data warehousing infrastructure tool based on Apache 
Hadoop. This was probably the least promising software as it is only able to be 
run locally and not on the cloud, it does not provide innate processing so it would 
bottleneck data queries, and it doesn’t do much other than act as an SQL 
database. There are just too many issues with it to even consider it at this time. 
 

Presto is an open source distributed SQL query engine. This tool has a 
reputation for being used with large companies such as Facebook, Airbnb, and 
DropBox and is open source. This tool is extremely secure with multiple forms of 
authentication at varying levels and has secure internal communication. One 
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downside to Presto is that it can only be interacted with on a CLI or through some 
convoluted Java that does the CLI calls directly. It has an easy setup with no 
requirement on specific data storage and can pull from different types of data 
storage on one query. Its speeds consistently exceed those of its competitors such 
as Apache Hive in benchmarks. The biggest issue is that it is not supported for 
machine learning as we would like it to. Using this tool for machine learning isn’t 
necessarily impossible but would be difficult as this would be something this tool 
has never been used for before or at least documented on. Although it has fast 
speeds and is open source, the machine learning aspect is the main reason as to 
why this tool was not our chosen solution.  
 

Amazon Redshift has met almost all of our standards, and at first, glance 
appeared to be a prime choice for our project. It is easy to use with a 
user-friendly UI, is known to have been used in projects related to large 
healthcare, retail, and government workloads and is more secure than any of the 
tools on this list. It is easily scalable for large amounts of data without slowing 
speeds with increases in nodes. This is capable of processing petabytes of data at 
extreme speeds but the one major downfall, like most of the tools in this list, is 
the fact the software is paid and only offers a free two-month trial. This is a big 
flaw as we are looking primarily for open source or free to use the software. 
 

Finally, our most promising tool we surveyed is Apache Spark. Apache 
Spark is an analytics engine for large-scale processing. This software met each of 
our requirements and almost all of our preferred features. This product is a very 
active open source project meaning this tool will most likely be supported for 
years to come. It has a few security vulnerabilities, but each is extensively 
documented on their website and won’t be an issue as these attacks require the 
attacker to either have access to the users account information, be another local 
user on the machine, or use social engineering to acquire information or trust 
from the user. This tool is very user-friendly but has an extensive setup process. 
The instructions are clear, but when following them on a machine we tested it on, 
there were many errors we had to fix which added extensive time to the setup. 
This tool has been used on hundreds of large projects and has been or is 
currently being used by over 1000 companies. Its ability to process petabytes of 
data is its most desirable feature, and it has been known to use clusters with 8000 
nodes. This tool can also be run either locally or on the cloud. It also balances 
memory and disk usage better than most of the tools we surveyed. Apache Spark 
also has a built-in machine learning library that will be very useful when used in 
combination with the chosen learning solutions.  
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3.1.3 Chosen Approach 
 

Our chosen approach is Apache Spark. Apache Spark met each of our 
requirements and almost all of our preferred features. As detailed above Apache 
Spark was the most impressive product we researched. Its superiority to our 
other options is clearly outlined in the Table 1 below.  
 

 

Apache 
Spark 

Amazon 
Redshift 

Apache 
Hive  Presto  MemSQL  Upsolver 

Security  4  5  4  5  5  5 

Ease of Use  5  5  3  3  5  5 

Ease of Setup  3  5  4  5  5  5 

Accessibility to Product  5  1  5  5  1  1 

Scalability  5  5  5  5  5  3 

Capability  5  5  3  3  4  3 

Future Support  5  5  5  5  5  5 

Memory Efficiency  5  5  5  4  5  4 

Total Ranking  4.75  4.5  4.125  4.375  4.375  3.875 

Table 1. Research Rubric for Data Tool 

 
3.1.4 Proving Feasibility 

1. Creating a Demo 
We will create a demo that can ingest and process data too large to 
be done in memory. This demo will be around 50 GB and will be data 
given to us by our sponsor. 

2. Testing Pipeline 
We will check that the data tool can properly communicate with 
some machine learning framework.   

3. Check for properly formed output 
We will then check that the model produced in the end is properly 
formed.   
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3.2 Problem 2: Model Training Framework 

3.2.1 Intro the issue 

Our second problem is the model training. We need to design and train a 
machine learning model to correctly assign new data into one of the five data 
storage tiers offered by Spectrum Protect service. We need to determine the most 
suitable machine learning product for our project. We require the learning 
product to support many machine learning methods, be scalable, and have 
long-term support. We are also grading based on the ease of use and ease of 
setup, although these are not requirements. The tool should also support deep 
learning as well as traditional machine learning as we may find our data may not 
match our expectations. 

3.2.2 Alternatives 

There are many possible options to our problem, and after researching the 
problem better, we were able to narrow down the scope of those options down to 
six. Our first option is Tensorflow, a popular machine learning framework 
developed by Google. Our second option is Microsoft Cognitive Toolkit (CNTK), 
which is an excellent open-source toolkit for distributed deep learning. Keras is 
the third option, and it is a high-level API to build and train deep learning models. 
MXNet will be the fourth option, and it is a good deep learning framework 
designed for maximizing the efficiency and productivity of the product. The fifth 
option is Caffe, a deep learning framework made with expression, speed, and 
modularity. PyTorch will be the last option since it is a good deep learning 
framework for designing and evaluating deep learning models. 
 

Tensorflow is a popular machine learning framework developed by 
Google. It is an open source software library that uses dataflow graphs for 
numerical calculations. The advantages of the framework are its scalability with 
multi-GPU distributed training, easy to use interface with model visualization in 
TensorBoard, and versatility with various kinds of third-party libraries 
supported. Cons of the tool are the cumbersome underlying interface and 
inflexible high-level APIs. If we want to train the model using our custom 
functions, it is very inconvenient based on predefined high-level APIs. 
 

Computational Network Toolkit (CNTK) is an open source deep learning 
framework developed by Microsoft Research. It depicts the neural network as a 
series of computational steps through a directed graph. CNTK has many neural 
network components that allow users to easily design new complex layers by 
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combining these components without writing the underlying code of C++ or 
CUDA. It is easy to set up with lines of code using pip in Linux system. In addition 
to these advantages above, it has great scalability because it allows for distributed 
learning and makes it very easy to set up for parallel training. However, it has 
massive documentation with different series of tutorials to ease us into the 
system.  

 
Keras is a high-level API running on the top of Tensorflow to build and 

train deep learning models for fast prototyping, advanced research, and 
production. It has several key advantages. It is super easy to set up based on 
Tensorflow environment since it is running on the top of it. Also, It is easy to 
make models by connecting configurable building blocks since it provides a 
simple and user-friendly interface optimized for common use cases, with few 
restrictions. At last, it is scalable and easy to extend by writing custom building 
blocks. However, this tool is required to take up too many GPU memory resources 
and more compile time to train a model.  

 
MXNet is a fast, full-featured, and scalable deep learning framework that 

supports the most advanced deep learning models. It is originated from the labs 
of Carnegie Mellon University and the University of Washington, Its most 
prominent advantage is the combination of symbolic programming and 
imperative programming. It uses symbolic programming to build various 
networks with high speed and uses imperative programming to better handle 
complex environments. However, documents for some APIs are limited and not 
clear. There appear to be limited plans for future support. Also, it is not easy to 
set up since it needs to install packages like CUDA and OpenMP, and configure 
environmental variables.  
 

Caffe is an open-source deep learning framework developed by Yangqing 
Jia, a doctor at the University of California, Berkeley and it supports many 
different types of deep learning architectures geared towards image classification 
and image segmentation. Caffe is of great scalability and is being used in 
academic research projects, startup prototypes, and even large-scale industrial 
applications. But it mainly focuses on applications in processing vision, speech, 
and multimedia. So it might be not a good choice for our project. Additionally, it 
is not easy to set up, especially in CUDA, CUDNN path setting and opencv version. 
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PyTorch is an open source machine learning library for Python, based on 
Torch, used for applications such as natural language processing. It is primarily 
developed by Facebook 's artificial-intelligence research group. Even though its 
advantages of quick setup and training with a few lines of code, it is a brand new 
tool. It does not have a long history of support although there are plans for future 
support. As one of popular machine learning framework, PyTorch seems like 
something that would be interesting, but we can't trust and choose it at this stage.  

3.2.3 Chosen Approach 

We have chosen Tensorflow as our solution because there are many useful 
and efficient APIs and predefined functions provided for us to easily create and 
train a machine learning model. As the most popular machine learning 
framework developed by Google, Tensorflow has the most active development 
community where programmers globally work together to develop and improve 
Tensorflow.There are now various kinds of useful and powerful third-party 
python libraries which help us ingest metadata from our data tool. Additionally, 
with well-designed and informative documents, users can easily set up a runtime 
environment and design the neural network model with several lines of code. 
Another important factor is its great scalability and portability. It is easy to 
deploy models to PCs, servers, and even mobile devices with any number of CPUs 
or GPUs, which then we can apply built-in parallel programming methods to 
speed up the training process. There exists a user-friendly GUI in the form of 
TensorBoard, a powerful visualization component of Tensorflow, which is useful 
for visualizing our neural network structure and training process. Tensorboard 
can provide guidelines for us to help improve and train the model. We came up 
with a rubric to grade each tool which led Tensorflow to be chosen as our 
solution; the rubric is represented in table 1, the rating of each value is on a 1-5 
scale; 5 being best. 

 
 
 
 
 
 
 
 
 
 
 

9 



 TensorFlow CNTK Keras MXNet Caffe PyTorch 

Ease of Use 4 4 5 4 4 5 

Ease of Setup 5 5 5 4 3 3 

Scalability 5 5 4 5 5 3 

Speed 5 5 4 5 4 5 

Capability 5 4 4 4 3 3 

Future Support 5 5 4 4 4 4 

Deep Learning 5 5 5 5 5 5 

Total Ranking (Average) 4.8 4.7 4.4 4.4 4 4 

Table 2. Research Rubric For machine learning Tool 

3.2.4 Proving Feasibility 

1. Testing Pipeline 
We will check that the machine learning framework can ingest the 
extracted features from our data tool. 

2. Train the model 
We will attempt to train a model using said features and check that 
the output is well-formed. 

 
3.3 Problem 3: Type of Learning 
 
3.3.1 Intro the Issue 

A requirement of our project is to use machine learning techniques to 
produce a machine learning model. To be able to create a proper model we first 
need to find which type of learning is most appropriate. The type of learning 
defines the overall process our system will use to create the model. The type of 
learning will be determined by looking at three main factors, the data we will 
analyze, the desired behavior of the model, and the complexity of the learning 
type. However, since we have not had access to the data set we must work off of 
informed assumptions; because of this, we may find our initial decision to not be 
the best choice when we begin prototyping.   

 
The goal of our model is accurate classification. We expect our model to be 

given metadata and then be able to use that to correctly give one of five 
classifications of data storage. Classification is a classic machine learning 
problem, and most of the learning lends itself to classification fairly well. Because 
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of this, our decision will need to be based more on the data and the complexity of 
the learning type. 

 
We know the data we will work with is metadata extracted from IBM’s 

cloud service users’ data. We are making the following assumptions: the 
metadata is well formed making feature extraction easy and efficient, the data is 
correctly classified, the data is not balanced, and the data will require 
preprocessing before learning can begin. We make these assumptions based on 
what we have been informed from our sponsor but cannot guarantee because we 
have not been seen the data.  

 
We are considering the complexity of the learning type to be able to avoid 

unnecessary complexity. For example, if we have two options that fit our model's 
behavior and the data equally well, we would want to be able to formally discern 
between them based on the complexity of their processes. 

 
Using what we know about the desired behavior of the model, the expected 

characteristics of the data, and the complexity of the learning type we can begin 
comparing our options for learning types. 

 
3.3.2 Alternatives 

The four main types of learning are supervised learning, unsupervised 
learning, semi-supervised learning, and reinforcement learning. These types are 
known informally, and perhaps more recognizable, as machine learning, deep 
learning, mixed learning, and reinforced learning; respectively. Each type defines 
its unique process of creating a model and are most useful when applied to 
certain characteristics of data and model behavior. 

Supervised Learning 
The most well-known choice is supervised learning. Also known as 

traditional machine learning, this learning type has the easiest to follow process 
for creating a model. This process predicates the data must be well-labeled 
observations to make for proper input and output. The data is then split into two 
categories: test data and training data. The test data is fed into a machine learner 
and after sufficient data has been passed through a model is created. This model 
is then tested for accuracy using the test set. The stats of the model's performance 
are sent to the learner to improve the teaching of the model. This process is 
repeated until the model is acceptably accurate. 
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This process lends itself to classification problems where features used for 
classification are well defined. Specifically, when there are a finite number of 
input parameters that determine a single objects classification into a finite 
number of outputs. As noted above, this process requires the data to be well 
labeled and well-formed. Without the data structured this way, the process is 
unable to define traits that can be used to classify the object or have reliable 
training and test data. 

 
If our assumptions are correct, then there will be extra overhead involved 

in choosing supervised learning. The creation and designation of training and 
test data will require preprocessing before we can begin creating a model. 
However, supervised learning’s most common use case is classification. Because 
of this, we would have more documentation and resources available to us 
compared to the other options. The process is also much more deterministic than 
other choices making it easier to recreate and confirm our work as we progress 
on the system. 

Unsupervised Learning 
Our second option is unsupervised learning or deep learning. This learning 

type is most similar in concept to a black box. We know the input going in and 
know what output to expect, but determining what is going on in any specific 
case is difficult; if not impossible. The process has no specific requirements of 
data. This lack of requirements allows deep learning to be applied to unlabeled 
data where features are not well defined. Examples of this are things that are 
difficult for a person to define such as a human face.  

 
The general process works by first providing a dataset that has no specific 

outcome or correct answer accompanying the data. The data is then passed 
through a neural network, the learning algorithm that will be used to model the 
input-output relationship. The neural network will then attempt to automatically 
find structure in the data and extract useful features from the structure it finds. 
This would allow us to get an accurate model if it is difficult to extract features 
from our data or too difficult to define useful features. 

 
Following our assumptions, this would not be the best option for us. 

Because we are making the assumption our data will have easily defined 
features; we are making an unnecessary tradeoff. We lose the deterministic 
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behavior in the process, but because the pros for deep learning relate to defining 
features, we do not appear to gain anything of immediate value. 

Semi-supervised Learning 
The next option is semi-supervised learning. Also referred to as mixed 

learning, this process uses some data that is labeled and some that are not for 
training. This is usually used when data can be well defined but is very time 
intensive or expensive to define making it so getting enough data is near 
impossible. This would occur situations where an expert is necessary to label the 
data such as medical images or thermal anomalies in volcanic flows. The most 
common implementation of semi-supervised learning involves using general 
adversarial networks. 
 

General adversarial networks or GANs put two deep learning networks in a 
system of competition. One network works to create an image that mirrors the 
training set, and one network attempts to designate given input as either from 
the original dataset or produced from the generating network. The system 
repeats this process, improving both networks. 
 

This option will most likely not apply to us. From what we know of our 
data it has its features already defined in the form of metadata, the questionable 
part is whether we can define the useful features. If we can, we would more than 
likely use supervised learning. If we cannot then deep learning would be a more 
appropriate option than semi-supervised learning. It would add, as can be seen 
above, unneeded complexity to the process without benefit. 

Reinforcement Learning 
Reinforcement learning is used to improve a process or technique with an 

end goal. It is not given data to train or test with but instead uses an AI and is 
given an environment to experiment in. The AI has a base set of operations which 
it may use randomly in the environment to start. As it gets closer to an end goal, 
the AI is incrementally rewarded; leading the AI to an end goal and a larger 
reward state. Each trial is saved, and the AI tries to recreate trials that were 
rewarded more optimally. This process repeats until the AI is optimal at working 
through similar environments or tasks. 
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This type of learning can be definitively ruled out. Its use cases do not 
apply to our end model goal and therefore can not be used to satisfy one of our 
known requirements. 
3.3.3 Chosen Approach  

The following table (Table 3) outlines the comparison (0 - 5) of the 
considered approaches and their scoring relating to how well they applied to our 
end model behavior, how well the type fit our data’s expected characteristics, and 
the complexity of the type’s processes. 

 

 Supervised Unsupervised Semi-supervised Reinforcement 

Fit desired model 
behavior 5 5 5 0 

Fit expected data 
characteristics 4 3 2 0 

Relative Complexity 5 3 4 4 
Total Ranking 
(Average) 4.6 3.6 3.6 1.3 
Table 3: Research Rubric For Learning Type  

 
From Table 3, it appears clear the best option is supervised learning. 

Supervised, unsupervised and semi-supervised all fit our desired model behavior 
very well as they all could produce a classification model. However, the 
supervised expected input most closely resembled the expected characteristics of 
our data only losing one point because it does create overhead from requiring 
preprocessing and designation into different data pools for testing and training. It 
also seemed to be the least complex of our options because the process steps are 
well defined, deterministic and mostly well understood. We do acknowledge that 
unsupervised could end up fitting our data more because the actual data 
characteristics could potentially not match our assumptions. In this case, we do 
not see it as a potential issue switching because of our options for learning 
products support supervised and unsupervised learning. 

 3.3.4 Proving Feasibility  

1. Compare Expected Characteristics of Data 
We will first compare the actual characteristics of the data 
with our previous assumptions. If there are major 
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discrepancies, we will re-evaluate our best option for learning 
type. 
 

 
2. Testing Process on Data 

We will test that our process works as expected. We will do so 
by using only the chosen learning framework or library to 
avoid potential missteps in our pipeline. We will use a smaller 
group of data and confirm it is going through our process as 
expected. 

 
3. Check for Properly formed Output 

We will check that the output is properly formed. This is 
because in this early state we do not expect an accurate model, 
so we will only check that a model was produced. 

 

4 Technology Integration: 
The primary challenges with our project are finding the right technology to 

use. The technology we have proposed in our document will need to come 
together to create one cohesive system that will be able to create a model to 
classify data. 
 

First, our application will read in meta-data collected on users data. Using 
Apache Spark, our application will analyze the data and determine if any 
preprocessing or balancing needs to occur. We will then process the data as 
needed to extract the required features. 

 
After extracting our features, we will pass the features from Apache Spark 

to our machine learning framework, TensorFlow. With the release of Apache 
Spark 2.3, TensorFlow is inherently supported by Apache Spark and allows for 
seamless integration through their Python APIs. Here we will use supervised 
learning to iteratively create an increasingly accurate model. We will continue 
this process; testing the accuracy of our model. We will continue this process 
testing and documenting the results with a goal of creating a model with at least 
80% accuracy. 
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5 Conclusion:  

In conclusion, data uploaded to IBM’s Spectrum Protect product is often 
miscategorized into the wrong storage tier. This requires manual intervention by 
system administrators to correct miscategorizations after the files have been in 
the wrong tier for too long. The general solution to our problem is as follows: 

1) Ingest metadata and extract features from the metadata. Then use 
the features in a machine learning framework to create a model 
which can be used to classify data correctly. 

2) The model will then be exported to be used to correctly classify the 
data in storage and then classify any new data uploaded. 

 
The purpose of this document has been to identify our potential technical 

challenges and identify solutions to those challenges. The following table outlines 
are solutions and how confident we are they will work for our challenges scaled 
from one to five where five is the best. 

 

Technical Challenge  Proposed Solution  Confidence Level 

Ingestion of Meta-Data  Apache Spark  5 

Model Training  Tensorflow  4 

Learning Type  Supervised Learning  3 

Table 4. The confidence level for solutions 
 

We will have an application that will use machine learning to correctly 
categorize data into its respective tier. We are confident we will be able to 
produce a product that will help IBM designate data into correct tiers. This will 
decrease the number of unnecessary costs accrued by IBM and allow IBM to use 
fewer work hours fixing miscategorizations of data. 

 
The next major milestones of our work will be initializing our pipeline 

setup, getting our data, and getting our application to produce a well-formed 
model. We do anticipate there may be discrepancies with the expectations of our 
data and our data’s actual characteristics. We have researched accordingly and 
have versatile technologies to allow us to switch our machine learning 
methodology without changing our application infrastructure if we run into this 
challenge. We currently have a plan of getting our data from our sponsor, Daniel 
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Boros, on November 29th, 2018 during a face-to-face meeting. Because we will not 
have our data until later in this month, we will build up the infrastructure of our 
application before to allow us to immediately begin refining our prototype when 
we receive the data. After extensive research, this pipeline of technologies will 
produce the best solution even with the anticipated upcoming challenges; 
resulting in a well-designed end product that will be able to predict appropriate 
storage tiers of data during data ingestion.  
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