

Final Report

Version 1.0

5/9/19

SciKids

Sponsor: Elizabeth Glass

Mentor: Austin Sanders

Samantha Earl, Claudia Coronel, Gwen Morris

Table of Contents

Introduction……………....…………………………………..………………….2

Process Overview….……………………….…………….............…….…......3

Requirements………….……….……………………..………………….......…5

Architecture and Implementation….…..…..………………..……………....7

Testing……………….……………..………………………............................10

Project Timeline..…...………………………….…....……………………......14

Future Work…………………………………….……………………………....16

Conclusion……………………………….……………………………………..17

Appendix A…………………………………………….……………………….18

1

1. Introduction

1.1 Problem Statement

There are a multitude of STEM career opportunities in North America, and many of these

positions are yet to be filled. According to the U.S. Department of Commerce, STEM

occupations are growing at 17% annually while other occupations are growing at 9.8% annually.

The United States Bureau of Labor Statistics has projected a large shortage of about 1 million

STEM professionals in the country. The workforce is considered an important factor in

supporting United States innovative enterprise, global competitiveness, and national security,

and the shortage of STEM-educated workers can damage these areas. Our project would

facilitate the introduction of STEM-related concepts to young students and those who are

considering a career change.

An effective way of creating an initial interest in STEM is to present broad, general

STEM concepts to young children in an entertaining way. Studies have shown that middle

school is a pivotal time for children in deciding where their interests lie, so this age group needs

to have material that can help cement student interests. By early exposure of STEM areas, we

hope to begin and cultivate STEM interests which would then lead to a greater likelihood of

students choosing a career in the field. Older students, such as high school and college

students, need more career readiness material. This includes information on building resumes,

interview skills, and achieving important standards for career readiness. Our client, Elizabeth

Glass, wants to provide a system that can solidify STEM interests in younger students and

provide material that focuses heavily on career development skills for older students.

2

1.2 Solution Vision

The solution that the team has implemented is a gesture-based learning system for

STEM recruitment and support in the kindergarten through college and community age

individuals. A gesture-based system itself is defined as a system that allows individuals to

engage in a virtual environment using motions and movements that mirror real-life actions.

There are several benefits that the team and sponsor have identified that lead to including

gestures for the project. Gesture-based learning systems can increase an individual's intrinsic

motivation. Gesture-based systems have also been shown to increase memory retention and

aid in learning concepts through physical means. By choosing to implement motions, students

are able to have a virtual, hands-on learning approach which will allow the users to actively and

physically engage in their learning. This solution extends the core functionality of the problem

statement by:

● be openly available to anyone in the community

● provide information on STEM in a visually rewarding way

● enhance individuals professional skills by providing up to date information in the STEM

field

Overall, our solution consists of an interactive system that will be able to educate users

on the possibilities of a STEM-based education as well as provide resources to users looking to

start a future career.

2. Process Overview

Our project was a year-long project with extensive planning and scheduling in order to

satisfy our sponsor. In the beginning, we created a Team Standards Document, which

3

contained all of the roles in our team and reached an agreement of expectations of each other.

We then moved into the process of planning. We had weekly meetings with our capstone

mentor and monthly meetings with our sponsor. During the first couple of meetings with our

sponsor, we were focusing on gaining a better idea of the vision of the project. Our sponsor

made it very clear that this project was completely new to Flagstaff and that we were going to be

creating something brand new.

To begin building this new system, we started with developing requirements. At this time

we identified what the special features of our project were going to be as well as the functional

and non-functional requirements. After mapping out the requirements we built a timeline to

follow as well as dedicated positions where we felt like each team member would do best. When

we had a clear idea of what we were able to create a technological feasibility analysis of the

potentially new items were going to be using. From this, we decided on three different

technologies: Unity, the Intel RealSense D435 camera, and Nuitrack.

Shortly after choosing our technologies and creating a small demo of what our system

might look like we were able to move into creating our software design document where we

discussed implementation and architectural overviews of our system. This was extremely helpful

during the development phase of our project. During the development of our system, we ran into

a few challenges, of which we provided solutions to in our later design reviews. After

development, we went into the testing portion. Later we displayed the final demo to our sponsor

as well as our client, meeting all of the requirements we laid out in the first semester.

Working as a team proved to be one of the biggest factors of the success of our project.

As a team, we communicated daily through our group chat. We made time for weekly meetings

and allocated tasks accordingly. As a team, when struggles arose we brought them to light as

quickly as possible. When one of us needed help in a section we made it very clear. Without the

4

communication and specification documents we wrote, we couldn’t have tackled this project.

This shows a general overview of the software engineering cycle we went through as SciKids.

3. Requirements

In order to develop a product that matches our solution vision, we have gathered and

placed our requirements in functional and nonfunctional sections. In the acquisition phase of the

project, the team met with Elizabeth several times a month discussing what our sponsor would

like and how the team would approach meeting the ideas our sponsor brought to our attention.

The team provided several outlines of the system to ensure that the team was continuing to

meet the sponsor’s expectations. During development, these requirement specifications acted

as a guide in ensuring that the specific problems and solutions presented are indeed what

makes our product of value to the users. Here are the domain level requirements for our

product:

1. Users will be able to gestures as a means of navigation through the system

2. Users will be able to access different modules through our system.

3. Users will be able to by making a personal profile and see personalized available

modules.

4. Users will be able to save personal progression and set high scores.

5. System must be extensible for future developers.

Each of these different domains contains functional and nonfunctional requirements.

These domains work together to complete the overall purpose of our system. The next section

in our document will be addressing these high and low-level requirements with respect to their

types.

5

3.1 Functional

The functional requirements of the system include tasks that the system should be able

to do. The first requirement is that the program has a main menu area. From this main menu

page, users are able to access any of the content and resources that will be provided by the

system. The second requirement is gesture recognition. Gestures are to be used as a method of

navigation through the main menu of the program, along with a mouse and keyboard for the

desktop version of this system. The third requirement is the implementation of a login system.

Users are able to create an account and log in to a previously created account with a username

and password. Validation ensures that the password and login are correct, error feedback is

provided if not correct, and the login information the user provides can fit certain requirements.

The fourth requirement was the user’s ability to save high scores and personal progression.

Through the database associated with the login process, users are able to save high scores

from games that are played. Finally, the last requirement is system extensibility for future

developers. The team has created a simple way for developers to import their files into the

system, and we have provided navigational tools that developers can use to allow users to view

the new content.

3.2 Nonfunctional

The performance requirements of our system are important because they judge the

operation of the system, rather than specific behavior. Here we will include some of the

following performance requirements we set as goals for our software.

One important aspect of the project includes having a physically portable system for our

sponsor. All of the hardware is small and easily carried by one person. The computer and

camera will fit inside a bag so that a user can carry this system around to areas in the

6

community and increase the availability of the system in the Flagstaff community. It was

important that the GUI and module content is engaging and informative for the users. The

information on STEM must be accurate and represent characteristics of STEM fields and skills.

This information is expected to be engaging as well so the users will want to use the system and

engage in the content the software provides.

4. Architecture and Implementation

The solution that the team has implemented is a gesture-based learning system that

allows individuals to engage in a virtual environment using motions and movements for STEM

recruitment. Recruitment primarily focuses on kindergarten through college and community

aged individuals. In order to do this, we bought a camera that can track user depth and

positioning as well as software that can translate user motions into certain gestures that we can

later assign actions to.

As stated in section 2, our gesture-based system involves 3 main technologies - the Intel

D435 Camera, Nuitrack, and Unity. A more detailed description of each technology can be seen

below.

● Intel D435 Camera: This camera includes a pair of depth sensors, an RGB sensor, and

an infrared projector.

● Nuitrack: Nuitrack is a middleware that can track a 3D skeletal body and recognizes

certain gestures a user makes. By utilizing some of its available modules we will be able

to bring value to hand gestures within our system.

● Unity: Unity is a game development engine that is compatible with a wide range of

technology. We will use this to create the GUI and backend processes, which is made

7

simpler through Unity. Nuitrack also offers Unity support that allows developers to

directly map gestures to GUIs made through Unity.

Figure 1: System Diagram

Figure 1 above shows how each component interacts with each other. The user will

connect the camera to the computer and the software will verify that the camera is connected.

The user will then interact with the system by the way of our Intel Realsense camera and GUI.

The gestures that the camera picks up will then be interpreted through the Nuitrack SDK. The

gestures recognized by the SDK will be mapped to specific actions in the backend that will allow

the user to interact with the system.

The Intel RealSense camera and the Nuitrack SDK will allow us to track and map user

gestures while Unity will allow us to create both the GUI and backend processes. Together, we

were able to create gesture-controlled software that many people can use, as is part of our

client’s requirements.

8

Figure 2: Architecture Diagram

A general overview of the system’s flow is depicted in figure 2. The GUI and backend are

created together using Unity and C# in Visual Studio. At first, the user will be able to select

options to either log in, register, access modules, or learn more about the team. The login and

register portion of the software will be completed by using SQLite, an embedded SQL database

engine. Since Unity uses scenes to host properties of a specific game, our modules are

configured as different scenes. Another great feature that Unity provides is the ability to import

external scenes into a current project. This allows future programmers to load new content into

the modules.

The local SQLite database is used to store usernames, passwords, and any scores or

progress made through modules. This will be done using three connected tables that will

interact with each other to keep track of the high scores, what game it corresponds to, and the

individual who achieved the high score.

The Intel D435 camera and Nuitrack is used to read user positioning and gestures.

These gestures are then mapped to specific actions. For example, a closed fist indicates a

9

mouse click and can be used to click buttons, which allows the user to navigate through the

menu. These actions are specified through backend scripts.

The system the team ended up building is similar to the system envisioned by the

sponsor and the team at the end of planning and requirements acquisition. The team ended up

changing some of the software and methodology that was originally planned for the system in

order to be more compatible with the hardware the team chose. We initially planned to use the

Intel RealSense SDK however, we switched to Nuitrack by the second semester. This change

gave us more methods for gesture interpretation. The database system also changed from SQL

to SQLite as the project progressed. Unity was still used to provide the GUI and C# was used to

create the script files. The changes in software improved the development process for the

project allowing for better compatibility of all the structures that were incorporated within the

project.

5. Testing

We have done three different testing strategies: unit, integration, and usability testing.

These strategies ensured that our product was fully functional and met our client’s expectations.

We first broke the system into smaller, individual units in order to test each unit of source code

works. Unity offers its own test framework, TestRunner. TestRunner requires classes with

functions that test specific methods of our source code. Our team has created a total of 5 test

classes to test the Registration, Login, and DBManager classes along with methods for gesture

recognition and methods implemented in the provided modules. Functionalities provided by

Unity and Nuitrack, such as clicking buttons, changing scenes, object collisions, etc., were not

tested. This decision is based on the assumption that these methods have already been

thoroughly tested by the providers before public distribution.

10

Unit testing looks at individual components of the software to confirm that each unit

performs as expected. To ensure the functionality of our system, we have created several unit

tests. We have created these tests using Unity’s built-in Test Runner module. This allowed us to

write tests in C# and run them in the Unity editor.

Test Equivalence
Partitions

Boundary
Values

Sample
Input/Action

Expected Outputs

UserFound() N/A N/A User stands in

front of the

depth-sensing

camera.

User’s body is interpreted

with Nuitrack’s SDK. A

text will appear on the

screen saying “User

found”

HandTracking() N/A N/A. User stands in

front of the

depth-sensing

camera and

waves their right

hand around the

screen

User’s hands are

interpreted with Nuitrack’s

SDK. A text will appear on

the screen showing

coordinates of hands at a

specific moment in time

ItemDestroyed() N/A N/A User stands in

front of the

camera and

touches objects

on the screen.

User’s contact with the

objects will cause them to

disappear, triggering a

text on the screen

displaying “Destroyed”

Here is an example of one of the unit testing that we performed on our system. The

Gesture recognition portion of the system is responsible for ensuring that the user will be able to

11

use gestures as a means of navigation through the system, as well as interact with the different

modules available. Therefore, the items that we have tested focused on the backend’s ability to

recognize and interpret these gestures.

The purpose of integration testing is to make sure all of the units are capable of

interacting and working together. As the user navigates through our system, we want to ensure

that data is not lost across different aspects of our project. We want to make certain that when

the different modules or our system are combined, they deliver optimal results. In order to prove

the effectiveness of our system, we performed integration testing. During our testing, we

incorporated the different modules combined as to exhibit functionality.

Integration Test Sample Input Expected Output

Math activity can be used

with gestures

User will stand in front of a

depth-sensing camera for

body recognition. As

equations are shown on the

screen in a timely manner the

user will need to destroy the

game object with the right

answer.

As game objects with the

correct answer are destroyed.

The system will validate the

answer and if it is the correct

one, it will increment the

score.

Here we have an example of one of the integration testing that we performed on our

system. This mainly focused on the Math Game portion, which works with both our database as

well as gestures.

Finally, the team finished off the testing phase with usability testing. In order to decide

how the usability for our system should be tested, we had to take into consideration who will be

using it. The purpose of this phase was to ensure that users can easily learn how to use our

12

product with little to no difficulty. Because our system is meant for users of almost any age, the

learning curve had to be as simple as possible.

Purpose: The user will find the system engaging

and enjoyable

Task: Run through the respective module in

your age group, try at least one of the

activities

Plan: Taking at least two individuals for each of

the modules we have developed and

asking them their opinions on the content.

Posing the right questions based on

graphics and gestures.

Survey ● Did you find the material engaging

and informative?

● On a scale of 1-10 how

enthusiastic were you to continue?

● Would you use this system again?

Pictured here is one of the examples of usability testing that we performed. Our usability

testing primarily consisted of test groups of different ages who interacted with our system. This

included actions such as navigating the menus, creating a new account, and playing at least

one of the activities provided. Ease of navigation and overall satisfaction was what the team

was testing for. We have created two surveys for navigability and overall satisfaction to give to

users testing our system.

13

The above testing provided information on bugs and user experience that the team used

to refine the system. The unit and integration testing showed a few bugs that interfered with the

math game, database scores, and score counter for the interview game. This resulted in the

team reviewing the logic of the interview game to ensure that the counter works for all

interviewees. The database system was fixed to ensure that high scores were being associated

with the correct username during play of the math game. Then, the math game code was

revisited to make sure that items were destroyed when users interacted with them.

The feedback from our user testing included providing better tutorials, editing the

interview game button interactions, and changing the spacing and text size for some of the

buttons. The team implemented the feedback for the interview game by disabling the continue

button when the user has to choose a person before moving on to the next question. We also

display a prompt to choose a person, so that the user remembers to click on a name. The

written tutorial also had a quick script change to make it easier to understand controls. The

button changes suggested by the survey were also changed in the system.

6. Project Timeline

During the first semester of capstone, the team first established roles for each member

before focusing on technology feasibility and requirements acquisition. After deciding on the

technologies we used and working on detailing the exact requirements of our system, we

created a thorough design review. By the end of capstone, we had a rough prototype of the

system that proved the feasibility of our project.

14

Figure 3: First Semester Schedule

Figure 3 depicts the first semester of capstone, from the team startup phase to the

prototyping phase.

Our team focused on product development during the second semester. Because this

product was being built from the ground up, we broke the base of this project down into basic

login and menu functionality and gesture mapping. After the groundwork of our system was laid

out, we worked with our client to decide what modules should be created. We have created a

simple math game for groups K-5 and an interview game for users in college or in the general

community. This was done before our full alpha prototype on March 11, 2019. Our team then

focused on thoroughly testing the system before the undergraduate symposium. We are

currently finishing some last minute adjustments before finally delivering our product to our

client.

Figure 4: Second Semester Schedule

15

Figure 4 is a Gantt chart that depicts the second semester of capstone, from creating

basic functionalities to the final project delivery.

7. Future Work

One of the goals our sponsor has for this project to continue on after capstone. Since

this project will be a system used in the Flagstaff community there is still future work to be done.

Some of this future work includes further module development, converting to a cloud database,

and the expansion of gesture support.

 Through our capstone, we developed modules as a platform to hold future STEM

content. With this project we added a small amount of content to show proof of feasibility

however, there is future work to be done in expanding existing modules This can be through

adding content to modules that the team has already created or by adding new modules and

providing new content for those modules. The details of the content would be up to the

developer and sponsor of the project but would be stored in the navigation system.

Another item that can be worked on in the future is developing a cloud database. Since

the focus of our capstone project was to develop a local database for one system, we

understand in the future there will be several of these systems in the community. To ensure that

personal profiles can be accessed by any of these systems that are around the community, we

would like to convert into using a cloud database instead of the local one that is currently being

used.

The gesture recognition system used for this project, Nuitrack, was very limited on the

amount of gestures we could use. For new gestures to be configured, developers would

essentially need to make their methods from scratching using Nuitrack’s API. This means that

there is a potential future work to be done here. When this project expands there should also be

16

the expansion of gesture support as far as what is allowed. Currently, we only have clicking and

skeletal recognition, but in the future developers could possibly add additional gestures like

swiping capabilities.

Overall, this semester our team worked on providing the framework to hold this

gesture-based learning system and it will be up to future developers to continue our work.

8. Conclusion

Scikids is a team that was formed with a goal to provide STEM outreach services to the

Flagstaff K-12 and community individuals alongside our sponsor Elizabeth Glass. We have

created a gesture-based learning system that includes different modules, interactive fun, and

personalization. The current problem is that STEM is a quickly growing field without enough

individuals going into it. The solution in the Flagstaff community is to create this gesture-based

learning system to be easily accessible and portable for K-12, college, and community

members. Our client has decided on this solution when seeing how effective gestures can be in

helping users retain information and how there is a lack of gesture-based technologies that are

currently available. This gesture-based system allows users to interact with the system with

gestures such as open and closed fists as well as grab-and-drag movements (to substitute

click-and-drag gestures). They will be able to navigate the menu and engage in age-based

modules through these gestures.

17

9. Appendix A

9.1 Hardware

Our team used the Intel RealSense D435 camera to help us develop this product. These

cameras are compatible with Nuitrack (discussed in section 9.2), along with a variety of other

cameras. The team has purchased 3 cameras for $179 each. For other compatible cameras,

please visit the Nuitrack website (nuitrack.com).

Our team has also used Windows 10 to develop this product however, Nuitrack and

Unity (discussed in section 9.2) are compatible with a wider range of systems. Nuitrack is

compatible with Android ARM v7 and Linux x64. Unity is compatible with 64-bit versions of

Windows 7 SP1+, 8, 10 and Mac computers with macOS 10.12.6 or higher.

9.2 Toolchain

Our team used Unity as the primary development platform. Unity is a popular and

versatile game development engine that allowed the team to quickly create GUIs with backend

support. During development, the team decided on using Unity version 2018.3.5. Older versions

cannot support newer versions, so we decided to not update Unity during development to

eliminate confusion between team members. Unity uses C# for backend processes, so we

decided to use Visual Studio 2017 to create the backend.

We have also used Nuitrack, a 3D skeletal tracking middleware, to help us map gestures

to actions. Nuitrack offers compatibility with a selection of cameras and is continuously updating

their software, so the team is hopeful for advancements in gesture mapping in the future.

Our team also used GitHub as a means of quickly sharing development between team

members, keeping track of issues, and ensuring that work between members merges together.

18

Finally, we have implemented a local SQLite database to save user information, scores, etc. We

have done this to further encourage users to continue using our system.

9.3 Setup

9.3.1 Setting up the Environment

1. Clone the project from GitHub using GitBash. To do this, create a new folder on your

system and initialize an empty Git repository using “git init”. Then, use a git clone

command with https://github.com/Oakheart27/Capstone

Figure 5: git clone

2. Download Unity and Visual Studio. Go to Unity’s website to download the Unity installer.

Our team used Unity version 2018.3.5 to develop this product. The product can work

with future versions of Unity, however teams who work on this project should be careful

when updating Unity while developing. When downloading Unity, the Unity installer will

offer the option to download Visual Studio 2017 as well. Make sure this option is

checkmarked.

3. Set up the Intel RealSense SDK 2.0 . This step is required for Nuitrack’s software. The

download link can be found at https://github.com/IntelRealSense/librealsense/releases.

This download also includes Intel’s Depth Quality Tool and the Intel RealSense Viewer.

4. Set up the Nuitrack SDK. Our team has already purchased three copies of Nuitrack PRO

for Windows, and they are activated with the provided cameras.

a. Download Nuitack from http://download.3divi.com/Nuitrack/platforms/

19

https://github.com/IntelRealSense/librealsense/releases
http://download.3divi.com/Nuitrack/platforms/

b. Install Nuitrack for your platform. For Windows 10, create an environment variable

with the name of NUITRACK_HOME and value of <install-folder>\nuitrack. Then, add

<install-folder>\nuitrack\bin to the PATH environment variable. For other operating

systems, please visit the Nuitrack API.

5. Open project through Unity Hub. Unity projects are typically accessed through the Unity Hub.

If the project is not automatically displayed in the hub, click Open and navigate to the folder

than contains the project.

9.3.2 Setting up the Hardware

As stated prior, the team has purchased 3 Intel RealSense D435 cameras. Connect the

camera into a USB-3 port on your computer before testing the product (either in the editor or in

runtime). To ensure that the camera is properly connected, open the Intel RealSense Viewer

(see section 9.3.1, step 3).

Figure 6: Intel RealSense Viewer

20

If the viewer can view both a stereo module and the RGB camera, as seen above in

figure 6, the camera is properly connected. Another indication of the camera properly working is

a small red light in the biggest lens.

9.4 Production Cycle

9.4.1 Importing an External Scene Into Project.

First, export the scene and all dependencies. On the upper menu of the Unity Editor, go

to Assets -> Export Package.

Figure 7: Export Package

Make sure to include all dependencies of the scene (prefabs, scripts, etc.). Then, click

“export” and save the Unity package in the desired folder.

To import the scene into the base system, open the STEM Recruitment project and go to

Assets -> Import Package -> Custom Package.

21

Figure 8: Import-Package

Navigate to your Unity package and import it into the project. Unity will automatically

organize your dependencies into their respective folders. In order for the project to have access

to your scene, it must be added to the build. Open your scene in the editor and go to File ->

Build Settings. Then click “Add Open Scenes”.

22

Figure 9: Build Settings

9.4.2 Connecting Scenes Through a Button.

In the Assets/Prefabs folder, developers can find a button prefab that they can use to

connect scenes. To add the button onto canvas, first open the scene from the STEM

Recruitment project that you want your scene to be connected to. Drag the myButton prefab

from the Assets/Prefab folder onto the canvas of the scene. This prefab contains a

HoverToClick script that works with both a mouse and gesture recognition. Note that you can

also change the color, text, etc. of the button prefab.

In the Inspector, add a new OnClick() task. The OnClick() task needs to reference the

Canvas (as that is where the script to load a scene is located). Call the function

23

LoadSceneThroughButton.changeScene, and enter in the name of your scene into the input

parameter.

Figure 10: Managing OnClick Events

9.4.3 Adding Gestures to New Scene

In the Assets/Scripts folder, a HandCursor script is available for developers to use. This

script allows users to navigate through menus and click on buttons using gestures, as it maps

the user’s hand to the mouse cursor. Add the HandCursor script to a button. This can be done

by either finding the HandCursor script in the “Add Component” option of the Inspector or by

dragging the script onto the button in the hierarchy menu.

Figure 11: Adding HandCursor

24

Add the NuitrackScripts prefab onto canvas, which can be found in

Assets/NuitrackSDK/Prefabs. Add it to the scene and make sure that the Gestures Recognizer

Module and Hands Tracker Module are both checked in the Inspector.

Figure 12: Adding NuitrackScripts Prefab

Figure 13: Nuitrack Manager

25

To add more gestures, please visit the Nuitrack API. Here you can find tutorials using

Unity along with a list of their classes, modules, etc.

26

