
Requirements Specification Document

6 December 2018

Team PathLab

Client

Viacheslav Fofanov

Mentor

Isaac Shaffer

Team

A. Turan Naimey

Alexandre Lacy

Chance Nelson

Austin Kelly

Version 1.2

Sponsor Signature ______________ Date __________

Team Lead Signature ____________ Date __________

Table of Contents

1. Introduction 2

2. Problem Statement 3

3. Solution Vision 4

4. Project Requirements 5

5. Potential Risks 8

6. Project Plan 9

7. Conclusion 10

8. Appendix 11

PathLab 1

1. Introduction

In 2011, in Germany, an E. Coli outbreak caused widespread hysteria, and ultimately led

to 51 deaths, hundreds of hospitalizations, and billions of dollars in damages from

recalled goods. Scientists, using traditional genomic testing methods, determined that

the outbreak was caused by Spanish cucumbers. In reality, however, the outbreak was

caused by German sprouts. Despite the panic, the proper pathogen was able to be

correctly identified and the case was subsequently closed.

The method that these biologists used to identify the E. Coli strain, both initially and

subsequently, was Multiplexed Genomics Testing. This method of pathogen

identification revolves around identifying a certain segment of suspected pathogen

DNA, isolating it, and determining whether or not it really belongs to that pathogen.

The most difficult part of this process is isolating the DNA from just the expected

pathogen, so as to not be hindered by other DNA in a sample. In order to effectively do

this, biologists have developed a method whereby they introduce a compound, called a

primer, into their tests. These primers bind on both sides of the interesting section of

DNA and allow it to be easily multiplied and subsequently isolated. Ultimately,

Multiplexed Genomics Testing is the current method used by biologists worldwide to

identify certain genetic segments.

Despite its popularity, this testing method still has several key drawbacks. As seen in

the Germany example, these tests are not always accurate. A major part of this

inaccuracy is that it is often difficult and time consuming to determine which primers to

use in a particular test. Purchasing the incorrect primers might either cause huge delays

in the testing process, or result in inaccurate findings. To counteract this, some

companies have developed software that helps biologists choose primers more

efficiently. However, these solutions are often exclusive, expensive, or generally

inaccessible to most labs that are otherwise equipped to perform Multiplexed Genomics

Tests.

Our sponsor for this project is the Fofanov Bioinformatics Lab at Northern Arizona

University. Under the direction from Dr. Fofanov, the lab’s principal investigator, Dr.

Furstenau is in the process of creating a command-line program called Primacy, which

is able to robustly compare all possible primer choices in a given scenario, inform its

user what the best choices are, and let them know if something might go wrong. While

this tool will be a boon for the greater scientific community, it still has a few minor

issues, which our team, Team PathLab, has been commissioned to address.

PathLab 2

This document will outline those issues and our team’s plan to address them. It will

methodically go through each issue our client wishes for us to address, the specific

constraints that they have for our product, and all of the details of what exactly we will

include in our finished version. Ultimately, this document will be signed by both our

team leader and our client, and will serve as a contract for our implementation in the

following semester.

2. Problem Statement

The Fofoanov Lab at NAU are in the process of developing a pipeline called Primacy

which utilizes new computational methods to help researchers design better test panels.

Primacy will be built as a command line tool with multiple modules. In order to

understand the inefficiencies of this command line tool we need to learn how end-user

researchers will use this tool to create/design test panels. Figure 1 shows how end-users

will be utilizing the Primacy tool.

Figure 1: Typical workflow using Primacy

After wet lab processing and retrieval of DNA sequences, a user will input the reads into

Primacy. Each module will allow the user to enter and tweak a specific set of inputs.

Inputs gathered from each module will create a final result that will be used to design

the test panels. The main problem with this command line tool is its accessibility to

end-users of different technical expertise. Command line based tools are great for

software engineers and tech-savvy users who are already familiar with the interface but

most researchers who will be using this tool are experts in their field of work but they

might not have the same level of expertise in using different computer interfaces. This is

one of the main challenges our team needs to solve. New users often find operating a

command line interface more difficult in comparison to traditional Graphical based

interfaces, as command line based tools require a higher degree of memorization and

familiarity for operation and navigation, and they are more prone to human error (e.g.

user misspells a keyword). Error handling can be quite challenging from a developer’s

PathLab 3

perspective when designing command line interface, as the user has a lot of freedom in

typing a command.

When using Primacy, users might want to revisit some of the modules to change inputs

to fine-tune the final result. This is problematic when using a command line based tool,

because a user will need to remember exactly which commands were run with which

parameters in place. Collectively, these small issues hold back Primacy from being truly

usable by researchers and allowing them to focus on creating/designing test panels

instead of worrying about learning new interfaces to operate a program.

In summary our client would like us to address these issues:

● Make the Primacy pipeline easily accessible to users

● Create an interface that is easy to use and intuitive

● Integrate tools to allow researchers to interactively tweak their results

● Allow for easy traversal of the pipeline

3. Solution Vision

Our proposed solution to this problem is to build a Graphical User Interface (GUI). This

interface will solve our client’s problem by being easy to learn, easy to use, and by

providing accurate feedback and statistical visualizations. Some key features of our

program will include:

● Able to fully and accurately utilize Primacy

● Easy to learn interface

● Easy to interpret results

● Configurable and consistent design

● User input checking

Our user interface will be able to take input from a user, or in some cases from a file, and

check to ensure that those values are proper inputs for the field. Then, upon user

request, it will take the data and package it into the format which Primacy requires.

After that, it has Primacy run the data, and outputs the results in an easy-to-read

manner on the next page. Ultimately, our product will add abstraction and

functionality, while only adding marginal runtime to primacy.

PathLab 4

Figure 2: Planned GUI Workflow

Our job, as a team of computer scientists and software engineers, is to take the tool

provided to us and morph it into a beautiful, yet simple, system. Currently, the tool

exists solely as a Command Line Interface (CLI). Our solution will take this CLI and put

an easy to use, user friendly Graphical User Interface on top of it, which will streamline

key aspects of the identification process.

4. Project Requirements

After several meetings with our client and mentor, we have acquired the necessary

requirements for our project, and we all feel confident that we can complete them. In

order to assemble an effective solution for the problems outlined in the beginning of this

document, a detailed list of requirements shall be created. This creates an effective

‘jumping off’ point to begin work on prototypes, and to ensure our team has a complete

understanding of exactly what the problem is. As Team PathLab, we have followed the

standard procedure for requirements acquisition, with a set of central ‘domain’

requirements, and many functional, performance, and environmental requirements that

are offshoots of the domain requirements.

4.1. Domain Requirements

Domain level requirements outline our most important requirements in such away that

both technically and non-technically skilled readers can understand the core of our

program at a glance. As such, they not only play an important role in the readability of

this document, but they also provide an abstracted scope that guides our more detailed

requirements. In order to create this list of domain requirements, the group met several

times with the clients. These meetings contained discussion on what the tool does, how

it should do it, and many other constraints. The product of this process is as follows:

PathLab 5

1. Biologist Usability: One of the main audiences that Primacy is built for is the

biologist community. The major challenge Primacy has in reaching this group is

that many biologists would find using a command line interface to be

cumbersome, with other approaches being more efficient. To supplement this,

our team’s primary goal is to construct a GUI that is usable by biologists.

2. Pipeline Traversal: Primacy is built with a pipeline style for data flow. This

means that the tool is subdivided into several steps, which all need to be

completed in order. Rarely, however, are pipeline tools utilized once. On many

occasions, it is required to go back one or several steps to change arguments, alter

the data set, etc. Due to this, the tool must be capable of both going forward and

backward through the pipeline.

3. Maintainability/Expandability: Due to the temporary nature of our team’s

involvement in the construction and maintenance of the project, the final product

must have a readable codebase, and have the capability for future expansion.

4. Input Validation: Due to foundational concerns, Primacy does not have the

ability to effectively check all input arguments for sanity. This can create certain

problems with data inputs, such as corrupted FASTA databases, unrealistic

temperature constraints, etc. One of our team’s major requirements is validating

this data before introduction to the pipeline.

5. Cost Effective: Primer identification is currently only involves the use of

proprietary software or the purchase of expensive equipment. The primacy

pipeline and our abstraction in our GUI package will allow users to accomplish

the same tasks free of charge. This will drastically increase the size of the

demographic for Primacy, and has the potential to spread around the world.

4.2. Functional Requirements

Functional requirements are the basic standards of which we base our development

around. They are the elements that contribute to the bare functionality of our product,

and reflect what our project will do. We have laid out that Primacy will contain the

following elements:

1. Tab Traversal

● Primacy will divide the steps of the processes into a series of tabs for each

large step where calculations are made.

PathLab 6

● A loading bar will be used when switch takes more than a few seconds.

● Within each tab, flexbox containers will spread out each section within the

larger process, containing input fields, descriptions and images as needed.

2. Interaction with CLI pipeline

● We will make an API to directly correlate functions in the pipeline with our

Electron front-end environment.

● States will be saved for each major step by managing JSON files at each

point in the process.

3. User Guidance

● The software will give feedback on the input provided and provide

guidance for the user for sections that are difficult to understand. For

example, the current tab will use highlighting to make it inherently clear to

users that they are on that tab.

4. Error Prevention

● Primacy will mark input as good, risky or invalid depending on the level of

severity of the risk involved

● Good will be marked in green and be completely acceptable

● Risky will be marked in yellow and is considered bad practice, or

potentially dangerous, but still will be accepted

● Invalid will be marked in red and will not be allowed, as it would cause a

serious issue.

4.3. Performance (non-functional) requirements

Non-functional requirements are requirements which form the basis for judging the

performance of the team’s final product, in practice. Therefore, it is just as crucial to

possess accurate non-functional requirements as it is to have the same for functional

requirements, because functional requirements to not necessarily reflect the feel of the

final product. The following are the non-functional requirements that have been

formulated, based off of meetings with the client:

1. UI Quality: As a crucial facet of a successful user interface is its aesthetic

quality, the final product must reflect a professionally designed and implemented

user interface as possible in the time allowed for implementation.

2. Interface Usability: If aesthetic quality represents 50% of a user interface’s

chance of success, usability is the other half. The tool must be specifically tuned

PathLab 7

and designed in such a manner that the target audience must be capable of fully

utilizing the tool within an hour. To assist the user in the endeavour, tooltips,

notifications, and a wiki and install guide must be available for the user to read

and research.

3. Interface Performance: Another peripheral facet of a quality user interface is

its responsiveness to changes in inputs. Due to the tool’s requirement to have

adaptive validation for all user inputs, it is imperative that the tool can validate

these inputs in as short of a timespan as possible. After discussions with the

client, it has been decided that small inputs, such as range checking,

temperatures, and others, should be almost instantaneous, while large inputs,

particularly fasta databases, can take a maximum time frame of 10 minutes to

validate.

4.4. Environmental Requirements

Environmental requirements deal with the domain requirements and their interactions

with the systems the final product will run on. They are as follows:

1. Cross-Platform: In order to maintain usability, the final product must be

runnable and produce the same outcomes on Mac and Windows systems, with an

extended goal of being runnable on Linux.

2. Packaging with the Pipeline: Installation of the Primacy tool with the GUI

must be easy, and be done in a single action. Therefore, the final product shall

come prepackaged with Primacy.

3. Pipeline Communication: The client has outlined that the medium of

communication with Primacy will be JSON string objects. The final product must

be able to effectively parse and send information in this manner.

5. Potential Risks

While we believe the best decisions have been made for this project, there are still

several potential risks that need to be addressed. Our technical requirements are a low

risk, but domain and performance requirements present a medium risk.

5.1. Potential Inefficiency

PathLab 8

● While we can say with certainty that the programming for this task can be

completed, we can not guarantee outstanding efficiency. JavaScript is a slower

language than some of its lower-level counterparts. We will be handling large

JSON files with many calculations. The time between tabs for extremely large

data sets will likely take several minutes or longer if our program is not optimized

properly.

● If we run into a serious efficiency issue, we have decided to move any inefficient

algorithms to the back end using C as a backup plan.

● Progress bars will also clearly indicate the sections that will load slowly, to help

aid with transparency to the user.

5.2. Extensibility

● Another issue that could arise is from our extensibility requirement. While we

plan to follow general conventions while programming, the possibility still exists

that people wishing to extend our functionality in the future might encounter

difficulty.

Overall, we have thought carefully about our design choices and we will be mindful of

the potential risks going forward.

6. Project Plan

During the development our project, we wanted to make sure that we had a generalized

plan for the future ahead to ensure all the requirements, requested features, and

standards for this project are met. We started this semester by completing the team

startup tasks to get our team up to speed with the project. Initial interviews conducted

with our client helped us understand the scope of the project and requirements better.

We started by building our team website, followed by a general discussion about

requirements with our client, and team meetings to decide the right technologies. We

then moved on to write our feasibility analysis document and also developed a simple

demo to showcase our chosen technologies working in tandem to our client. We are

currently in the process of working on our first technical prototype which will utilize

ElectronJS, Flexbox and ChartJS.

Next semester we are planning to start with the API implementation and then move to

work on backend operations including error checking and input validation. We plan to

work simultaneously on backend operations and front-end features to efficiently use our

time. Once we have most of our features completed we will move to basic testing and

refinement of our software. This will allow us to detect and fix any bugs. During the final

PathLab 9

phase of our development we will be user testing to ensure all requirements have been

met and users are able to use the software seamlessly. See our schedule attached in

Appendix 1 for more timeline details.

7. Conclusion

In this project our aim is to create a reliable, easy to use user interface. This user

interface will abstract the command line program provided to use by the Fofanov

Bioinformatics lab. Abstraction will allow for biologists who already know the

command line to make fewer mistakes, as well as allow newer biologists to learn the tool

more easily.

In order to make this user interface possible, we plan to use Electron, a JavaScript based

platform. This platform is expected to meet all of our various levels of requirements, as

outlined in detail in this document. Some levels of risk are involved by making this

choice, such as processing time, but we have mitigating factors and contingency plans in

place to counter these risks.

The goal of this document is to solidify the exact requirements that we foresee for this

project, and unify them with the expectations of our client. As a requirements

document, this paper will serve as a foundation and guideline for our prototype and full

implementation of the software.

By creating a beautiful, easy to use product, we hope to innovate how the field of biology

sees primer identification. By making Primacy accessible, we not only enhance the

experience of those currently in the field, but we will be able to prevent the dissuasion of

fresh talent by the high technical requirements posed by a CLI. With this project, we

hope to remove the tedium that is a distraction to the field of comparative genomics.

PathLab 10

8. Appendix

PathLab 11

