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1. Introduction 
Space exploration has always enthralled humanity. Every year, billions of dollars are spent 
trying to understand our Solar system. Humanity sends probes to other planets and to small 
celestial bodies. Humans have not stopped looking for answers in space since the time of 
Galileo. This search has driven technological development in all areas. Velcro, computers, and 
GPS are just some of the technological byproducts of space exploration. Every day, 
observatories like Lowell are gathering information to expand the understanding of the solar 
system. 
 
The clients, Dr. Audrey Thirouin and Dr. Will Grundy, work at Lowell Observatory to analyze 
astronomical data. Lowell focuses on analyzing data of small celestial bodies that are 
challenging to directly observe. Right now, they are working on modeling binary systems in the 
Kuiper Belt. To do this, they need to use special techniques which make the most use of the 
data available. For most objects that far away from Earth, only a single point source can be 
observed. That point source can be used to determine the object brightness at a given point in 
time. These luminosity recordings can be combined together to form a graph called a light 
curve, which is a display of luminosity over time. 

Light curves can be used to infer properties about the objects that generate them. For example, 
an asteroid that is non-spherical will reflect more light when a larger amount of surface area is 
reflecting light from the Sun to the observer. Since the object is reflecting more light at certain 
points in its rotation, the brightness will be different depending on when it is observed in its 
rotation. Those brightness values can then be graphed. In most cases this will make the light 
curve sinusoidal. The rotational speed can then be found based on the period of the curve. The 
amplitude of the curve can be used to roughly guess at the proportions of the object. A large 
number of other characteristics can be inferred using light curves. 

The clients want to make use of light curves to better understand binary systems, since they are 
extremely prevalent in the Kuiper Belt. Binary systems are composed of two objects that orbit 
each other about a point in space called a barycenter. The gravity from both objects affect each 
other, introducing new challenges in creating a model. 

The clients want software that can model these binary systems and calculate light curves. They 
plan on using this project to generate potential models that fit the observed data of binary 
asteroid systems. This project solves these problems by creating an integrated API. This API 
provides a single function that takes in all of the parameters at once and returns a light curve. It 
will also utilize a custom ray-tracer that is more efficient than the current solution and produces 
more accurate luminosity values. This increase in speed, accuracy, and ease-of-use will 
advance Lowell’s research efforts to analyze binary systems in the Kuiper Belt. 
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To ensure a robust product is delivered to the client, the project will be tested extensively with 3 
different types of tests. For the first type of testing, unit testing will be used to test and verify that  
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each individual module of the codebase functions properly. This type of testing is important to 
ensure the calculations are correct and that the shapes are created correctly. After the testing of 
individual modules, the next type of testing involves integration testing. Integration testing tests 
the integration of the all of the modules and ensures that different modules are correctly 
functioning together. In this project, the single API function, the forward model, acts as one large 
integration test in that it calls all other modules in the codebase.  Lastly, the team will conduct 
usability testing to ensure that the client is satisfied with the functionality of the project. This will 
also allow them to utilize the codebase for research and for sharing with other astronomers. 

This testing plan closely follows the team’s development plan, in that all of the individual 
modules were created first and established that each module functions correctly on its own. 
Then the team moved onto integration and developed the Forward Model and Ray Tracer, 
which serve as integration tests as these modules utilize all other modules in the code base. 
Usability testing has not been possible until after the delivery of the alpha prototype, since the 
client wants a single function to call that returns a light curve. 

The team agreed to implement testing for each of the modules as they were developed to 
ensure the best product for the client. Since the team implemented the tests alongside 
development, the testing plan closely matches the development plan and gave the team 
confidence in the functionality of the modules. The testing for each step of the testing plan is 
outlined in the following sections. 

2. Unit Testing 
Unit testing is a practice in which individual functions of software are tested for correct 
functionality. Most of the unit tests are simple input and output verification, such as testing if the 
software accepts only valid inputs and verifying correct results from the astronomical 
calculations. Some unit tests will simply test the creation of certain objects and verify that these 
objects are being populated with data correctly. Due to the scope of astronomical calculations 
being used in the project, the client provided the team with equivalent IDL routines to calculate 
reference values in the testing. 
 
For this project, Google Test is the chosen unit testing library as it is a well-known, 
cross-platform, and respected library, and functions with the C++ API codebase. 
 
The project was designed to group all of the calculations and components of the solution into 
individual modules. Each of these individual modules have unit tests written for them to verify 
their functionality for use inside of the Forward Model. For some of the modules that were 
translated from IDL, some input is provided to IDL in order to establish a reference value for the 
C++ module. These values from the different modules are then compared with high precision 
ranging from 0.01 to 0.000000001 depending on the test. For the rest of the modules that were 
not translated from IDL, the team had to analyze the output and analyze whether or not the 
output was correct. After determining the output is correct, that output is saved as a reference 
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value. Most calculations are done to double precision. Due to how machines represent floating 
point values, it is incorrect to expect values to be equal. Instead, computed values and 
reference values must be checked to be within a bounding range of each other. For us this often 
means extremely high precision, though some tests have more pronounced variations and their 
precision has been adjusted to match that. 

2.1 Calendar 
The Calendar module defines functions to convert and manipulate dates. It is not currently used 
by any other module, but exists for future functionality. There are no poorly-defined calculations 
here, just specific formulas. 
 

1. JulianDay Test 
a. Description: Performs conversion of entered Gregorian date into a Julian date 

and verifies the result 
b. Main Flow: 

i. Call GetJulianDay function to convert an entered Gregorian date 
ii. Compare calculated Julian date value to expected value 

1. Input: February 14th, 2013 at 6:00:30 
2. Expected Output: 2456337.750347 

a. Reference value is calculated using the U.S. Navy’s Julian 
Date converter 

a. Expected Outcome: Entered Gregorian date is converted into a corresponding 
Julian date within 0.01 precision 

2.2 Ephemeris 
The Ephemeris module reads in ephemeris tables. The danger with handling raw file paths is 
that the user could provide an invalid file path in many forms. After ensuring the path is a valid 
text file, it is assumed that the user provided a real ephemeris table in the correct format. Thus, 
only the calculation functions and interpolation functions are left to test.  
 

2. BadFileNames Test 
a. Description: Pass in incorrect file path strings and verify a exception is thrown 
b. Main Flow: User enters a file that does not exist 
c. Expected Outcome: Error message reporting the user entered a file that does 

not exist 
d. Alternative Flow: User enters a file with invalid extension 
e. Expected Outcome: Error message reporting the user entered a file with an 

incorrect extension 
 

3. PhaseAngleVariable Test 
a. Description: Upload phase angle value for each observation in ephemeris file 
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b. Main Flow: 
i. Create ephemeris object to read in and contain entered ephemeris data 

from valid ephemeris files 
ii. Compare and validate phase angle values from the ephemeris object 

1. Example Input: ephemeris.phaseAngle[50] 
2. Expected Output: 1.1126 

a. Expected output is retrieved from line 50 of the table inside 
ephemeris file 

c. Expected Outcome: Creation of phase angle variable in ephemeris object 
 

4. TimesVariable Test 
a. Description: Upload time value for each observation in ephemeris file 
b. Main Flow: 

i. Create ephemeris object to read in and contain entered ephemeris data 
from valid ephemeris files 

ii. Compare and validate time values from the ephemeris object 
1. Example Input: ephemeris.phaseAngle[50] 
2. Expected Output: 2458507.772002259 

a. Expected output is retrieved from line 50 of the table inside 
ephemeris file 

c. Expected Outcome: Creation of time variable in ephemeris object 
 

5. Interpolation Test 
a. Description: Perform interpolation with given dates and ephemeris file 
b. Main Flow: 

i. Create array to contain entered dates to interpolate with 
ii. Create ephemeris object to contain entered ephemeris data from valid 

ephemeris files 
iii. Calculate interpolated values through calling the Read function with an 

updated dateCheck variable that provides the value to interpolate with 
iv. Compare interpolated values to expected values 

1. Expected values were calculated by hand with a preselected date 
c. Expected Outcome:  Test passes to prove the function is performing 

interpolation calculations correctly within 0.00001 precision. 

2.3 Hapke Model 
The Hapke Model module contains functions to compute Hapke’s bidirectional reflectance 
model. This is perhaps the most mathematically complicated module in the project. In the past it 
has brought to light precision and compiler environment issues. 
 

1. PhaseAngle Test 
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a. Description:  Verify functionality of custom phase angle function by comparing 
and validating the results with expected results 

b. Main Flow:  
i. Create double variable to contain phase angle 
ii. Call custom Henyey Greenstein overload function to compute phase 

angle 
iii. Compare phase angle value to expected value from IDL routine 

equivalent 
1. Expected value is retrieved from the IDL equivalent of this module 

passing the same input 
c. Expected Outcome: Test passes to prove the function is performing calculations 

correctly with a phase angle output that matches the equivalent IDL routine call 
output within 0.00000001 precision 
 

2. Bidirectional reflectance (doubles) Test 
a. Description: Calculate and verify bidirectional reflectance calculations 
b. Main Flow: 

i. Create array to contain phase angle function parameters 
ii. Create double variable to contain bidirectional reflectance value 
iii. Calculate the bidirectional reflectance value through the 

BidirectionalReflectance function 
iv. Compare bidirectional reflectance value to expected result 

1. Expected result is retrieved from the IDL equivalent of this module 
parsing the same input 

c. Expected Outcome: Test passes to prove the function is performing 
bidirectional reflectance calculations correctly within 0.000000001 precision 
 

3. Bidirectional reflectance (bad cos angle) Test 
a. Description: Calculate and verify bidirectional reflectance with 0 degrees for the 

emission and incidence angles 
b. Main Flow:  

i. Create array to contain phase angle function parameter 
ii. Create double variable to contain bidirectional reflectance value 
iii. Calculate the bidirectional reflectance value through the 

BidirectionalReflectance function 
iv. Compare bidirectional reflectance value to expected result 

1. Expected result is retrieved from the IDL equivalent of this module 
parsing the same input 

c. Expected Outcome: Test passes to prove the function is performing calculations 
correctly even if cos has a value of 1. This value of cosine is accounted for by 
performing a special check to reduce the cos to 0.9999999 with the computed 
value being within 0.000000001 precision 
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2.4 Kepler True Anomaly 
The Kepler True Anomaly module contains a single function to compute Kepler’s equation for an 
elliptical orbit. The calculations are in this module are complex and use Newton’s method to 
compute the anomaly, although not much can actually go wrong in this function. Thus, only one 
correct output value is tested for in the use case. 
 

1. KeplerTrueAnomaly IDL Test 
a. Description: Verify functionality of KeplerTrueAnomaly module by comparing 

and validating the results with the results from IDL 
b. Main Flow: 

i. Create array to contain expected results from IDL 
ii. Create array to establish and contain eccentricity of the orbit 
iii. Create vector of time values with units of fractional period since periapse 

passage 
iv. For each eccentricity value, solve Kepler’s equation through the 

KeplerTrueAnomaly function 
v. Compare the results from calculating Kepler’s equation to the expected 

IDL results 
1. Expected results are retrieved from the IDL equivalent of this 

module parsing the same input 
c. Expected Outcome: Test passes to prove the module is performing calculations 

correctly within 0.000002 precision 

2.5 Locations 
The Locations module calculates the Cartesian locations of the binary system relative to the 
observer. This is another relatively straightforward module where not much can go wrong. 
 

1. Locations Test 
a. Description: Calculate the cartesian locations of the binary system relative to the 

observer 
b. Main Flow: 

i. Create orbit object with no precession 
ii. Create a vector of time values that represent consecutive observations 
iii. Create a vector of delta values that represent the distance to the target in 

AU 
iv. Create a vector of right ascension values in hours 
v. Create a vector of declination values in degrees 
vi. Create view object containing the delta, right ascension, and declination 

vectors 
vii. Create location object to find locations of bodies at the given times 
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viii. Compare location value to expected value 
1. Expected value is retrieved from the IDL equivalent of this module 

parsing the same input 
c. Expected Outcome: Creation of a location object with values that match the IDL 

equivalent within 0.0001 precision 

2.6 Orbit 
The Orbit module handles Keplerian mutual orbits. Orbit is essentially a data structure, but holds 
some functionality for future cases. 
 

1. Pole Test 
a. Description: Report the direction of the orbit pole 
b. Main Flow: 

i. Create double variables to contain right ascension and declination values 
ii. Create orbit object with no precession 
iii. Create a pair to contain and compare the ecliptic values to the expected 

values 
1. Expected values are retrieved through the DirectionOfPole 

function with right ascension and declination values passed in as 
parameters 

c. Expected Outcome: Creation of a orbit object that correctly returns the direction 
of the orbit’s pole within 0.000001 precision 

2.7 Shape 
The Shape module defines what a shape is, which basically represents something “hitable” and 
tracks when a ray of light would hit the shape. This module handles the creation of the shapes, 
as well as the orientation, spinning and setting of them in space. There are 3 different shapes, a 
“Facet”, a “Sphere”, and an “Ellipsoid” shape. Both spheres and ellipsoids are generated shapes 
that should be used for fitting. A faceted shape is read-in from a provided Wavefront file and 
should be used for specific systems that have fly-by observations. 
 

1. UploadIrregular Test 
a. Description: Create and verify a faceted shape object from a valid input file 
b. Main Flow: 

i. Create shape object with provided valid obj file 
ii. Check number of facets and vertices in shape 
iii. Compare position values of vertices to expected values 
iv. Compare values of facets to expected values 

c. Expected Outcome: Creation of a valid faceted shape object 
d. Alternative Flow: User enters a file with invalid extension 

10 



e. Expected Outcome: Error message reporting the user entered a file with an 
incorrect extension 

f. Alternative Flow: User enters a file that does not exist 
g. Expected Outcome: Error message reporting the user entered a file that does 

not exist 
 

2. GenerateShape Test 
a. Description: Create and verify a sphere object 
b. Main Flow: 

i. Create sphere object 
ii. Check center of sphere to see if it is still at the origin 
iii. Set values to the center of the object 
iv. Compare center of sphere for expected values 

1. Example Input: shape.SetCenter(Eigen::Vector3d(1, 2, 3)); 
2. Expected Output: shape.center[0] = 1, shape.center[1] = 2, 

shape.center[2] = 3 
a. Expected output was predetermined by the team 

c. Expected Outcome: Creation of a valid sphere object 
 
Unit testing is critical to this project in ensuring that all individual modules are functioning 
properly and produce correct results to verify the astronomical mathematics used. Once these 
individual modules are verified, they are ready to be integrated with other modules and tested 
as a complete system. 

3. Integration Testing 
Integration testing is used to expose problems with the interaction between modules. While 
each module of a codebase may function, it is important that information that is passed by, or to, 
other modules is in the proper format and has the values that are needed. Integration testing 
focuses on the passing of parameters and return values.  
 
The tests need to check the integration of all of the modules and submodules. Parameters need 
to be tested for correct units of measurement and correct data types. For example, some 
parameters should be in arc hours, minutes, and seconds, while other should be in degrees or 
radians. The code base uses kilometers for all distance units, but at times distances are also 
measured in ratios. 
 
There are many approaches to integration testing, though most revolve around an idea of 
calling individual unit tests together. This becomes quite complicated in this code base, because 
combining all of the unit tests is essentially equivalent to writing the forward model. Because of 
this, the team utilizes a strategy called Big-Bang testing. Big-Bang testing combines the 
functionality of all of the unit tests at once, forming a complete system. The reasoning for using 
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this approach is because the purpose of the software is to support a single callable function 
from within IDL. This function, the forward model, is already the “complete system”. This has the 
benefit of representing real-world use cases, but the downside of making it hard to isolate any 
errors found. For this integration testing plan, the forward model, along with another, smaller 
integrated module, are called within a test environment and have their outputs verified. 
 

3.1 Integration Testing Plan 
Throughout the design process, integration tests have been implemented when adding new 
modules to the workflow. The integration tests are essentially small portions of a use case that 
focuses on testing a particular module interaction. The testing plan revolves around two key 
modules of the code the forward model module, which integrates with IDL, orbits, and the tracer 
modules; and the tracer module, which integrates with Hapke, the forward model, shapes and a 
large number of submodules. Inside these two main integration testing areas a number of 
different tests are used to check that each way that the module can be used returns the correct 
values, and that the modules are receiving the proper parameters at the start. 
 

3.1.1 Tracing module integration testing 
The tracing module integration testing focuses on being able to output a single rendered image 
and return a single intensity value for a light curve. There are a number of testing scenarios 
used to ensure that submodules are returning expected values. 
 
 

Table of Trace Module Integration Tests 

Test 
number 

Multiple 
shape 

renders 

Multipl
e 

Objects 

Generated 
shape 

Uploaded 
shape 

Modified 
Hapke 

Anti 
Aliasing 

Scale 
and 

move  

Long 
distance 

1  X X      

2   X      

3    X     

4  X X   X  X 

5  X  X X  X  

6 X X X      
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The six tests for integration all generate at least one rendered image. While the code base is in 
a stable development state, these tests are run to generate reference values. These reference 
values are then set in the test. As more development is done, any major deviation from the 
reference values can indicate that the code is not functioning as intended. These six test cases 
do not check every possible use case but they do cover a wide range. As the code is 
continuously developed these test will catch the majority of errors that a change may cause. 
The final integration testing can be made more robust by trying all possible test cases with the 
above criteria. 
 

3.1.1 Forward model module integration testing 
The forward model integration testing focuses on feeding different parameters and scenarios to 
the tracer module. The forward model also tests other submodules that modify the system 
between observations. The forward model has two main integration tests, one for the Sila 
Nunam system and one for the moon. Both tests can produce a large number of rendered 
images for debugging. 
 
The Sila Nunam system is an observed system in the kuiper belt. By using a real use case, 
flaws were exposed that might have otherwise been missed. The Sila Nunam test has two 
objects at a great distance from the observer. Because of this distance, errors in precision can 
be easily detected. The two objects experience a mutual event within the observational timeline 
and create a light curve that shows this. The light curve values are recorded when the code is 
stable. Any future changes that somehow alter the light curve will cause the test to fail. The 
objects are generated spheres so no objected rotation can be observed. 
 
The moon test has a single object extremely close to the observer, the opposite of the Sila 
Nunam test case. The test creates a single faceted shape with the parameters of Earth’s moon. 
We expect the lightcurve to represent the phases of the moon. This is tested by again 
establishing a reference light curve and then comparing future results after changes. Because 
the shape is faceted, an amendment to this test is to apply an orientation and rotation to the 
shape based on the Moon's real data. When establishing a reference value, the spin can be 
checked against the real Moon's observed spin for the given dates, and this reference value can 
then be used in further tests. 
 
Integration testing is essential in ensuring that modules interact properly and that the glue code 
does not have any defects. Once all integration tests pass, the testing moves out of the 
automated realm and into the real-world with usability testing 
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4. Usability Testing 
Usability testing extends into the realm of the users. Instead of testing if pieces of the code work 
together, the test is now if the user and the code work together. This means that real-world 
testing has to be done, and that this testing is more social and statistical than unit and 
integration testing.  
 
The main goals of usability testing are to: 

● Optimize the ease-of-use and flow of the solution 
● Make sure the user/client is happy 

 
This is a somewhat open-ended concept and ultimately comes down to making the user happy. 
In order for the user to be happy, the solution should be easy to learn and work with, and its 
functionality has to meet or exceed their expectations.  
 

4.1 Preface 
Usability testing is most commonly known for testing user interfaces, since they can be quite 
complicated yet are easy to objectify (e.g. five clicks to access a menu item is considered poor 
design). For this lightcurve modeler, usability testing requires a bit more thought. APIs are not 
exempt from usability testing, far from it. Developers are users, too, and the design of an API is 
just as important the “user-interface” workflow.  
 
This API is quite challenging to test, though, because only a single, agreed-upon function is 
exposed. The parameters are non-negotiable and were provided by the client. The API is not 
elegant, it just takes in a variety of parameters and outputs a lightcurve. Things that are 
negotiable are additional features, additional documentation, potentially additional parameters 
or arranging the existing ones in different ways, etc. The client has been quite straightforward in 
that they anticipate only wanting to tweak or add features and that the “design” of the API is 
unimportant, since there is no real design. They also do not care much about the underlying 
design of the code. To provide an example, the client may want a different way to tell the API 
that they want to use the ephemeris dates and not the custom dates they provided, or they 
might want additional output values. 
 
In an ideal world, usability testing is done before the code is complete. In many software 
projects, such as ones that have a GUI component, iterative prototypes can be made without 
having full functionality and still be tested. For instance, a GUI can be evaluated without its 
backend. This project requires everything to work, due to the requirements. The client is only 
interested in calling a single function and getting a result. Until they can do this, they are not 
able to effectively evaluate how they may want to interact with it differently. It is possible to draft 
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up an API before implementing it, though even then the parameters were only partially known 
and, again, not negotiable. There are many subcomponents that have been internally tested 
along the way, such as finding the locations of these binary systems, but the client is not 
interested in testing that. Thus, usability testing has not been possible until now -- after the 
completion of the alpha prototype. 
 

4.2 Ease-of-use / Flow 
Ease-of-use is perhaps the most important aspect to the client. Their current solution is 
extremely difficult to use and requires many custom steps to predict a lightcurve. The core 
requirement of this solution is to have a single function to call, which by comparison already 
satisfies the majority of the “ease-of-use” category.  
 
Another aspect of what makes an API easy-to-use is the parameters. Parameters need to take 
into account intuitive design but especially the requirements they are imposing on the user. 
Requiring the user to pass in the locations of the binary system would make the solution much 
harder to use than calculating this data internally. Discussions have already been had with the 
client about what the parameters should be, and how much work is expected from the user. 
Thus, the current requirements have already been agreed upon and will not change, barring 
minor tweaks. 
 
What has not been tested is how intuitive the parameters are. There are many parameters, over 
forty at the moment. It is easy to forget what a parameter does or how to use it. The types are 
not negotiable, but documentation, naming, combining parameters, etc., is. To test their 
ease-of-use, a heavily-documented example call to the forward model from IDL has been 
provided to the client. The client has been requested to model some of their favorite binary 
systems and to provide feedback about: 

1. How much time it took to create the parameters needed for the call 
2. Any issues they ran into, such as the orbital parameters not resetting between calls 
3. How intuitive the parameter names were 
4. Where more documentation would be useful 

 
This is not a formal survey-like test, this is simply human-to-human feedback. In the end, the 
client is familiar with the parameters they are passing in, and there is not much optimization to 
be done in the API-call itself, so usability testing does not play a large role here. 
 

4.3 Client Satisfaction 
The client’s satisfaction mostly revolves around the functionality that is provided to them. The 
clients have provided a priority list of nice-to-have features. The more features that are 
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implemented, the happier they will be. Based off this list, we already have base-line satisfaction, 
and the more features we implement on it, the happier they will be. 
 
This all of course depends on the solution being both robust and accurate. Thankfully, much of 
the formula-heavy code has been translated from IDL routines and the results have been 
verified. The ray-tracing solution is likely more accurate because it traces by pixel and does not 
require as much precision. Thus, the satisfaction mostly depends on the features available to 
the client. 
 
To test that the clients are satisfied with the solution, the alpha prototype has been given to 
them with a list of features. The approach here is near identical to the ease-of-use testing. This 
time around, the client has been requested to provide feedback on the features instead of the 
ease-of-use. Their satisfaction depends on how well the features meet their use case. There is 
not a proper test for this, per say, since the clients have already described that the solution 
exceeds their expectations. 

5. Conclusion 
Space exploration has always enthralled humanity. Every year, billions of dollars are spent 
trying to understand what is in the Solar system. Binary asteroid systems have always been 
challenging to understand due to their small size. The clients, Dr. Audrey Thirouin and Dr. Will 
Grundy, work at Lowell Observatory on understanding binary systems in the Kuiper Belt. They 
accomplish this by using software that models binary systems. 
 
One challenge is that these systems are so far away that only a single point source can be 
observed. The required calculations to account for this are relatively complex and the clients 
have only had time to develop a partial solution for the modelling. This partial solution is slow 
and fragmented, meaning the functionality is spread apart and scripts have to be written to 
utilize the code. The clients would like an API that is significantly faster and integrated, meaning 
they can receive the model in a single function call in a code base that follows consistent coding 
and naming practices. The best solution is a modularly designed, high-performance C++ code 
base with a single exposed function that returns the desired results. 
 
Extensive software testing planning has been done for this document, detailing the unit testing, 
integration testing, and usability testing strategies for the project. Through the unit testing the 
team can verify the functionality of the codebase’s individual modules, such as checking the 
math of an astronomical module or checking user’s string inputs. For integration testing, this 
project is unique in that the major function call of the project, the Forward Model, is essentially 
one major integration test. This Forward Model is a form of Big-Bang testing and calls all of the 
other modules in the project. Due to the project requirements requiring all of the functionality to 
be implemented at once, for usability testing, we could only focus on the features being 
provided to the client and how these features are presented and organized.  
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Robust testing is always necessary in creating software that is easy-to-use but also handles 
both human or machine errors and provides verification of its calculations. Software testing is 
used to help developers ensure that a single function performs its single task or a full code base 
integrates properly. By writing this software testing plan, we are confident that the product is 
performing the right calculations and individual modules integrate correctly in the Forward 
Model. The goal of this testing is to provide the client with a robust solution that solves not the 
original problem, but also handles unseen issues and edge cases. Paired Planet Technologies 
is confident in its completed alpha prototype and is looking to complete a extensive user guide 
to finally bring the client a highly-usable software package they can share with other 
astronomers. 
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