

Software Design
Version 2

2/15/19

Sponsor

Lowell Observatory

Clients
Audrey Thirouin, Will Grundy

Team

Paired Planet Technologies
Zach Kramer, Brian Donnelly, Matt Rittenback

Mentor

Isaac Shaffer

1

Table of Contents

1. Introduction 3

2. Implementation Overview 4

3. Architectural Overview 5

4. Module and Interface Descriptions 7
4.1 Utility 8
4.2 Orbit 12
4.3 Shape 16
4.4 File Input 21
4.5 Ray Tracer 23
4.6 Forward Model 30

5. Implementation Plan 32

6. Conclusion 33

2

1. Introduction
Space exploration has always enthralled humanity. Every year, billions of dollars are spent
trying to understand our Solar system. Humanity sends probes to other planets and to small
celestial bodies. Humans have not stopped looking for answers in space since the time of
Galileo. This search has driven technological development in all areas. Velcro, computers, and
GPS are just some of the technological byproducts of space exploration. Every day,
observatories like Lowell are gathering information to expand the understanding of the solar
system.

The clients, Dr. Audrey Thirouin and Dr. Will Grundy, work at Lowell Observatory to analyze
astronomical data. Lowell focuses on analyzing data of small celestial bodies that are
challenging to directly observe. Right now, they are working on modeling binary systems in the
Kuiper Belt. To do this, they need to use special techniques which make the most use of the
data available. For most objects that far away from Earth, only a single point source can be
observed. That point source can be used to determine the object brightness at a given point in
time. These luminosity recordings can be combined together to form a graph called a light
curve, which is a display of luminosity over time.

Light curves can be used to infer properties about the objects that generate them. For example,
an asteroid that is non-spherical will reflect more light when a larger amount of surface area is
reflecting light from the Sun to the observer. Since the object is reflecting more light at certain
points in its rotation, the brightness will be different depending on when it is observed in its
rotation. Those brightness values can then be graphed. In most cases this will make the light
curve sinusoidal. The rotational speed can then be found based on the period of the curve. The
amplitude of the curve can be used to roughly guess at the proportions of the object. A large
number of other characteristics can be inferred using light curves.

The clients want to make use of light curves to better understand binary systems, since they are
extremely prevalent in the Kuiper Belt. Binary systems are composed of two objects that orbit
each other about a point in space called a barycenter. The gravity from both objects affect each
other, introducing new challenges in creating a model.

The clients want software that can model these binary systems and calculate light curves. They
plan on using this project to generate potential models that fit the observed data of binary
asteroid systems. Currently, the clients lack the software to take in asteroid system parameters
and generate a theoretical light curve. They have pieces of software that they can combine with
hand work to generate a partial solution. This method is not capable of handling large amounts
of data or complex binary asteroid systems. The fragmented software also needs a number of
small scripts to be written every time it is run to account for changes in how the software

3

fragments need to be used. The lack of a cohesive software structure makes it nearly
impossible for other astronomers to use.

This project solves these problems by creating an integrated API. This API provides a single
function that takes in all of the parameters at once and returns a light curve. It will also utilize a
custom ray-tracer that is more efficient than the current solution and produces more accurate
luminosity values. This increase in speed, accuracy, and ease-of-use will advance Lowell’s
research efforts to analyze binary systems in the Kuiper Belt.

2. Implementation Overview
The implementation of a lightcurve modeler of binary systems is no trivial task. The main
request of the client is to have an API with consistent design, naming principles, and an
otherwise integrated code base.

This can be accomplished by refactoring the legacy code base or by creating a new one. The
latter option is more time consuming and wouldn’t be considered if it was just a matter of
creating an integrated IDL code base, but there are other requirements. Specifically, the request
for high-performance code led Paired Planet Technologies to choose the C++ language.

A lot of functionality is needed to generate a lightcurve, ranging from generating 3D shapes, to
simulating their orbits, to tracing the rays from the Sun. Because of this, the code base is
designed in modules. Each source file is intended to be an independent sub-module that,
by itself or combined with other sub-modules, forms a larger, conceptual module. For
instance, ray tracing is a conceptual module that involves both tracing a ray (Ray submodule)
and calculating the reflected luminosity (Hapke submodule).

These modules are utilized by a main function called the forward model. The forward model is
exposed as a C function, which allows IDL to call it. From a user perspective, this is the only
function of the API. The input consists of many variables and file paths and the output returns a
lightcurve and a 3D rendering.

Due to the nature of this project, where the functionality is composed almost purely of custom
calculations, there are no significant frameworks being used. Some infrastructure-related
frameworks are in place, namely CMake for the build-system, Google Test for unit testing, and
Eigen for matrix operations.

4

3. Architectural Overview
The system is comprised of six conceptual modules. The main driver module is the forward
model. The forward model makes use of all of the other conceptual models to generate a light
curve. The conceptual modules are designed to provide a specific functionality of the code. A
module’s or submodule’s functionality can be easily utilized by other modules. This leads to a
robust and easily maintained solution.

Figure 1: The dependencies of the conceptual modules

Forward Model
The forward model drives the functionality of the software. This module makes either direct or
indirect use of every other module. The forward model uses the orbit module for finding the
properties of the non-primary object. The module uses the ray tracing module for finding
creating the light curve and rendering images. The forward model uses the shape module for
storing and interacting with binary objects. The forward model also contains its own functionality
which calculates the vertices location of the prime object for every time step.

Orbit
The orbit module finds the locations for the non-primary objects. The orbit module uses a large
set of parameters to find locations relative to the primary object. Once everything is found
relative to the primary, it then translates the locations to the overall coordinate system.

5

File Handling
The file handling module reads in all of the settings. The file handling module takes in
ephemeris data and translates it to the program’s coordinate system.

Ray Tracing
The ray tracing takes in the shapes and runtime parameters from the forward model and returns
a luminosity value. The ray tracing module also has the ability to render an image and save it to
file. The ray tracing creates rays to find the luminosity of every pixel which are summed for a
brightness value.

Shape
The shape module holds all of the information for the objects being modeled. This module has
submodules for dealing with facets and function based shapes. The shapes will either be
custom and composed of facets, or premade and defined by a function. The premade shapes
will be faster in the ray tracing module. The custom shapes will be stored as a set of vertices
that define facets. Any custom shapes are uploaded into the shape module and then passed to
the forward model.

Utility
The utility module holds most of the helper functions that the other modules use. This includes
the Eigen math library and functions for translating between units and coordinate systems.

All of these modules come together to provide a comprehensive software solution. Each module
is made up of a set of smaller modules that are detailed in the next section.

6

4. Module and Interface Descriptions
The current version (version 1) contains the alpha prototype design for the modules. Since the
overall design is an API, there is a very high level of modularity. Each major module is
semi-independent and only loosely interfaces with the others. Because of the minimal cohesion,
the way the modules are linked is loosely defined. Figure 2 shows the overall design of the
modules and how they depend on each other.

Figure 2: How the code base is split into conceptual modules

Figure 3: How the submodules interact -- reference diagram for all modules

7

Figure 3 displays the conceptual submodule interactions. In this section the submodules are
detailed. The foundational module, Utility, is used by the all of the other modules.

4.1 Utility
The Utility module provides tools necessary for the program to manipulate, contain, and
display data as needed. It holds 4 submodules: Calendar, Types, View and Math.

4.1.1 Calendar
The calendar submodule converts Gregorian to Julian (J2000) date and time.

Dependencies
● None

Use cases
● Ephemeris data uses a Gregorian date system and the astronomical

calculations use a J2000 date system. The calendar function converts the
dates for the forward model.

Design
getJulianDay()
This is the primary function of the submodule and calculates the Julian Day
Number for a given month, day, year, hour, minute, and second.

Input:
● Year value
● Month value
● Day value
● Hour value
● Minute value
● Second value

Output:
● Double representing the Julian Day Number of the given calendar

day and time.

8

4.1.2 Types
The use of custom data types allows for other modules of the software to
reference more complicated data types with quicker and simpler names and
provides control of these data types in one central file.

Dependencies

● None

Use cases
● In Figure 3, the types submodule is used by most submodules. This is

due to the convenient and useful data types that it provides. As more
common types are needed in the code base, they get added here.

● Specifically it provides the ArrayN1 type, which allows us to create arrays
with access to coefficient-wise operations.

Design
The submodule is mostly composed of type aliases and some helper functions
that print or otherwise manipulate the type aliases.

ArrayN1

An ArrayN1 type is an array that has a dynamic number of columns (N)
and one row. ArrayN1 is a Eigen::Array type which provides access to
coefficient-wise operations.

printArray()

 This function prints out the contents of a ArrayN1 variable.

4.1.3 View
A View is a vector of 3D vectors. Each column represents an observation time
that contains a vector from the viewer to the center of the primary.

Dependencies

● None

Use cases
● Data read from the Ephemeris tables gets stored in a View.
● The View is then used to calculate the location of the two bodies in the

system at the given times.

9

Design

Figure 4: UML diagram of View class

View is a class that acts like a data structure. The API of the class is simply a
series of overloaded operators, so that it acts like a normal data type.

It can be constructed with 3 parameters or just with the number of observations
and then populated later.

Data
When first constructing a View, the object needs to store the right ascension,
declination, and delta values inside an ArrayN1. Before storing these values, the
values need to be converted into radians and kilometers.

Constructors

● Taking in right ascension, declination, and delta
This constructor takes in 3 parameters -- right ascension (hours),
declination (degrees) and delta (AU), as seen from the Earth to the center
of the primary. It creates a 1D array containing 3 element vectors
representing the location of the center of the primary in the Cartesian
plane.

10

● Taking in number of observations
This constructor creates an empty View object instantiated with 0, and
determines the number of given columns for the View based on the
number of observations.

4.1.4 Math
The math submodule contains useful, independent arithmetic functions and
constants for use by other modules.

Dependencies
● Types

Use cases
● Nearly every submodule uses Math for its useful constants, such as

converting from degrees to radians.

Design

Figure 5: UML diagram of Math class

Data
This submodule provides some useful constants for the sake of consistent
calculations inside other modules such as Pi and its variants and degree/radians
converters. There are also look up tables for cosine to provide a faster
computation at the cost of accuracy.

convertGmToKg() / convertKgToGm()
These two functions convert mass numbers between GM units and kilograms.

confine() (double / vector)
This function can be overloaded with a double or a Eigen VectorXd parameter. It
confines a value between two limits.

11

fastInverseSqrt()
This function calculates the inverse square root using a well-known fast
approach, as multiplying by an inverse square root is faster than dividing by a
normal square root and provides a small amount of optimization in our
calculations.

squareSum()
This function adds the elements of an array together after each element has
been squared.

fastcos()
This function uses lookup tables to calculate the cosine of x for the purposes of
speed. This provides a faster result at the slight cost of accuracy. The input x can
either be an array or double.

4.2 Orbit
The orbit module holds, organizes, and otherwise manipulates orbital parameters. It is
broken up into two submodules: holding mutual orbit parameters, such as spin state and
location, and solving Kepler’s equation for an elliptical orbit.

4.2.1 Mutual Orbits
The first submodule is called Mutual Orbits and hence handles Keplerian mutual
orbits. It has two major components: a dynamic data structure that holds all of the
needed data and some functions that manipulate the data.

Dependencies
● Math
● Types

Use cases
● After the forward model creates a primary and secondary object, the

mutual orbit submodule calculates the orbit of the secondary object.

12

Design

Figure 6: UML Diagram of Orbit class

The data structure is a class called Orbit. It is dynamic because it has multiple
overloaded constructors that take in certain parameters and use them to
calculate further parameters. Specifically, there is a default constructor taking in
eight parameters, a constructor that takes in time derivatives and calculates J2
effects, and a third constructor that takes in J2 effects and calculates time
derivatives.

As seen in the grey box in Figure 6, the public API of Orbit is quite simple. There
are three constructors and a function that returns the direction of the pole. There
are two data structures that account for precession: time derivatives and the J2
effect. Currently there is no use for precession, because the assumption is that

13

the bodies are in a fixed orbit, though the functionality exists just to be
future-proof.

Data

Figure 7: Keplerian orbital elements 1

The Orbit class contains the Keplerian orbital elements, some of which can be
seen in Figure 7:

1. The period of time (days)
2. The semi-major axis (km)
3. The eccentricity (dimensionless)
4. The inclination relative to J2000 equatorial plane (degrees)
5. The mean longitude at epoch (radians)
6. The longitude of ascending node (radians)
7. The longitude of periapsis (radians)
8. The epoch, or reference Julian dates (days)
9. An enumeration value representing what type of precession is being used
10. The J2, or the quadrupole moment of primary mass (dimensionless)
11. The tilt, or the angle between primary spin and orbit pole (radians)
12. The equatorial radius of primary (km)
13. The change of mean longitude at epoch (radians/day)
14. The change of Omega longitude (radians/day)
15. The change of Pomega longitude (radians/day)
16. The change of inclination (radians/day)
17. An optional descriptive string

1 Source: https://en.wikipedia.org/wiki/Kepler_orbit

14

https://en.wikipedia.org/wiki/Kepler_orbit

Everything past the epoch, element 9 onwards, deals with precession. The true
anomaly, seen in Figure 7, is generated in the Kepler True Anomaly submodule.
The Orbit class also contains some helper functionality, such as a print overload
that allows the data members to be formatted and printed.

DirectionOfPole()
The sole function outside of the constructors is DirectionOfPole(). It reports the
direction of the orbit pole in equatorial and ecliptic coordinates. The equatorial
coordinates are generated through simple trigonometry and the ecliptic
coordinates are generated through a custom, private Euler function.

Input:
● Right ascension angles
● Declination angles
● Whether or not to print out the results

Output:

● A pair of doubles representing the ecliptic coordinates
● (Equatorial coordinates are printed if desired)

4.2.2 Kepler True Anomaly
The Kepler True Anomaly submodule solves Kepler’s equation for an elliptical
orbit, specifically to give the angular location along an elliptical orbit as a function
of time. For consistency with archaic nomenclature, this angle is called the true
anomaly.

Dependencies
● Math
● Types

Use cases
● The true anomaly is part of a Kepler orbit, but is generated in the forward

model as opposed to the Orbit constructor.
● It is solely used by the forward model. The true anomaly is used as part of

some equations to generate orbital offsets that would be observed for a
set of dates.

15

Design
This submodule consists of a single function called keplerTrueAnomaly()

keplerTrueAnomaly()
Solves Kepler’s equation for the true anomaly.

Input:
● Semi-major axis of the orbit
● Eccentricity of the orbit
● Vector of times in units of fractional period since periapsis

passage
● An optional threshold for Newton’s method

Output:

● The true anomaly in radians, which is the angle away from
periapsis as seen from the barycenter

● Optionally, the distance from the barycenter

4.3 Shape
The Orbit module would be useless without something to attach it to. A pair of shapes
and orbits is needed to simulate a binary asteroid system. The Shape module is
responsible for reading in and generating these 3D shapes.

Dependencies
● None, though heavy use of the Standard Template Library

Use cases
● Used by the forward model to create a binary asteroid system (using a primary

shape and secondary shape with mutual orbits)
● Manipulated in the ray-tracing module (need an object to ray-trace)

16

Design

Figure 8: UML Diagram of Shape class

17

As seen in the grey box in Figure 8, the public API is verbose but the functionality itself is
simple.

To create a shape, one can pass in a path to a Wavefront (.obj) file or provide the type of
shape to generate along with some settings. There are also functions that provide
convenient access to member variables. The beta prototype will include the ability to
rotate the shape around an axis.

Overall, a shape is really just a mesh, and a mesh is really just a list of facets and
vertices.

Data
A shape is a mesh, but how the data relate to one another is more detailed than that:

● Facets
○ A facet consists of a triangle and a reflection angle.

■ The triangle represents the indices of the three vertices and the
reflection angle represents the angle at which a beam has
reflected off of it.

○ Initially a facet will only contain the indices of the vertices.
○ Facet also extends a special class, hitable, in the ray-tracing module.

● Vertices
○ Vertices are much simpler in that they are just a vector of 3D vectors,

which are vectors containing three values.
■ In this case, the values are doubles and represent the x, y, and z

coordinates.
○ The vertices are created at shape generation time and can be rotated.
○ Note that it is important to separate facets and vertices for many reasons,

but one of which is that when rotating vertices the facets should remain
the same.

● Mesh
○ A mesh, or an indexed mesh, simply holds a list of facets and a

corresponding list of vertices.
■ The indexed part simply means that the vertices have

corresponding indices, which are the facets.

18

● Shape Type
○ A shape type defines the valid types of shapes that can be generated.
○ It is an enumeration, meaning each shape type is represented by an

auto-incremented number, as opposed to some custom string.
■ Two types of shapes can be generated: an icosahedron and a

triaxial ellipsoid.
■ If the shape is generated from a file, the shape type is “Custom”.

This is mostly used in constructing the shape, but is kept as
metadata.

Constructors
There are currently two constructors. One of them takes in a path to a Wavefront file and
the other takes in a shape type and some settings. The settings are currently the number
of subdivisions to perform and the initial radius or radii of the shape.

Figure 9: The starting state of an icosahedron 2

Figure 10: Subdividing a triangular facet 3

A generated shape begins with hard-coded vertices and facets, such as the icosahedron
in Figure 9. Once the constructor is called, the vertices are multiplied by the radius or
radii and the facets are then divided into four new facets the number of times that the
subdivisions input declares, as shown in Figure 10.

This is all that is needed to generate a shape.

2 Source: https://en.wikipedia.org/wiki/Icosahedron
3 Source: http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html

19

GetShapeType()
This returns the string form of the enumeration value. For instance, if a shape was
enumerated with the value ShapeType::Icosahedron then this function would return the
string “Icosahedron”. This is simply potentially useful metadata and has various
miscellaneous uses, such as creating a name for a Wavefront file.

GetMesh()
This simply returns a reference to the mesh data member. It is generally good practice to
expose member variables through functions as opposed to directly accessing them, as it
creates a more intuitive API. The mesh needs to be accessible to iterate through the
vertices and facets in ray-tracing.

NumFacets()
This returns the number of facets by calculating the size of the GetMesh().facets
variable. Is useful for iterating through facets in ray-tracing.

NumVertices()
This returns the number of vertices by calculating the size of the GetMesh().vertices
variable. Is useful for iterating through vertices in ray-tracing.

GetVerticesOfFacet()
This takes in a constant reference to a facet and returns the three vertice values of it
(this is of the type TriangleVertices). A facet is just three indices, so to get the actual
values of the vertices one has to access the GetMesh().vertices variable with the
GetMesh().facets.triangle variable. This function provides that convenience, since the
logic is a bit verbose.

Write()
This is a debugging function that is publicly accessible. It saves the current shape to a
Wavefront file so one can inspect the vertices and facets in a viewer like Blender, as
seen in Figure 11. This has already been used to verify that icosahedrons are being
generated properly, though it can also be used to get a visual sense of how high
resolution a shape is.

20

Figure 11: Viewing an icosahedron generated via the Shape module in Blender.

8 subdivisions, ~1.3 million facets.

4.4 File Input
This module handles and reads in necessary parameters from the provided files, then
returns the parsed results. Some of these parameters are converted inside the
submodule before being returned.

Currently this module is only composed of one submodule, Ephemeris. Other
submodules to handle other file types can be created and added.

4.4.1 Ephemeris
This submodule contains a single function that takes in a ‘.txt’ file representing an
Ephemeris table.

Dependencies
● Types
● View

Use cases
● The Ephemeris function is used by the forward model to find the location

of the primary object at the given observation times.

21

Design
The Ephemeris submodule is just a single function that takes in a path to a text
file and returns a View object.

Input:

The Ephemeris file will provide a table with the following columns with
“$$SOE” indicating the start of the table and “$$EOE” indicating the end
of the table.

● Date__(UT)__HR:MN
○ Contains the date in Universal Time (UT)
○ Example: [2019-Jan-28 00:00]
○ Above the data is formatted with the year followed by the

abbreviated month, day and time
○ Units: [Year-Month-Day Time]

● R.A._(ICRF/J2000.0)_DEC

○ Contains right ascension and declination of target object
○ Example: [08 22 05.45 +27 01 47.9]
○ The numbers before the ‘+’ belong to the right ascension and the

numbers after the “+” belong to the declination.
○ Units:

■ Right Ascension in hours-minutes-seconds of time (HH
MM SS.ff)

■ Declination in angular degrees-minutes-seconds (DD MM
SS.f)

● r (distance from the sun in AU)
○ Contains the heliocentric range of the target object

● Delta (in AU)
○ Contains delta of target object

● S-T-O (in degrees)
○ Contains the interior vertex angle of the Sun-Target-Observer

vector.

Output:
The output of this module is a View object containing the following parameters for
each time value in the table provided in the Ephemeris file.

● Right Ascension (in hours)
● Declination (in degrees)
● Delta (in AU)

22

4.5 Ray Tracer
The purpose of the ray tracer is to calculate the amount of reflected light which can be
used to create a light curve. The ray tracer can also generate a rendered set of images
corresponding to the light curve. The images are saved to file as a .ppm. The
methodology for ray tracing implemented is image centric. The classes and methods are
standard for ray tracing. For more information and an overview about this ray tracing
method see the website scratchapixel.com . 4

Figure 12: UML Diagram of Ray Tracing module and sub modules.

4 http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview

23

4.5.1 Tracer
The tracer holds most of the logic for rendering and ray tracing. It uses other
classes to set up the problem then iterates through all of the pixels to generate
an image and calculate the luminosity of the scene. The logic of the tracer is:

1. Generate and set up a file (if rendering is on)
2. Get the list of hitable objects to be rendered
3. Create a camera
4. Iterate through each pixel for the following:

a. Get the pixel location
b. Create a ray from the camera to the pixel
c. Get the color/luminosity of the pixel
d. Add the luminosity to a total
e. Translate the rays to rgb
f. Correct the intensity for gamma levels
g. If anti-aliasing is on, repeat step 4 for multi sampling

5. If rendering then right to file otherwise just return the brightness

While most of the logic is contained in the tracer, the light intensity function is
also important. The light intensity function determines the wavelength and
strength of a pixel. The light intensity function takes in a ray, all the hitable
objects and a max depth of recursion. The function has the following steps:

1. Create a hit record
2. If the ray hits an object in the scene then:

a. Create a new ray from the hit location
b. Check if it is possible for that ray to reach the light source without

hitting anything
c. If the ray reaches the light source then return the brightness of the

hit
d. Cast out rays according to hapke diffusion parameters
e. Check if those rays can reach the light source using the light

intensity function
f. Repeat steps d and e up to the maximum recursion depth

assigned
g. Sum up all the intensity strengths (less than one total)
h. Return the total brightness of the pixel

3. With no hit, return a zero brightness value

24

The tracer function and light intensity function are used in the main ray tracing file
to drive the entire ray tracing process. The ray tracing main file relies on other
submodules and classes.

Dependencies
● Ray
● Shape
● Hitable
● Hit Record
● Hapke
● Camera

Use cases
● Ray tracing takes in shapes and locations and returns a single luminosity

value
● Ray tracing renders the scene and returns luminosity

Design
The ray tracing module consists of a number of files and classes. Below is an
overview of what those classes are and how they are used.

Hit record Struct
Contains

● Distance the ray traveled
● The normal of the hit object
● The material of the object (normally hapke)
● The location of the hit
● The vector from the ray start to the hit point

Description
The hit record is used to record and pass back information when a ray intersects
a hitable object. All hit functions generate a hit record. If the object is not hit then
the hit record is null. The distance the ray traveled is important for the distance
squared reduction in brightness that light suffers. The material of the object is
used to find diffusion rays and to calculate the amount of light returned to the
observer. The location of the hit is used to help calculate the normal and the start
of any other rays that the hit generates. The vector from the ray start to the hit
point is kept so that its strength can be modified for luminosity values.

25

Ray Class
Contains

● Origin vector
● Direction Vector
● Strength value
● Boolean for light value
● Wavelength value

Description
The ray class represents the physical rays that are being traced. Rays are
constructed with an origin point and a direction. The origin vector is comprised of
x,y, and z coordinates. The direction vector is also a x,y,z coordinate vector, but it
is also a unit vector just representing the direction of the ray. When a ray
intersects an object, a new ray is generated. Rays are either lit or unlit. A lit ray is
one that has either a direct path to the light source or an indirect path that is
within the recursive depth limit of reflections. The strength of a ray is a
normalized value. A strength of one would be the strength of light at the light
source (given a non dimmed light source). The wavelength of the light is used for
representing the color of the light. The wavelength will be modified by hapke
parameters and the original starting wavelength of the light.

Camera Class
Contains

● Location of the observer
● Direction of view
● Field of view
● Aspect ratio
● Pixel resolution
● Distance to center of scene
● Not hitable (see Hitable abstract class)

Description
The camera class is used to define the observer. The camera class hold the
location of the observer in a x,y, and z vector. The direction of view is a unit
vector. THe field of view is an angle in degrees. The angle is the measurement
from the camera to the top of the scene and to the bottom of the scene. For our
uses this will be an extremely small angle to account for the distances involved.
The aspect ratio is the ratio of the width of the scene divided by the height of the
scene. This aspect ratio is also defined by the number of pixels chosen. The
distance of the scene is the distance from the camera to the center of the scene
frame. The camera will always be at the center of the scene along two axis. This

26

will lead to a centered picture every time. The pixel resolution is selected in the
camera class. The resolution directly affects the performance of the software. An
original ray is traced from the camera origin to each pixel in the scene. An
increase in the number of pixels linearly increases the run time.

Hitable abstract class
Contains

● Hit function
● Normal function

Description
A hitable class is one that has a hit function and a normal function. The facet
class is a hitable class, as well as anything else that will be rendered by ray
tracing. The hit function takes in a ray and an object and checks if the ray hits
that object. If the ray does hit the object, then the normal function can be used to
figure out the angles involved in the collison. The angles are then used to
determine the strength of the reflection using the hapke model functions. The hit
and normal functions are dependent on the shape being checked. For example, a
facet will have different hit and normal functions than a sphere. While the facet
class is a hitable class, the shape class, which is comprised of facets will not be
hitable directly(unless we add additional logic to reduce the number of searches
for facets based on the shape orientation etc.).

Hitablelist class
Contains

● An array of hitable objects
● A hit function

Description
The hitable list class implements the hitable abstract class. When calling hit on a
hitable list, the hit function iterates through each object in the list and checks to
see which is the closest object that is hit. It then returns the closest object and
the distance as part of a hit record.

4.5.2 Hapke Model
The Hapke Model is a namespace that helps compute the luminosity of the pixel or facet
that a beam hit. It does this by computing Hapke’s bidirectional reflectance model. It
takes in the angle that the beam hit the pixel or facet, along with a variety of metadata
about the single asteroid, and returns the effects of macroscopic roughness of said pixel
or facet. This is a complicated series of equations that takes into account many aspects
of the asteroid, such as its surface roughness.

27

Figure 13: Rendering of illuminated facets using Hapke Model on a custom irregular
shape, provided by Lowell Observatory.

After this submodule is used in ray-tracing, the end-result is a luminosity value for where
each beam hit, as seen in Figure 13. In this case, ray-tracing was done by facet, so each
facet has a luminosity value.

Dependencies
● Math
● Types

Use cases
● The ray-tracing module uses it after a beam hits a pixel to receive a modifier of

the luminosity value, when is then used to compute the actual luminosity

Design
The Hapke submodule itself has quite a few functions, though most of them just help the
main function: HapkeModel::bidirectional()

bidirectional()
This is the main function of the Hapke submodule and is the only one intended to be
directly called by other modules.

28

It is equation 12.55 on page 346 in Hapke's book, "Theory of Reflectance and Emittance
Spectroscopy" (1993 edition). It is also on page 323 of the 2012 edition. It calculates the
effects of macroscopic roughness on light scattered by a surface having an arbitrary
diffuse-reflectance function, and then approximates the analytic bidirectional-reflectance.

Input:

● Single scattering albedo
● Cosine of the emission angle
● Cosine of the incidence angle
● Phase angle (radians)
● Compaction parameter
● Parameters of the single particle phase function
● Amplitude of opposition surge
● Surface roughness value (radians)
● A flag indicating which H-function to use
● The single particle phase function to use (defaults to a constant)
● A pedantic flag which, if set, chokes on single scattering albedo > 1, prints

various additional warnings, etc.

Output:
● The bidirectional reflectance of each index in the input values

This is perhaps one of the most complicated functions of the code base and has many
options, such as custom single particle phase functions and the option of using the 1993
H-Function or the 1981 version. The custom phase functions are implemented directly in
the namespace. There are currently three Henyey-Greenstein functions taking in one,
two, and three parameters respectively.

29

4.6 Forward Model
The forward model contains the entirety of the functionality of the software. It uses all of
the modules to produce a light curve model and to render a s et of images. In Figure 14
the process flow can be seen, as well as the light curve generation loop.

Figure 14: Forward Model Flow Chart

30

Dependencies
● All other modules

Use cases
● Takes in initial parameters and shapes and creates a light curve model of the

system
● Renders a set of images of a system of objects over time and their illumination

Design
The forward model drives the functionality of the entire program. It ties together all of the
modules and includes functionality to allow it to interface with IDL. The forward model
has the following steps:

1. Read in information using the file handling module
a. Use the information to select a use case
b. Based on the use case, either:

i. Upload a shape using file handling
ii. Generate a standard shape using the shape module

2. Use the inputs to determine the orbital and positional properties of the
primary object

3. Use the orbit module to determine the orbital properties of non-primary
objects relative to the primary object

4. Begin the light curve generation loop
a. Calculate the position of all objects for the current timestamp
b. Pass the objects to the ray tracing module
c. Save the rendered image and luminosity value from ray tracing
d. Advance the time (time evolve the vertices)
e. Repeat step 3 and 4

5. Create a light curve using the luminosity values and time stamps
6. If rendering was chosen, either

a. Choose a single image
b. Create a gif from the set of images

7. Return the matrix of brightness values that create the light curve to the
calling IDL function

This design of 6 conceptual modules allows pieces of functionality to be individually developed
and then relatively easily integrated. The modules, although conceptually simple, contain many
details that require time and coordination to develop. For this reason, Paired Planet has devised
an implementation plan.

31

5. Implementation Plan
For a successful implementation of our solution, active scheduling and task assignment
between the three group members is critical and necessary. A well documented implementation
plan provides both the group members and the clients with dates and percentages relevant to
tasks being completed for the project.

The Gantt chart in Figure 15 utilizes colored bars to indicate which tasks have been assigned to
which team member. Blue is assigned to Matt, green is assigned to Brian, purple is assigned to
Zach, yellow is assigned to the whole team and gray means it has not been assigned yet.

To begin the development process, the team assigned the remaining unimplemented features to
each team member based on their strengths as a developer. Zach is assigned the Shape
feature as Zach has the most experience with the code base and understands how Shape must
interact with the rest of the codebase. Brian is assigned the Ray Tracing and Rendering feature
as Brian is chosen to be the team’s ray tracing expert and has the most experience on the team
with ray tracing. Matt is assigned the File Handling feature as Matt expressed interested in the
feature and wanted more file handling experience.

For testing in the project, unit tests are being written to verify the functionality of submodules.
There is a dedicated time slot, after all of the core features have been implemented, to enhance
the initial unit tests to better prepare for upcoming optimizations. During this time slot the team
will also develop the C API structure to allow IDL to utilize the functionality.

As seen in the Gantt chart, the major phase titled “Alpha Demo Prototype” is a large upcoming
programming task and once all of the major features are implemented, this large task is to be
broken down and assigned to team members.

After the Alpha Prototype Demo has been completed, the primary focus is optimization and
implementing potential stretch goals. Optimization involves low-level changes and most
importantly parallelization. Stretch goals for the project involve addressing more use cases and
adding quality of life features.

With a well developed and updated implementation plan, both team members and clients can
determine what any given team member is working on for the week and what tasks have been
completed. This implementation plan provides the team with a constant reminder of upcoming
deadlines and upcoming tasks. The team feels confident that the current implementation plan
serves as a good representation of the team’s path to success in the entire project.

32

6. Conclusion
Space exploration has always enthralled humanity. Every year, billions of dollars are spent
trying to understand what is in the Solar system. Binary asteroid systems have always been
challenging to understand due to their small size. The clients, Dr. Audrey Thirouin and Dr. Will
Grundy, work at Lowell Observatory on understanding binary systems in the Kuiper Belt. They
accomplish this by using software that models binary systems.

One challenge is that these systems are so far away that only a single point source can be
observed. The required calculations to account for this are relatively complex and the clients
have only had time to develop a partial solution for the modelling. This partial solution is slow
and fragmented, meaning the functionality is spread apart and scripts have to be written to
utilize the code. The clients would like an API that is significantly faster and integrated, meaning
they can receive the model in a single function call in a code base that follows consistent coding
and naming practices. The best solution is a modularly designed, high-performance C++ code
base with a single exposed function that returns the desired results.

Extensive software design has been done for this document, detailing the functionality of six
modules. There is one main module, the forward model, which makes use of the five other
loosely coupled modules that provide core functionality. This design provides greater support for
upcoming features and creates a more approachable code base for future developers. This
important for this project since more functionality is planned in the future. The explanations of
the modules in this document also set up an important foundation for the upcoming user-guide.

The formalization of a conceptual design instills confidence in both the developers and the
clients. It provides a blueprint for how to implement a project and hence makes meeting the
requirements more straightforward. It also mitigates the risk of running into issues during
development. With the extensive planning there are no foreseeable roadblocks and the
independently testable modules ensure a robust solution. Paired Planet Technologies is excited
to implement this design and create an efficient, intuitive solution that exceeds the client’s
needs.

33

Figure 15: Gantt Chart as of 2/5/2019

34

