

Technological Feasibility Report (DRAFT)

Git OSS-um

Gary Baker
Van Steinbrenner

Stephen White

October 22, 2018
Project Sponsor: Dr. Igor Steinmacher,

Assistant professor, SICCS, Northern Arizona University

Faculty Mentor: Ana Paula Chaves Steinmacher

Overview
The purpose of this Technological Feasibility Report is to document the technological
challenges that need to be overcome in order to solve the problem presented by the

project sponsor and explore the feasibility of possible solutions. This report also
documents the research and calculated conclusion on best fit technologies for each

technological challenge to be faced in the process of completing this project.

Table of Contents

1. Introduction 2

2. Technological Challenges 3

3. Technology Analysis 5

a. Data Mining Tools 5

b. Databases 8

c. Data Analysis Tools 12

d. Web Hosting Services 15

e. Web Application Frameworks 18

4. Technology Integration 22

5. Conclusion 23

1

1. Introduction

Every software developer at some point in their career has most likely heard of the

version control system Git. This version control system tracks changes made to a project and

easily allows projects to have multiple contributors. It also allows for a project owner or manager

to accept or decline contributions depending on their opinion of the quality of the change

through what is called a pull request. This version controlling and group contributing

simplification is perfect for open source projects where the owner of a project wants anyone and

everyone to help complete the project and has the ability to control what changes get added.

 A substantial amount of developers do not contribute to open source projects. We have

all been there: we don’t know where to start, what files are important? What needs to be

changed? Is the community friendly, or will I get yelled at for adding a comment and submitting

a pull request? It is so daunting, that the newcomer gives up, and moves on. There is a need in

the open source community for a tool that will allow anybody passing through to quickly and

efficiently see how “newcomer friendly” a repository is.

Dr. Steinmacher and his colleagues have created a web application called FLOSScoach,

where newcomers can investigate the skills needed to contribute to open source. Although

FLOSScoach has been helpful, it does have its shortcomings. FLOSScoach is manually fed,

does not have up-to-date information, nor does it display graphical information to its users

based on collected data. These limitations restrict users to already available information and

does not assist them with finding unrecorded projects to contribute to. We will be creating a web

application that will take a URL that leads to a GitHub project page and obtain desired data such

as newcomer acceptance rates, and newcomer retention. This all will be used to assist new

users in finding projects, and a graphical user interface with interactive graphics that will

2

demonstrate to the newcomer what OSS projects are best for them.

Our job is aimed at giving power back to the newcomer through an autonomous process,

where relevant data of a requested repository is presented to the user so that they can decide

for themselves if they think the specific community will provide a positive experience or not and

allowing them to feel at ease when picking an open source project to contribute to.

2. Technological Challenges

Every technical project introduces barriers and challenges to overcome in order

to produce a working product. After careful analysis by the team, we have classified five

technical challenges that we must overcome in order to develop a successful newcomer

meter for open source dynamics. These five challenges are broken down as follows:

2.1 Data Mining Tool
 We will need to select a programming language that will allow us to mine data from the

GitHub API that will then be analyzed.

2.2 Database
We will need to store the data that we have collected in a way that will be easily

accessible, and provide us with tools for generating cohesive reports.

3

2.3 Analysis Tool
 We will need to analyze the data that we have collected and stored in order to produce

interactive representations of information.

2.4 Web Hosting Service
We will need to host our web application through a hosting service that will allow us to

easily integrate solutions to the aforementioned challenges.

2.5 Website Framework
We will need to make use of website framework that will allow us to present the analyzed

information in a comprehensive and intuitive way for the end-user.

Understanding the overview of the technological challenges the team will be facing will

allow us to make informed decisions about what tools would best come together to form our

product, and create a solid base from which we can successfully develop this software. In the

next section, we will break down each technological challenge, introducing possible solutions to

each, and justifying our conclusions as to what the best option to overcome said challenge will

be.

4

3. Technological Analysis

In the previous section we have identified five technical challenges for the team to

overcome in order to produce a viable product. Within this section, we begin to break down

each challenge into its possible solutions, analyze said solutions to determine what the best

plan of action will be, formulate our responses in a tabular format, and provide sufficient

justification as to why a specific technology has been chosen over another.

3.1 Data Mining Tool

The very first task that our project will have to be able to do is mine data from GitHub.

GitHub consolidates information about repositories, pull-requests, commits, users, and issues in

a format known as JavaScript Object Notation (JSON). This information is readily available to us

through querying the API, however, our issue is finding a tool that will easily allow us to make

requests to the GitHub API, and download these JSONs for storage and analysis. The GitHub

API will allow us 5,000 requests per hour per valid authentication, while we may make up to 60

requests per hour unauthenticated.

In order to decide which programming language best fits our needs, we need to uncover

one that will provide us with the best balance of learning curve and existing tools. Specifically,

tools that will allow us to make requests to the GitHub API, download the JSON file returned by

the request, and parse that JSON file if need be. Although there are a great deal of potential

options to choose from, we have narrowed down our choices to three possible options. These

options include Python, Java, and C#. Upon collaborating and researching different potential

pathways, we believe that these are the top options that fit our needs as well as match our

skillset.

5

3.1.1 Python

The python programming language comes with the benefit of a large open source

community that create a great deal of packages useful for data mining. The two most beneficial

libraries that would assist us in mining data from GitHub would be “requests” and “json.” These

two libraries allow us to make outgoing requests to the GitHub API through HTTPS Basic

Authentication as well as OAuthentication, and to download/interpret JSON files with ease.

Another positive factor for Python is that it is very easy to quickly write code that is easy to

understand and that functions properly. Each member of the team has used this language

before, and it would only be a matter of understanding these two libraries.

3.1.2 Java

The Java programming language also provides tools for making an HTTPS request, and

reading in a JSON response, however, the process does not appear to be as intuitive as

Python. Making use of the HttpsURLConnection class, the team would be able to validate

ourselves to the GitHub API and successfully create GET requests to return a valid JSON

object. We would then make use of the JSONObject class to interpret the results of the request

for future storage. While the team has extensive knowledge of the Java programming language

and the Object-Oriented Paradigm, making requests, interpreting results, and saving those

results to a file is much less intuitive in this language, and a greater period of time would be

spent simply attempting to replicate (in much more lines of code) what Python can do much

more simply.

6

3.1.3 C#

The C# language would allow us to make use of the .NET framework to make outgoing

requests to the GitHub API as well. Within C# there exists a class by the name of WebRequests

(coming from the System.NET namespace) that will make outgoing requests to the API, and the

WebClient class that can download JSON files returned by the request. Within C# however,

parsing JSON objects is quite tricky, and would require “deserialization” of a raw JSON object,

and this functionality is not native to Visual Studio. While C# would be easier for the team to

understand, as it is very similar to Java, it comes with the overhead of Visual Studio for

executing code, and it may be more difficult to integrate into a web framework down the line.

3.1.4 Conclusions

The following table rates each of the options on a scale from 1 to 5 of how well it works

for the specific feature (One being it does not work at all and five being it works well).

Figure 1: Dating Mining Tool Scores

 Ease of making
Requests to GitHub

API

Downloading
JSON Files

Parsing
JSON Files

Learnability Total Score

Python 5 5 5 5 20

Java 3 3 2 3 11

C# 2 3 1 2 8

Description of Figure 1: Visualized by the table above, with the three programming languages being rated one to
five with five representing the highest value of acceptance possible, Python won with a perfect score of 20. The other
two languages (Java and C#) were too difficult to make use, earning a scores of 11 and 8 respectively.

7

With our original problem of needing to decide which programming language would best

fit our needs in regard to mining JSON files from the GitHub API, we believe that Python will

provide us with the best solution. We plan on developing the data mining portion of the

application in Python, making use of the requests library to obtain data from github, and

interpreting JSON files as needed with the JSON library. In the event that the data mining tool

also needs to create CSV files, Python will grant us this ability as an added bonus.

With our data successfully being mined, it is only logical that we come up with a plan to

properly store it for future manipulation and interpretation. This brings up the need for our team

to decide on the proper database to house mined JSON files.

3.2 Database

In order for our product to be useful, we must be able to store the data that we have

mined from the GitHub API. Data will have been collected, and returned to us in the form of

individual JSON files; the database must be capable of storing information in this format. Once

our data is stored in JSON format, we must be able to retrieve it using the key:value pairs for the

information that is required to complete any analysis to be done.

When retrieving the data for analysis, it will be exported to a CSV file in order to be

interpreted by the data analysis tool, allowing the analysis tool to return correct representations

for the user quickly and easily.

3.2.1 Mongo DB

The MongoDB database solution is a document based, noSQL, non-relational database

program that uses JSON-like documents with schemata to store information. Some of the main

features of MongoDB include Ad hoc queries, Indexing, Replication, Load balancing, File

storage, Aggregation, Server-side JavaScript execution, Capped collections, and Transactions.

8

Queries can return specific fields of documents and also include user-defined JavaScript

functions.

Queries can also be configured to return sample results of a given size. Fields in the

MongoDB can be indexed for increased ease of use. MongoDB provides replica sets which

include two or more copies of the data which can be useful in the event of corruption or loss of

data. The replica sets can also potentially be useful for using one set for certain data collection

and a secondary set for other collection to increase efficiency. This database can also be used

as a file system with load balancing and data replication features for storing files over multiple

machines.

3.2.2 MySQL

 MySQL is an open source relational database management system owned by Oracle

Corporation. MySQL has a wide array of key features that it has to offer, most of the same

features as mentioned for MongoDB as well as many others that are specific to the relational

model.

The relational model is an approach to managing data using a structure and language

consistent with first-order predicate logic, where all data is represented in terms of tuples,

grouped into relations. Typically used in the relational model is the SQL language and the data

is set up to be stored based upon a system of tables that are connected by the previously

mentioned relations.

MySQL is a very powerful database management solution with many different

applications, however as the size of the data that needs to be stored starts getting large, the

efficiency of retrieving that data begins to decrease. This seems to be an important issue for our

project since the user will be requesting data on the fly and our database must be able to react

9

and return the information needed for analysis in a very efficient way in order to give the user as

good of an experience as possible.

The other downfall of MySQL is that the format of the data as it is stored is less

straightforward from the perspective of parsing the data and exporting the data for analysis. This

is because the format we will be receiving the data from GitHub is JSON and if we were able to

just simply store the data as it is presented to us from GitHub, it would cut out a few steps in

between storing and exporting the data for analysis.

3.2.3 Django

For our product to be more useful and personalized to each user, we must have a user

authentication system. One of the main web frameworks that we have looked into using is

Django, Python’s add-on for web application development. Django has a User Authentication

package that takes care of authentication, which is confirming that the user is who they claim to

be, and authorization, which is determining what that user is authorized to do within the web

application.

Django’s Authentication is easily customizable and comes with many different features

on top of the typical authentication and authorization, a few of these features include password

strength checking, throttling of login attempts, and a pluggable back-end system.

3.2.4 Passport.js

Passport.js is another option of user authentication and storing all the application’s user

information. This package is an add-on to Node.js which is another web framework that we are

considering using for our web application. Passport.js offers all of the same base features of

Django and advertises its ease of adding into any express-based web application.

Some nice to have features that Passport.js includes are many different forms of login

authentication including username and password, facebook, and twitter to name just a few.

10

Passport also includes support for persistent sessions and provides many other features with a

lightweight codebase.

3.2.5 Conclusions

The following table rates each of the options on a scale from 1 to 5 of how well it works

for the specific feature (One being it does not work at all and five being it works well).

Figure 2: Database Tool Scores

 Efficiency Scalability Web App
Integration

Data
Extraction

Total
Score

MongoDB 5 5 5 5 20

MySQL 4 5 3 2 14

Django 5 5 4 5 19

Passport.js 5 5 5 5 20

Description of Figure 2: Shown by the table above, with all of the database solutions being rated one to five with
five representing the highest value of acceptance possible, MongoDB won with a perfect score of 20 for the general
data storage and Passport.js won with a perfect score of 20 as well for handling user authentication storage. MySQL
appeared as though the storage format of the data and data extraction would not easily fit our needs, earning a
scores of 14. Django’s user authentication would be a useful option but the integration into our web application would
be just slightly less of a good fit than Passport.js, Django scored a nearly perfect score of 19.

After further analysis of these database solutions, it has become apparent that

MongoDB is going to make the most sense for our data storage system due to its base storage

format being JSON-like files which is exactly how the data is being collected from the GitHub

API and being document-based, the efficiency of the database will remain high whereas MySQL

will slow down when the scale increases to a fairly large dataset. The last reason that MongoDB

makes the most sense is that JSON is easily exported to CSV format, which is the file type that

will be passed to data analytics tools for easy parsing and use of the data contained. MySQL is

less straightforward in terms of parsing the data and converting that to CSV in comparison due

to how simple it is to transition from JSON to CSV.

11

As far as our user authentication storage, Passport.js looks like the way to go simply

because it will be just a bit easier to integrate into our application than Django’s user

authentication solution. Overall, in order to have efficient access to our data, keep transition

from collected data to stored data as simple as possible, and to have as smooth of a conversion

from our database to CSV files for analyzing, MongoDB is the way to go. Furthermore, in order

to have a robust and easily integrated user authentication system, Passport.js is the best option

for our application.

Now that our mined data is stored and ready to be used, our next step in the project

workflow is to analyze the data in a way to make it useful for our end users. In order to do this,

we must explore our options for data analytics tools.

3.3 Data Analysis Tool

Data is everywhere, and given the appropriate knowledge, what can appear to be

nothing but a collection of numbers, trues/falses, and categories can in reality, become a wealth

of valuable information. In order to draw conclusions from data, the team must access a great

deal of it, and with assistance from the chosen database, we will easily be able to access large

amounts of repository data. After information has been stored within the database, a (nearly

universally accepted) file format known as a Comma Separated Value can be generated and

plugged into a separate tool to to begin analysis.

In order to decide what tool would best serve our team to analyze packaged data, we

must determine what tool will provide the best balance between statistical computing

capabilities, ease of integration into a web application, difficulty to develop, and the ability to

visualize data in an interactive manner. There are several tools in existence that provide the

12

ability to perform simple analysis on datasets, however, the team has narrowed down the best

options to R, Python, and Javascript.

3.3.1 R

R is a statistical language aimed at uncovering the value behind a dataset. The value in

utilizing this analysis tool comes with the support of a great number of open source libraries,

including but not limited to data.table, HTML Widgets, Dplyr, TidyR, and Shiny. Along with a

great deal of tools to analyze data, R also presents options that would allow us to produce

interactive graphics, which is something we must take into account. There are a variety of ways

of doing this involving connecting javascript to R, or making use of the Shiny package.

Considering that R is a statistics-based language we will natively be able to conduct a

great variety of analyses on the data that we will be collecting. The team does not have very

much experience with this language and would have to understand not only how to analyze the

collected data, but also how this tool connects to the web.

3.3.2 Python

Python’s major advantage over other programming languages is that it is, at its core, a

general purpose language. As explained in the Data Mining Tool section of this document,

Python gives us the opportunity to leverage numerous open source libraries to analyze collected

data, such as Numpy, Matplotlib, Scikit-Learn, Pandas, and Tensorflow. The majority of Python

libraries that exist, however are only useful for producing static representations of analyzed

data.

As far as meeting our needs goes, Python is more than capable of filtering and analyzing

data. Beyond that, the more difficult question to answer would be how we would visualize the

data with this language on a web application, given that Python’s reputation as a general

purpose language does not lend itself to interactive representations that well.

13

3.3.3 Javascript

Javascript has the ability to conduct statistical operations thanks to the use of Node

Package Manager. There exist several options for computing statistics within Javascript, such

as Jstat, Simple Statistics, DataSet.js, and D3.js. It appears that visualizing data in an

interactive manner is also very possible due to the availability of open source packages that we

can install.

The team has a varying level of knowledge of JavaScript, and therefore there may be a

bit of a learning curve to understand the syntax along with what packages we would make use

of to analyze data. This is quite possibly the most surprising contender for the data analysis tool,

due to our preconceived knowledge of what Javascript is used for, however, it can definitely

stand up for itself when competing against R and Python.

3.3.4 Conclusions

The following table rates each of the options on a scale from 1 to 5 of how well it works

for the specific feature (One being it does not work at all and five being it works well).

Figure 3: Data Analysis Tool Scores

 Statistical
Computing

Learnability Web App
Integration

Interactive
Graphics

Total
Score

R 5 3 3 4 15

Python 5 5 3 2 15

Javascript 4 4 5 5 18

Description of Figure 3:As you see by the table above, after categorizing the necessary components of a statistical
tool and ranking them from one to five, with five being the best, Javascript won with a score of 18, while R and Python
tied with a score of 15.

14

With our original challenge of needing to decide on what tool would best serve the team

in regard to performing statistical analysis on datasets in the form of a CSV file, and producing

interactive graphics that that would be intuitive to the end user, we believe that Javascript would

be the optimal solution. We plan on making use of the immense amount of open source libraries

available to Javascript through Node Package Manager to parse the data that we have

collected, and come up with a sleek graphical user interface that can be manipulated by our

users.

Mining and analyzing data is only useful as long as the team is able to share that

analyzed data with the world. This presents our next technological challenge: selecting a web

hosting service that will allow us to build our web application.

3.4 Web Hosting Service

A large component of our web application is the choice of web hosting. This can be a

complicated issue for us as students, as hosting often requires us to pay fees or our sponsor /

university will assist in paying for web hosting. Our goal is to find a service that can handle large

scale data mining and have data visualization as an output from a user’s request.

In order to make the best selection, we have four available options of services that could

give us the best performance, pricing, scalability, storage, and security; Along with unique

features that each service is capable of to further compare our options.

3.4.1 Digital Ocean

Digital Ocean emphasizes their “Droplets” of “scalable platform of compute instances” for

their web hosting service. These Droplets have add-on storage, security, and monitoring

capabilities for our web application. Besides the Droplets, Digital Ocean has 8 data centers

across the globe, giving us reliable connections wherever our users are.

15

To assist administrators, Digital Ocean comes with many features such as monitoring droplet

performance visibility, team management system to scale our app, storage that can be

upgraded at any time, and cluster deployment of Droplets to grab more data. Arguably, the best

feature of the Digital Ocean service is the Elegant API, available in the Ruby, Curl, Go, and

Doctl languages. The Elegant API enables administrators to deploy and manage Droplets

programmatically. The API also has conventional HTTP requests and allows OAuth support.

Sadly, Digital Ocean’s hosting service is not free, however, it does have a pay-as-you-go pricing

with explicit pricing of features per measurement.

3.4.2 Amazon Web Services

Amazon Web Services promotes free product offers and services to assist in building

web applications, however, we do not know how long the “free” offers and services will last for,

especially after we finish the product in late Spring 2019. There are specific services that AWS

offers that could prove useful to us, this includes Amazon EC2, AWS Lambda, and Amazon S3.

Amazon EC2 offers 750 hours per month Linux and other server instance usage with resizable

computing capacity in the Cloud. AWS Lambda would run our code in response to certain

events and manage resources with one million free requests per month and 3.2 million seconds

of compute time per month. Amazon S3 is a scalable storage infrastructure that offers five

gigabytes of standard storage, 20,000 get requests, and 2,000 put requests. AWS also offers

free tutorials on how to use their services. Unlike Digital Ocean, most of AWS offers free

services with opportunities to expand our storage and other functionality that can be relevant to

our web application.

3.4.3 Microsoft Azure

Microsoft Azure offers many features and offers, and a free trial for 30 days. Despite us

having to pay for the service, there are many features that we can take advantage of and Azure

16

has the most data centers in the world, offering connectivity for all of our users. Features that

we can take advantage of is the Linux virtual machines, a cross-platform file storage system,

and access to Azure Cosmos DB, a noSQL database that can assist us with data that is well

documented and in large volume. After our free trial, Azure offers a plan of pay-as-you-go

payment similar to Digital Ocean.

3.4.4 Google Cloud

Google Cloud promotes a cheap, fast, and scalable platform where web apps can be

modified with frameworks such as Django and Flask. The platform also offers cloud computing

with storage, data transfers and migration, noSQL in the form of Cloud Bigtable, and big data

analytics. Similar to Digital Ocean, Google Cloud offers pay-as-you-go payment plans similar to

our other choices. Google Cloud allows developers to implement AI to applications so that data

can be interpreted easier, therefore, make visualization and other functions of our web

application easier. Serverless computing is also an opportunity where we do not have to

manage server infrastructure, the less we intervene, the more functionality we can complete

with serverless computing. Google cloud also offers large private regions and networks where

connectivity to users will be strong without any obstructions.

3.4.5 Conclusions

The table below is a representation of features and services that a web host offers and

compares these services to one another to find the best solution.

17

Figure 4: Web Hosting Service Scores

 Efficiency Scalability Web App
Integration

Pricing Total
Score

Digital Ocean 5 5 5 5 20

AWS 4 4 4 3 15

Azure 3 3 2 4 12

Google Cloud 4 4 4 2 14

Description of Figure 4: From the results above, our best option is the Digital Ocean platform for web hosting. Our
other options, in order from best to worst options include: AWS at 15, Google Cloud at 14, and Microsoft Azure at 12.

Choosing a fast, affordable, and secure web hosting service is the key to our web

application taking and storing data and making sure our users have a quick way to access the

information that they need.

Although having a strong web hosting service is key to a fast and efficient web app, it is

not the only part of having a great web app, a valuable framework for the website and data

visualization is essential for our web app to perform at its best.

3.5 Web Application Framework

Creating a beautiful and bold website involves choosing the best framework is not an

easy fit. We must choose a framework that will assist in making an efficient UI and work well

with our data visualization framework of our choosing.

Our options for web frameworks include easy to use frameworks like Django, Node.js

and Mean.js for compatibility across multiple frameworks and databases such as MongoDB,

Angular 6 for more JavaScript compatibility, and finally Bootstrap for creating an efficient UI.

18

3.5.1 Django

Django is a Python based web framework built for developers with tight deadlines and

perfectionist mentalities. Django is quick, secure, and scalable, which is exactly what we need

for our application. To assist us, Django offers a highly detailed documentation page on their

website; The documentation extends from tutorials to documented functionality from security to

data validation. This open-source web framework has other built in functionality, as stated

earlier, with databases, and can store information for user authentication. Conveniently, Django

has multi-database functionality, so we can pull user authentication data from Django and get

data that we mined from another database, if need be. Django also has the ability to run other

Python or JavaScript data libraries into the web app.

3.5.2 Node.js

Node.js is an open-source and scalable web development framework that treats HTTP

requests first other than anything else. Node.js is compatible with noSQL databases such as

MongoDB and relational databases like mySQL. Despite some research, integrating multiple

databases can be a pain for developers. However, JavaScript offers many frameworks for data

visualization including plotly for Node.js. Despite this, the overall documentation of the Node.js

project is decently organized but it does not offer too much information regarding data

visualization or database integration. However, HTTP requests are a decent part of the

documentation.

3.5.3 Mean.js

Mean.js is another alternative to Node.js where Mean has access to MongoDB,

AngularJS, Node.js, and Express. With the implementation of these other frameworks, there will

be less detours in development and more opportunity to increase the functionality of our project.

Mean is an open-source project that is still under development, which, under further

19

development of the Mean project, could make our web application malfunction when the Mean

software is upgraded to new versions. Despite this drawback, Mean appears to be a great tool

that draws power from other frameworks, combined into one convenient package.

3.5.4 Angular 6

Angular is another JavaScript framework that optimizes speed, scalability, and

performance for any application. Angular also assists developers in creating data models with

libraries such as Immutable.js or other libraries. The main aspect of Angular includes

incorporating other libraries using observables for uses like data visualization and multiple

database integrations. The documentation for Angular is decent and has tutorials and beginner

articles, but does not go too far in depth on certain topics like database integrations. Overall,

Angular is a solid framework for incorporating as much functionality in the back-end as possible.

3.5.5 Bootstrap

Bootstrap is one of the most popular web development frameworks in the world, and is

used to create beautiful websites using HTML, CSS, and JavaScript. Because Bootstrap is

exclusively a front-end framework, database integration and interactive graphics will have to be

done with back-end technologies such as the frameworks described above. Bootstrap can be

used to effectively create a beautiful UI for users to explore, create a responsive web app on

any screen, and separately implement a back-end framework to deploy interactive graphics

from collected data, the backbone of our project. Bootstrap does, however, implement

responsive charts, but are not as scalable nor as fast as the frameworks described above.

3.5.6 Conclusions

Below is a table representing our top choices of website frameworks that we should use

to create our project.

20

Figure 5: Web Frameworks Scores

 Efficiency Scalability Overall
Integration

Documentation Total
Score

Django 5 5 5 4 19

Node.js 4 4 4 4 16

Mean.js 4 5 5 3 17

Angular 5 5 5 4 19

Bootstrap 3 1 3 4 11

Description of Figure 5: From the table above, the best options for us include the Django and Angular frameworks
at a tie of 19 out of 20. Other frameworks follow closely behind in the points system, however, there is a chance that
we will be using more than one framework for our web application.

Overall, exploring frameworks has enlightened us of possible pitfalls and great

functionalities of these frameworks. Building our web application will definitely have more than

one standalone framework, as we may need the extra functionality to import certain integrations

in our app. With the frameworks of our web application concluded, a technological analysis and

integration will be formed to the proposed solutions described above.

Within our technological analysis, we have discussed the five technological challenges

(data mining tools, appropriate databases, available analysis tools, web hosting services, web

frameworks), providing possible solutions to each, determining the optimal solution, and

providing sufficient justification for our choice. The individual components of the solutions we

have provided would prove useless unless there was a valid plan to integrate all technologies

into one cohesive workflow. Within the next section, we will cover how each technology will

interact with one another, and provide a graphical representation of what we plan on

developing.

21

4. Technology Integration

Figure 6: Technology Integration Workflow

Above is a diagram of our planned prototype system. We envision having two separate

Digital Ocean instances that will hold the backend and frontend portions of our product

respectively. Within the backend portion of the product, we will make use of the Django REST

Framework to be used as an overall controller for every other piece to go through. Through

REST API calls, this controller will be able to interact with the data mining script to collect

information, and place the collected JSON files within our model: the Mongo DB database

system. Mongo DB is simply the container that holds all collected information, and can be

queried to analyze information.

The second Digital Ocean instance that houses the frontend of the application will

contain all information relevant to displaying information to the end user and allowing them to

interact with the website. This in essence, will contain the view of the project. When someone

22

types information into a field to mine a repository, the view will pass that repository name to the

controller, which will then begin collecting JSON data. The controller then places the JSON

information into the model, generates a csv file for parsing, and passes that back to the view

where Javascript will take care of analyzing the data, and presenting interactive graphics to the

user!

5. Conclusion

In summary, with open source projects becoming a massive market and increasingly

more important to the computer science industry, we feel that not only is it critical for people to

continue to contribute, but also encourage newcomers to feel welcome to these projects. Our

web application will:

● Display relevant data to GitHub newcomers about a requested repository.

● Assist in choosing a good first repository to contribute to by helping the user

determine what the community is like.

● Show newcomers that they are not alone and encourage them to contribute to

the world of Open Source Software.

Our goal is to assist Dr. Steinmacher with overcoming the challenges newcomers face

whilst contributing to open source projects, and keep them from being discouraged. In doing so,

we will be giving power back to the newcomer and providing a valuable resource for the world to

share.

The following table gives a summary of the technologies that we have chosen and our

confidence level that each of these technologies can be used to successfully complete our

project.

23

Figure 7: Chosen Technology Confidence Table

 Proposed Solution Confidence Level

Data Mining Tool Python 5

Database MongDB/Passport.js 5

Analysis Tool JavaScript 5

Web Hosting Service Digital Ocean 5

Web Application Django 5

Total Confidence 25

Figure 7 Description: We have picked these technologies with the end user’s experience and implementation
efficiency, and task effectiveness in mind. Using Python for our data mining tool, MongoDB for our database of mined
data, Passport.js for our user authentication services, JavaScript for our data analytics tool, Digital Ocean for our web
hosting service, and Django for our web application framework.

These decisions made on the technologies to be used will allow us be as efficient as

possible while developing in order to meet our deadlines, effectively achieve our goal of

displaying useful information to the user as well as do so efficiently to keep the user experience

streamlined and lightweight, and aid the open source newcomer in having a positive and

successful first experience in open source contributing and encouraging them to continue

making contributions to the open source software and computer science community.

24

