
Software Design

Git OSS-um

Gary Baker
Van Steinbrenner

Stephen White

February 5, 2019
Project Sponsor: Dr Igor Steinmacher,

Assistant professor, SICCS, Northern Arizona University

Faculty Mentor: Ana Paula Chaves Steinmacher
Version 1.0

Table of Contents

Introduction 2

Implementation Overview 3

Architectural Overview 5

Module and Interface Descriptions 7
Mining Script 7
MongoDB 10
Front-end Components with Django 12

Logging Into The Application 13
Admin Portal 13
About Us Page 13
Requesting Data 14
Data Visualization 14
Cross Comparison of Repositories 15

Python-nvd3 Framework 15

Implementation Plan 16

Conclusion 18

1

1. Introduction
Open source software (OSS) is a type of computer software in which source code is

released under a license, where the copyright holder grants users the rights to study, change,

and distribute the software to anyone and for any purpose. OSS may be developed in a

collaborative public manner using a version control system named Git and hosting the project

itself on a site known as GitHub . This version control system tracks changes made to a project 1

and easily allows projects to have multiple contributors. It also allows for a project owner or

manager to accept or decline contributions depending on their opinion of the quality of the

change through what is called a pull request.

 Unfortunately, a substantial amount of developers do not contribute to opensource

projects. We have all been there: we do not know where to start, what files are important, or

what needs to be changed. The community may be friendly and quick to provide assistance to a

newcomer, or the contributor may get berated for submitting a pull request that does not adhere

to the project’s standards. It is so daunting that the newcomer gives up and moves on. This

experience shows that there is a need in the open source community for a tool that will allow a

novice passing through to quickly and efficiently determine the newcomer “friendliness” of a

repository.

Our client, Dr. Igor Steinmacher, is a researcher and assistant professor at Northern

Arizona University. Dr. Steinmacher and his colleagues have created a web application called

FLOSScoach to address newcomers’ needs, where a user can investigate the skills needed to
2

contribute to open source. Although FLOSScoach has been helpful, it has its shortcomings,

such as:

1 Add the website here
2 FLOSScoach: http://www.flosscoach.com

2

● Data is manually fed.

● Contant manual maintenance.

● Data is not up to date.

Due to these shortcomings, we will be spearheading a solution, independent from FLOSScoach

to give power back to the newcomers. Our goal is to create an autonomous process where

relevant data of a requested repository is presented to the user. This will allow them to decide if

the specific OSS project will support their needs and help them feel at ease when picking their

first open source project.

 In order to develop a successful newcomer meter for open source dynamics, we will

create a web application that takes a URL leading to a GitHub project page and accesses it via

the GitHub API. The collected data, such as newcomer acceptance rates and newcomer

retention, among various other data points, will be presented to the newcomer as interactive

graphics, which will ultimately assist users in finding the best OSS projects for them.

Within this document, we will break down our envisioned implementation of features that

meet the requirements associated with our client’s vision. We will be discussing our

implementation and architectural overviews, modules, interfaces, and finally end with a brief

recap of our design. In the following section, we will describe the implementation overview in

order to give the “big picture” of our product and the technologies that we plan on using to make

this product come to life.

2. Implementation Overview
As stated before, we are creating a web application address newcomers’ needs to avoid

being discouraged to start contributing due to their lack of knowledge on how, as well as the

inherent intimidation that comes along with contributing. Our application will retrieve GitHub data

3

for a specified repository and display it to the user in a tabular form, accompanied by around 3-4

interactive graphics that will help the user visualize the data.

The way that this application will work is mostly simple. The user will first request

information for a specific repository on our application front-end. The request is sent to the

application back-end where the data is retrieved from our database and sent back to the

front-end. Then, at the front-end, raw data points are formatted into a table as well as the utility

Plot.ly takes that data and translates it into interactive graphics that are all displayed to the

newcomer to help them form their own opinion about whether or not the repository is right for

their first contribution or not.

Our application will include a few different technologies, but it mainly revolves around the

web framework Django. Django is a high-level Python web framework that consists of Python,

HTML, CSS, and JavaScript to create both great front-end user interfaces as well as fast and

reliable back-end functionality. We have chosen for our back-end logic as well as our front-end

user experience to be done using Django due to our familiarity with Python in general and the

existing support and libraries that can be utilized when using Python and Django. Django is a

very powerful framework and will allow us to do everything that is needed for this product while

doing so with high efficiency and a streamlined development experience.

We will be storing a lot of data for our application in order to provide the newcomer with

an efficient and reliable experience. In order to store the data mined from GitHub, we will be

using MongoDB due to its high efficiency, ease of access, and its seamless integration with

Python and Django. MongoDB is a document based database solution in which the documents

consist of JSON-like format. This makes the importing of data from GitHub especially easy since

the data is retrieved in JSON format from the API calls to GitHub.

4

There has been a lot of talk about displaying the data to the user via interactive graphics.

This will be done using a utility called Plot.ly, as previously stated. Plot.ly is an open-source

Python library that is used to create interactive graphics. It will allow us to create dynamic,

interactive graphs of our data quickly and elegantly to help give the newcomer an easier time

reading the data that is returned for their requested repository.

The last main portion of this product is hosting, this is a web application after all. In order

to make this application available to the newcomers of OSS, we will be using a service called

Digital Ocean. This service has a lot of features to offer our client in terms of scaling up the

application as it gets bigger and also provides first class customer support to make sure that

very few problems arise and that when they do, they are taken care of.

Now that we have a general idea of what technologies are at play here, it is time to take

a bit more detailed look at the architecture of the product, which will be explained in the

following section.

3. Architectural Overview
In the previous section, we discussed the implementation overview of Git-OSS-um. We

will now be taking a high-level look at the architectural of our service, to better visualize what

services will comprise the end product. The core of our software will be written using the

Django python web framework, whilst making use of MongoDB to store and access files that we

mine from the GitHub API. While there are many other components, Django will be the driver for

all interaction between these components. This is visualized in Figure 1 below.

5

Figure 1: Architectural Overview of System Components

As explained briefly above, Django will be used to design, navigate, and operate all the

necessary functions of our application. The team has decided to make use of Django 1.11 as it

is a long term support (LTS) version of the framework that will be supported into 2020. It is at

the center of our application, offering such necessities as admin functionality, login security,

form validation, and much more.

6

Our team chose to use MongoDB as our database of choice to store and retrieve the

data that we mine from the GitHub API. It is a document-based, NoSQL database that makes

storing and locating large sets of JSON data a breeze. Using this technology, Django will be

able to quickly and effectively query JSON data to build interactive data visualizations about any

repository.

All extra functionality that is needed will be written in python, making it easy to plug into

Django. This allows the team to quickly and efficiently write the software needed to mine data

from GitHub, and store this data in a MongoDB collection. As stand alone python code, Django

can handle when this code will be used, and who has the access rights to call it. Now with an

understanding of the architectural overview of Git-OSS-um, we will dive further into the specific

modules that comprise our software.

4. Module and Interface Descriptions
Within the previous section, we discussed the architectural overview of Git-OSS-um, and

briefly explained its main components. We will now describe these components in greater detail

in order to understand our web application in greater detail.

4.1. Mining Script
The mining.py component is accessible only by Django itself, when a request to mine

GitHub data has been validated, the form has been cleaned of any potential security threats

(such as HTML, or SQL injection), and the administrator has approved the request. This script is

contains functions written by the team that make use of several libraries in order to mine and

store JSON data from GitHub, and to send an email notification to the user when this is finished.

7

We make use of PyGithub to quickly and efficiently mine JSON data from GitHub, Pymongo to

interact with our MongoDB database collections, and SMTPLib to send email notifications to the

user via the Gmail server.

8

Figure_2: Mining Scripts Package Diagram

9

4.2. MongoDB
MongoDB will be running as a process on our DigitalOcean server on port 27017,

and will never be directly accessible by the user. As mentioned in the previous section,

all interaction with MongoDB will be done via the use of Pymongo within the mining.py

component of our web application. We have designed our NOSQL database in way that

it is simple, intuitive to learn, and accessible by our python scripts. The database is

made up of two separate collections for storing JSON files from GitHub: Repos, and

PullRequests. The Repos collection is responsible for containing all JSON files that

represent the landing page of a GitHub repository, while the PullRequests collection will

contain all pull requests that comprise any repository that we mine. Figure 3 illustrates

what the database will look like.

10

Figure_3: MongoDB Database Overview

It is important to note that Git-OSS-um will not be managing the fields of the JSON data

that have been mined from GitHub. Rather, we store the files as they are in the proper

collection, and extract what data is necessary for visualization. Figures 4 and 5 display partial

examples of actual data that will be stored in our MongoDB database.

Figure 4: Example JSON Representing a Repository Landing Page

11

Figure 5: Example JSON Representing a Pull Request

4.3. Front-end Components with Django
We are implementing a full Django web application, which condenses our web

application into one centralized package, instead of having separate front and back-end

applications. Below are the components of our front-end with Django and the functionality of the

components.

12

4.3.1. Logging Into The Application
Users will be able to sign in to our application, however, it is not necessary for browsing

data. Users are encouraged to create an account so that they can post mining requests to

administrators. For user sign up and login to our application, we will use Django forms. Django

comes with built-in form functionality so we can build forms with ease and less code. Our login

form asks users to input their username and password, we have built error handling to check

our database whether a username has been registered to our product. For our sign up form for

users, we ask for their name and email as a required field and their GitHub Oauth token as an

optional field. If a user wants to request mining data, then they would have to register their

Oauth token to mine the data.

4.3.2. Admin Portal
One of the requirements of our web application is to have a admin portal where

administrators can approve or decline mining requests made by users and to manage database

collections. Django offers a template interface, but can be altered and edited to accommodate

our needs. The main functionality of our admin portal is a database management system where

administrators can manage data in our MongoDB collections and to accept or decline mining

requests made by the user. This central interface will show the administrators what requests are

pending the mined JSON data that represents a repository in GitHub. This interface will also

allow administrators to implement custom updates to the database, which means that an admin

can see if a JSON file is up-to-date with the information that resides within it, and update that file

as needed.

13

4.3.3. About Us Page
As a landing page, we will be creating an “About Us” page that would describe the

product and team. This page will describe our web application and the core functionality and

who the development team are. This page will briefly describe the main functionality such as

viewing of mined data of a repository with interactive visualizations to explore the data.

Alongside this, users can also cross compare up to three different repositories to further explore

the data. A description of how to get a specific repository data will be explained on the page as

well to clarify the process to new users. The “About Us” page will briefly introduce the

development team as well to give users a background of who developed the application. The

“About Us” page will briefly introduce the team’s sponsor, Igor Steinmacher, and explain how

the project would be used for his research.

4.3.4. Requesting Data
In order to request data from a specific repository, a user will have to fill out a form with

specific fields. Two main parts of this form would be the repository name and a user’s email

address so that they can get a message saying that their request of that repository has been

sent. This form will be able to be accessed in our Django admin portal, where administrators

can either accept or decline the request for mining. After a decision is made, a user will get an

email notification of the decision. If the request has been approved, a user’s Oauth token will be

used to mine the data. After the data is mined, user’s can see the data and interact with

visualizations.

4.3.5. Data Visualization
The python-nvd3 framework will be used to visualize data that is mined and existing data

in our Mongo database. This framework is a Python wrapper of the nvd3 framework, which

14

harnesses the power of the JavaScript framework D3. The python-nvd3 framework allows us to

write Python code and renders it as JavaScript and place that JavaScript in our HTML files.

Because python-nvd3 aslo has a Django wrapper called django-nvd3, we can place python

code directly into our Python files to generate our visualizations. The python-nvd3 framework

also harnesses interactiveness of D3. Functionality for hovering over certain parts of the

visualization and constrict the visualization to certain parts of the data. Our visualizations offer

an in-depth review of data pulled from a repository. For more detail, read more in the

“Python-nvd3 Framework” section.

4.3.6. Cross Comparison of Repositories
The ability to compare up to three different repositories is a feature that can be used to

further show what repository may be the best for the user to contribute to. The comparison will

display both data and visualizations to further show users the differences of each repository.

Overall, the cross comparisons of repositories and the visualizations will provide greater clarity

to users.

4.4. Python-nvd3 Framework
Python-nvd3 is a python wrapper of D3.js where the library’s main goal is to create

reusable charts. Python-nvd3 is a powerful tool because of its ability to keep the power that D3

initially offers and python-nvd3 renders JavaScript for us. The rendering of Javascript allows us

to make a visualization in python and save the output as an HTML file and copy the contents

into our web pages so that the graph can be displayed. The library also has built-in functionality

for simplistic charts such as line, pie, and bar graphs, which is a perfect tool for quick

visualizations and for prototyping purposes. The following sections explain what the team plans

to do with the power of python-nvd3.

15

A key part of our front-end is interactive graphics where the user can learn new

information regarding a mined repository. The python-nvd3 library lets us write python and

renders JavaScript as a result. The python-nvd3 library is a wrapper that limits the overall code

that we have to write. The rendering of JavaScript is displayed as an HTML file, in which we can

copy and paste that JavaScript into HTML files. Because we are using Django as our front-end,

the python-nvd3 library has another wrapper called django-nvd3 where we can write python

directly into our web application. Writing python into a file such as view.py allows us to create

template HTML files where we can reuse the graphics and interactivity.

The python-nvd3 library maintains the power of the D3.js framework, which means that

we will have the power of D3 and the reusability that python-nvd3 gives us. The python-nvd3

library will be used for the reusability of charts and the interactivity of D3 so that users can

explore the data of a mined repository. As users hover over parts of a visualization, they can

uncover more information regarding certain data points and reveal more information about

multiple repositories.

Our mining scripts obtain multitudes of information pulled from select repositories, but

some of this information may not be useful to our users. It is important that we show only the

relative data a user wants to know. Thi can be achieved by adding further interactivity to our

visualizations. In select graphics, users can select what data that they would want to view on

our visualizations. However, not every data option will be displayed, it is up to the team and our

sponsor to select the necessary data to be displayed from mined repositories.

5. Implementation Plan
Beginning the Spring semester of 2019 in mid January, the team had a working

prototype as a proof of concept in which checked off the core functionality of the product

16

outlined in the Requirements Specification document, signed by our team lead as well as our

client.

As one of the most important tasks in the early stages of implementation, the team went

about creating a checklist of all features and major milestones that needed to be met along with

tentative due dates and team members responsible for each task. This checklist will be given to

the client as well as a way to outline exactly what the team will be doing and what to expect by

the final product deployment.

We plan to have not just the alpha build by Spring Break, but a mostly finished product in

order to utilize the remaining portion of the semester for testing of the application and

preparation for the final release of the product in which the newcomers can use. The following

image displays our checklist featuring all of the tasks and major milestones with their due dates

and responsible team member. This checklist may be subject to change but is a mostly

complete timeline of the entire implementation period. The checklist is mostly detailed for before

Spring Break because this is our main development phase. After Spring Break, our focus is

mostly on testing, polishing the current build, and discussing any additional features with our

client in which we will compromise testing time for addition of a feature.

17

Figure 6: Team checklist for tasks leading up to Spring Break

18

6. Conclusion
Open source software is not the easiest field to be involved in, with our product, we wish

to make the contribution process easier to newcomers. Our web application will be able to mine

data straight from GitHub, store the data in a database for future use, and visualize that data in

the form of interactive graphics which are displayed to the newcomer. In this document we have

discussed the “big picture” associated with our application, implementation and architectural

overviews of the product, the modules and interfaces that will be used to implement our

solution, and a detailed plan of attack that maps out all tasks and milestones that must be

completed by mid-March in order to deliver a mostly complete product early to leave excess

time for testing as preparation for deployment to the newcomers of OSS.

By the time spring break arrives, we are confident that we will have a minimum viable

product ready to present to our sponsor as both a research tool and a product to assist

newcomers into contributing to open source software. As described in our document, we will

create a web application that will mine data from GitHub repositories and provide the data and

visualizations to our users. Our product will deliver satisfaction to the user, make the

contribution process easier, and bring the power back to the newcomer.

19

