
LingoPros

Final Report V2

May 9, 2018
Josh Shaffer, Luis Montes, Erik Strauss, Matt Quintana

Sponsors: Dr. Okim Kang & Dr. David O. Johnson

Mentor: Ana Paula Chaves Steinmacher

Overview: This final report document will detail our entire project so that it can be easily

understood and recreated for future developers. It will contain our exact process for

developing the project, the requirements established with our client, and how we designed

and implemented the software.

Table of Contents

Introduction 3

Process Overview 4

Requirements 5

Architecture and Implementation 7
Website 7

Database 7
User Login 9
Server 9

AuToBI Based Analyzer 11
Data Analysis 11
Training the Neural Net 13
Testing the Neural Network 14

Testing 14
Unit Testing 14
Integration Testing 15
Usability Testing 15

Project Timeline 16

Future Work 17

Conclusion 18

Glossary 19

Appendix A:
Development Environment and ToolChain 20

Website Setup 20
AuToBI Setup 21

Introduction

Non-native English speakers often have a hard time articulating their speech not just in

what they say, but how they say it. Proper emphasis on words or just general speech tone is

something that native English speakers do not have to think about in their everyday speech as it

is something that just comes naturally. For example, in a conversation between a non-native

English speaker and a native speaker, the non-native speaker may not be aware of how, by not

matching the tone or cadence of the native speaker, the conversation can begin to feel awkward

and unnatural. Recognizing these differences in tone, pitch, stress and other prosodic features

between native and non-native English speakers, is one of the key focuses of Dr. Okim Kang’s

research at the Applied Linguistics Speech Lab (ALSL) at NAU.

 Currently, students working with Dr. Kang at the ALSL have to do all of the speech

analysis by hand, listening to audio samples and recording what features they hear or recognize.

This process can take hours on end even for a small 10 second audio clip, so as such, an

automated process of speech analysis that is easily available to the students would drastically

improve their research capabilities by saving them time and energy. Dr. Kang has already

developed her own experimental speech analysis program that can recognize prosodic features,

However, the model that the current program uses, a framework based on a distinct form of

speech analysis posed by David Brazil called discourse intonation [1] is not recognized as the

standard in speech analysis. A set of conventions called Tones and Break Indices (ToBI) is

considered to be the standard for annotating speech features, and so the clients want to show that

the her program performs just as well or better than other automatic analyzers such as AuToBI.

For our project, Dr. Kang wants us to develop a program that is able to analyze

recordings of non-native English speakers and grade their English proficiency based on aspects

like tone and emphasis, and secondly she want us to implement an easily accessible web portal

for users to upload and analyze audio samples in one location. We have been brought on to

develop a speech analysis program based on the ToBI model as well as implement the web portal

that will house the Praat Scripts that will help speed up our clients work with analyzing speech.

We will develop a machine learning program to score the proficiency of speakers using the

output of the AuToBI program as an input. The reason to use machine learning is so it can better

calculate a more precise score that is consistent with human scoring. We will also be developing

the web application to house Praat scripts which will help our client so that her and her students

can access it from anywhere, assuming the client allows them to have full access to the site.

In this document, we will cover our exact plan of implementing the AuToBI prosodic

labeler and how we created the website that runs the Praat scripts. We will talk about specific

technologies and software that we will use to accomplish that as well as the architectural designs

of our programs. By the end, there should be a clear understanding on how we accomplished our

tasks and how the programs will run not only now but for future developers as well.

Process Overview

Initially, we had a pretty clear plan as to how we were going to advance. Since our

project is essentially two projects, we needed to work on both parts concurrently. To do this, we
decided to split the team in half: half of us would work on the website and server while the other
half would work on the AuToBI toolchain. With that in mind, we were able to efficiently create
both sides of the project.

Website

Luis and Erik were tasked with designing the website and server. To keep work
consistent, Github was used as version control. Before any work on the site started, different
technologies had to be chosen and agreed on. First, the site needed a database, and the ultimate
choice for the database system was MongoDB. Second, the site needed to be hosted online
somewhere for people to access from anywhere. Initially, the first goal was to have NAU ITS
host the site, but we ran into major problems and roadblocks following that path. After scrapping
the ITS idea, Digital Ocean was chosen as a host.

Once the technologies were figured out, actual development began. Development
followed a schedule that was created to keep us on track and moving. It started with basic web
page implementation and adding basic functionality, like uploading a file onto the site. The main
roadblock encountered here was trying to put the client’s MATLAB code on the server. A good
portion of development was stuck trying to figure this part out, but eventually we just flowed
around the problem and continued with other development tasks. The user login page was

developed and finalized towards the end of our development cycle and we eventually got speech
analysis working completely on the server.

AuToBI

Josh and Matt were tasked with developing the AuToBI toolchain. Github was also used
for collaboration and version control. Again, research was done before any real implementation
began we read about ToBI and AuToBI . Then downloaded AuToBI and began using it to see
how it worked and what kind of format the output file was. Next, we needed a machine learning
API to select features from the AuToBI output and create/train a neural network in order to
calculate the speakers proficiency. A Java API named Weka was what was ultimately chosen.

The core of this program is to use a third-party software named AuToBI, which is an
automatic speech analyzer that uses the tones and break indies model (ToBI). AuToBI produces
raw data about the speech analysis in the form of Attribute-Relation File Format (.arff) files
which will contain a series of attributes and a large set of data records, where each entry in the
record corresponds with a value for a specific attribute. This arff file will be passed into the
Machine Learning API Weka so that it can perform an attribute selection process to determine
which attributes are the most important for a particular analysis. From the most important
attributes the program will find the mean value of those attributes from each file and pass those
numeric values into our neural network. The neural network will process the inputs, and then
make a guess at the proficiency level of the speaker. If incorrect, the weights on the network will
be adjusted and the input will be processed again. We need the network to progressively learn
what values constitute proficient English so that it may correctly estimate a speaker’s proficiency
in the language after training. Overall, the AuToBI program will label the speech file with
different prosodic features, and the machine learning software will analyze those features and
score the speech files accordingly.

Requirements
Before we started doing any work on the projects, we needed to acquire clear

requirements from our client. We needed to know exactly what she wanted before doing
anything. To do this, we had some bi-weekly meetings with her the first semester of capstone.
After these meetings, we were able to understand clearly what she wanted in terms of
functionality and security. Below are the requirements for the two pieces of our project.

Website
The most obvious requirement that we established was that Dr. Kang wants a website that

can perform speech analysis on an audio file completely online, no download required. With that
information, we established that we would need a page where users can upload an audio file
from their computer. We also needed a page where once the user has uploaded the file, they
simply just need to click a button to perform the analysis. The results from the analysis then need
to be displayed back to the user, so we needed to make another page for that. So we needed to
make three pages for all the analysis functionality.

One thing we established rather quickly with Dr. Kang was that she didn’t want just
anyone to be able to use her website. She wanted it limited to her students and other people that
she could approve herself. So we established that we need a user login page, where users need
prior approval by Dr. Kang to be able to create an account. In summary, the website
requirements are as follows:

● Upload audio file to server
● Analysis is run through the server
● Results displayed back to the user
● User login page
● Create account page
● Admin page for Dr. Kang to easily approve new users

AuToBI

The main requirement for our AuToBI toolchain was that it obviously needed to integrate
AuToBI. AuToBI is used to identify features in a speech file, so then our program needed to take
the attributes identified by AuToBI and send them off to the next part of the program. Our client
suggested that we use a machine learning software on the information gathered by AuToBI and
use it for feature selection (identifying the most important features extracted by AuToBI). Once
the features and their scores are all selected, we then needed to pass it on to our neural network,
which would make a final guess on the proficiency of the speaker. This portion of the project did
not require any kind of GUI, so it is all just command line interface.
In summary, the requirements for the AuToBI portion are as follows:

● Use AuToBI for feature extraction on uploaded audio file
● Pass the information into a machine learning program to select important features
● Machine learning also gathers the mean score of each chosen attribute
● Machine learning information passed onto neural net
● No GUI required

Once we acquired all these requirements, we started research on different possible technologies
to use to solve our problems.

Architecture and Implementation

In order to be efficient in our development phase, we needed to have a clear

understanding of how exactly we were going to implement all the different parts of each project.
We developed a clear architecture for both parts of the projects that effectively demonstrate
exactly how all these moving parts would work together to yield the result that we anticipated.

Website
To quickly recap the requirements, the web application needs to allow users to login to

the site, upload an audio file, perform an analysis completely on the server, and display the
results of the analysis back to the user. Dr. Kang also needs to be able to control who exactly can
create an account on her site. With these requirements in mind, we were able to create a clear and
concise architectural outline of the web application portion of the project.

Database
This part of the web application will store users that Dr. Kang has approved to be able to

use the analysis on our system. The plan is that first Dr. Kang will insert access codes that user
accounts can be created with. She will have access to a special admin page (that only she has
access to) where she can create and manage access codes for the users who want to create an
account on the site. A person who is seeking to make an account will input simple profile
information such as a username, password, and the aforementioned access code. If the inputted
access code exists on our database and a unique username was chosen: the user account will be.
Upon account creation, the access code is deleted from our database of acceptable access codes
to avoid one access code allowing multiple accounts. This database gets checked from the server
anytime the server takes in a user login attempt to see if a user is allowed to analyze their audio
file with our web application by having an account in this database. Now a user can log in when
they desire to run an analysis using our site.

Figure A - UML Diagrams for the web toolchain. Database handler functions are ran to allow new users
to be potentially made access codes that Dr. Okim chooses. User Login handler functions are then used

for user to try to make a new account and try to login in with that account.

The following functions are used for our database system. These functions are
conceptual representations of what is exactly happening on the main javascript file of our
application, namely “app.js”, which has the the input handlers and most of the computation
functions of the entire web tool chain:

insertAccessCode(int)
Passes an input number from an admin user (Dr. Kang) from the website into our

database. It will then allow for creation of a new account should the user creating the
account know the code that the admin has put into the database.
dropAccessCode(int)

Deletes an access code from the database if the number that was entered exists in
the database. This happens automatically after someone successfully creates an account
using a valid access code. This is meant to stop one user from sharing the code they have
been given with other non-approved users or to make multiple accounts.
attemptToCreateUser(int, String, String, String, String, String)

Attempts to create a user for our application. When the server finds that a valid
access code has been input, first and last names are not empty, and that a username is not
already in use, the server inserts the new account into the list of created accounts in our
database and tells the user that an account has been created for them. The
dropAccessCode is called here if the function had inputs that lead to successful account
creation. If any of the parameters could not be used to create an account (e.g. duplicated
username, empty first/last name fields, invalid access code), the user is then prompted to
try again from this function.

User Login

The following functions are unique to the login module and while not word for word the
same, conceptually the functions look like the following:

attemptToCreateUser(int, String, String, String, String, String)
This function, though previously mentioned, is also associated with this module

thus it needs to be included in this section as well. This is because when the user login
input correct arguments to create a new account, this will be called if the server found no
problems with his or her attempt and thus was successful.
loginAttempt(String, String)

This function gets called when a user tries to log in with the fields in our login
page. It contains proper sanitization for the fields so as to avoid SQL injections or other
potentially malicious attacks on our system. We use the JavaScript library “body-parser”
to accomplish this. After sanitization, checkValidUser is called with the same input, but
it is now sanitized.
checkValidUser(String, String)

The server here checks to see if a user logged in with valid input. Valid input
would mean that the email and password inputs were found in our database and are
associated with some profile. If found to be valid input, the user is alerted that his or her
login was successful. If found to be invalid input, the user is prompted to try again or ask
Dr. Kang for an access code to create a new account. Upon successful login, the user may
now input audio files to be analyzed by the hosted application.

Server
This part of the program is truly the workhorse of our application. Here the server has

the job of interacting between the user and database, taking in audio files from logged in users,
running the speech analysis, and formatting results in a readable way to the user.

The following functions are unique to the server module and while not word for word the
same, conceptually the functions look like the following:

storeFile(file inputAudioFile)
Here the server takes in an alleged audio file from a logged in user, checks if the

file has a valid .wav file extension, and if so stores this in the DigitalOcean’s local
storage. This storage is fine as the .wav files do not have to be hidden to outsiders should
DigitalOcean ever get an attack that leaks server documents.
runAnalysis(file inputAudioFile)

This is where the server starts the analysis on the given audio file. This calls on
the praat script that exists on the server and all the analysis is performed directly on the
server.
generateResultsPage()

Here is just a simple call to stylizeAnalyzedData(file analysisOutput), but for
purposes of good code modularization, we nest it in here to keep to convention of
“generate” + some page (or file) consistent.
stylizeAnalyzedData(file analysisOutput)

We input analysisOutput to this function so that we can organize and present the
analyzed results in a clear way with JavaScript because of the view library PUG. After
following PUG syntax, we’ll have a web page to show our user the analyzed data in a
concise and organized way.
cleanServerAnalysis()

This function call happens after a user logs in successfully. The server deletes
from its local storage any previously input audio file and output file. This makes room in
local storage for our server for any more input, and allows for a new user user to analyze
the same file again, or analyze a file that happens to be named the same as a previous
entry.

Figure B - A simple diagram showing the flow of a user using the site for different goals.

All the previous information is our product as-built, but these were not all the initial plan.
Perhaps the biggest thing that changed in our development cycle was the decision to not use

MATLAB. The original speech analysis software that Dr. Kang wanted on the website was
written in MATLAB. However, our team could not figure out how to successfully install
MATLAB on the Digital Ocean server. We proposed to drop the MATLAB completely in favor
of the Praat scripts and that decision was made later in the development cycle, but most of the
architecture stayed the same. The only real thing that changed was that we didn’t need a start
script that kicked off a MATLAB instance on the server.

AuToBI Based Analyzer

For the second piece of our project, our team has to develop a speech analysis program
that processes speech samples using AuToBI which then determines the speakers proficiency in
English based on measurements it obtains through the speech analysis. Initially the neural
network knows nothing so it must be trained first in order to calculate the proficiency. After the
network is trained it will run the analysis quickly to guess the proficiency score as shown in
Figure C.

Figure C - A diagram of the basic architecture of the AuToBI Toolchain

Data Analysis
This part of the program will first run analysis using AuToBI inputting an audio file and

then outputting the attribute file. After this then we will then take the output and identify which
features are chosen the most by Weka as being key features of an analysis. A set of arff (or

converted csv) files will be passed through the Weka machine learning suite in which it will
perform a feature selection and return the indices of the key features in the arff file. This is
challenging because we are not professional linguists so we will need to consult with out client to
make sure that the program is selecting the correct features and is working how they intended it
to. In Weka there is a method for automatically selecting attributes that seem important, we will
be iterating over this process multiple times and analysing the data and using this to determine
which features are deemed most important by Weka. Once we select these features we can
choose a certain amount of them to begin training the neural net. After training is completed we
can then pass in test arff files that the analyzer hasn’t processed before and have it make a guess
on the speakers proficiency.

Class: autobiRunner
Function: RunAuToBIAnalysis(FilePath...)
Runs AuToBI using the command line arguments of input audio files, model, type of analysis,
and the output arff file to be analyzed.

Class: wekaRunner
Function: useLowLevel(Instances)
Uses Weka library to perform an attribute selection on a specific data source, aka on a single arff
or csv file. It returns the indices of the attributes selected as a list of integers. This will be called
from the countFrequency() function in order to as it loops through all of its input files. This
function returns a list of indices that correspond to specific attributes in the arff file.

Function: countFrequency(File[])
Takes in a list of arff files and passes each one to the useLowLevel function that selects
important attributes and returns a list of the attributes selected. Once each file is passed through
the useLowLevel function, countFrequency counts how many times each attribute was chosen by
useLowLevel and returns a sorted, descending order, list of the attributes with the highest
frequency. This function will be called during the training session

Function: buildMeanArray(File, int[])
This function will take in an arff or csv file and an array of integers which represent the set of
attributes at certain indexes. From these specified attributes, the mean value of each attribute
from the data generated will be extracted and placed into an array of double values to be
returned. The array of mean values will be passed into the neural network to determine the
proficiency.

Figure D - UML diagram of different classes used in the AuToBI analyzer. AuToBIRunner is
ran first and that output is passed into the wekaRunner which selects the attributes from the arff

file which then passes the respective attributes and their data into the NeuralNet.

Training the Neural Net
This part of the program will serve to train the neural network to recognize what

measurements of features determine the English proficiency of a speaker. The mean values of
several different attributes are passed into the neural network and based on the weights of the
graph, it will make a guess at the English proficiency of the speaker. If the guess is wrong, then
the weights of the network will be adjusted and a new guess will be made until the network
arrives at a correct guess. After several training files with different proficiency levels are passed
in, the network should have adjusted itself to correctly determine what values for each attribute
accurately determine a speaker’s proficiency.

Class: NeuralNet
Function: initialize_net()
Creates a new neural network and randomizes the values of the weights of each node. This will
allow us to start with an unbiased neural network for training. This function will be called when
a neural network object is instantiated.

Function: nonlin(double)

Normalizes a value between 0 and 1. Will be used to normalize the weights on the neural
network after passing values through the net. This function will be called after each pass of data
through the network.

Function: processInput(double[])
Passes the input data through the neural net, and makes a guess at the English proficiency. If the
guess is wrong, the function checks the difference in error and adjusts the weights of the net so
that on the next guess, it can have a better chance at making the correct guess.

Testing the Neural Network
This part of the program will be to test our trained neural network with analysis results

that it has not seen before. If the network guesses correctly on a high enough percentage of the
test data, then we can confidently say that it is prepared for further samples.

Function: testInput(double[])
Passes the input data through the neural net, and makes a guess at the English proficiency. This
function will not make any adjustments to the network.

Testing

Below is our overall testing strategy for the three different types of tests we ran to
validate implementation. The first being unit tests to insure that invalid or malicious input was
not allowed anywhere in our program. The second being integration testing where we ensure that
each piece of the program are interacting together correctly and everything runs smoothly.
Finally we have usability testing which only concerns the website portion of the project because
the AuToBI portion of our project is used through the command line.

Unit Testing
Website

- Sanitize inputs to prevent SQL injections or malicious input
- Make sure all inputs are valid and correct type.
- Display any error messages letting the user know what went wrong and how to fix it.

AuToBI
- Make sure all inputs are valid and correct file types are used.
- Output arff file correctly edited to be handled by Weka.

Integration Testing
Website

- Ensure client and server are communicating.
- Ensure application and database are communicating.

AuToBI
- Neural Network accuracy is satisfactory.
- Output data transfers correctly from AuToBI to Weka.

Usability Testing
For the website portion of our project we sent the website link to our client and asked her

to send it to some of her students so they could test it out. We asked that they answer three
questions regarding the website and give any feedback for the website. The first question was to
rate on a scale of 1-10(10 being most intuitive and 1 being least) how easy was it for them to
understand how to use each of the website pages. The second was to rate on a scale of 1-10(10
most stylish and 1 being least) how good the websites interface looked to them. The last one was
to rate on a scale of 1-10(10 being best/correct flow of operations and 1 being least/wrong) How
would they rate the flow of the website and the linking of pages. Once they tested and we
received their feedback and began to implement some of their suggested fixes. Some of the small
fixes included small typo’s, or upgrading buttons to be more descriptive. The main problem we
found from this testing was that our project could not handle audio files that had spaces in the
filename. This is because it passes the filename to the server which runs a command using that
name so if it has spaces it thinks that after the first space is a new argument to the command. To
fix this we prevented users from entering spaced file names and displayed an error message
saying that the filename could not include spaces.

Project Timeline
Our basic overall project timeline started back in September of 2017, when we were

introduced to our project and the client. Over the next couple of months we had bi-weekly
meetings to establish the project requirements with our client and fully understand their
wants/needs. Once we knew more about the project we began to research the two main pieces the
website and AuToBI. After researching we began to develop a plan in order to create efficient
solutions for our clients problems. We executed this plan by deciding on the best technologies to
handle the needs of our requirements and designing our program architecture. Once these
blueprints were created and we had a good proof of concept we began implementation. We had
several issues come up during this phase that hindered our progress but we found ways to work
around them and offered alternative solutions to the problem. The next step after completing our
minimum viable product demo was to test and get feedback then improve the software
accordingly. Finally, we presented our finished product to our client and they approved of what
we had created. Although they were happy with the result there are still some minor things still
left to do such as transferring server admin privileges but these things will be handled
immediately. Below in Figure E an in depth visualization of our implementation schedule:

Figure E - A Gantt chart showing the workflow on the implementation of each module and their

respective methods. The colors are coordinated by pieces of our project, for example dark green is
deliverables and light green is the website portion.

Work Assignments

Project Details Matt
Quintana

Josh Shaffer Luis Montes Erik Strauss

AuToBI Weka
Analysis

✔ ✔

David Brazil Server ✔

Web Portal ✔ ✔

Team Website ✔ ✔ ✔ ✔

Testing ✔ ✔ ✔ ✔

Quality Assurance ✔ ✔ ✔ ✔

Figure F - A table describing how work was delegated among team members.

Future Work

Working on any project will generate ideas that are outside of the scope of the project.

Due to time constraints, it is not always possible to implement all the ideas that are thought up,
but they can be outlined for anyone that may work on the project in the future. Our team has
thought of some potential implementation tasks that would improve the overall quality of our
project. The AuToBI portion is all command line, so we did not think of a whole lot of
meaningful graphical additions for that side of the project. However, we did come up with quite
a few ideas for the website that could be implemented in the future.

First of all, we did come up with one thing for the AuToBI portion of the project. We
toyed with the idea of putting the AuToBI analysis on the website alongside the Praat script so
that user could have a choice of what kind of analysis to run. Both analyses provide different
results, so depending on what the user wants, they could get a more specialized analysis of their
audio file. Another idea of similar concept was to put more than just one Praat script on the
server. Again, users could pick and choose what script or analysis they want to run so that they
could get different results according to what they want.

Another idea was to reimplement the client’s original program without using MATLAB.
Perhaps the biggest challenge for us was trying to host MATLAB on a server and we never
really quite got there, so we proposed that Praat solution and got rid of the MATLAB entirely.
We think that if we had more time, we could have potentially remade the MATLAB using the
Weka API so it would be much easier to host on a server.

Those were the major ideas we came up with, but we also had a few minor ideas that
would improve the quality of life on the site. One such feature would be a chat system where
users could either chat with each other or with Dr. Kang. We also thought that a comment feature
would be useful, as users could note any observations on an analysis that they ran. Lastly, a
system that allows user to report bugs would also be useful as it would help the website stay
running efficiently.

The AuToBI toolchain can also still be improved upon in terms of effectiveness in
performing guesses. The improvement of the guesses would have to come from an improvement
of the neural network class, and how it runs the adjustment of the map. This portion can be found
in the processInput of the NeuralNetwork class, specifically in the processInput function.
Currently the program takes the array of mean values and multiplies it by one matrix of weighted
values, and then another matrix of weighted values to produce the final output guesses. The 1x10
input array is dot multiplied by a 10x4 weighted array which is then dot multiplied by a 4x4
weighted array to produce a 1x4 array of values, where each entry corresponds to the probability
of a specific proficiency being chosen. With the probabilities available, the program takes the
highest probability one and uses that as the guess for proficiency. On a wrong guess, the
numerical difference between the correct and the wrong guess is back-propagated through the
network weights of the 10x4 and the 4x4 matrix.

With this current process, the neural network does not produce completely accurate
results and will usually give all proficiencies an equal chance of being chosen. As an
improvement, future work can focus on adjusting how error values are back-propagated through
the network. It is possible that just checking the numerical difference between the wrong and the
correct guess is not enough to effectively adjust the weights of the matrices, so other forms of
evaluating error could be researched by future teams.

With these ideas in mind,

Conclusion

Dr. Kang and the Applied Linguistics Speech Lab perform all kinds of linguistics
research here at NAU. A lot of this research includes performing manual speech analysis on
recordings. This is very time consuming and tedious, so they tried to develop their own program
to perform these analyses for them. The problem with this is that they don’t know if the results
they get back from their program will be valid or accepted by the community as it is not the
standard method of speech analysis.

We built two things to help alleviate their problems. First was a website that Dr. Kang
and her students can visit to quickly have an analysis performed on a file that they upload.
Second is a speech analysis toolchain that uses the standard method of speech analysis so that

Dr. Kang can compare the results of their model with the standard and see if they are valid or
not. The website includes:

● User Login
● Ability for Dr. Kang to control who can make an account
● Ability to upload an audio file into the server
● File analysis that is performed completely on the server
● Intuitive user interface

The AuToBI toolchain includes:
● Command line interface
● Overall proficiency score of audio file

We believe that our project will greatly help Dr. Kang and her students in their research.

The website will allow them to analyze speech much faster than if they had to do it all by hand,
and the AuToBI toolchain will help them improve the program they have been working on.
Hopefully, as their research continues, the field of linguistics will develop a better understanding
of human speech and communication, which in turn will improve things like automatic speech
recognition.

The project has been an experience to work on and all our members have gained some
valuable experience from working on it as well. We feel that this Capstone class has helped us
better understand the development process of a project in industry. We are all coming out of this
as better developers.

Glossary
1. Discourse Intonation- an approach to the teaching and analysis of everyday speech. It

consists of four components: a theory, a set of categories & realisations, a notation, and
transcription practice.

2. ToBI: Tones and Break indices is just a method used for identifying features in speech.
3. AuToBI: A free software that runs a ToBI analysis on an audio file.
4. Weka: Java API machine learning framework.
5. MongoDB: Database system that we used

Appendix A:
Development Environment and ToolChain

Website Setup
Hardware:

The website was mainly developed in a Mac environment. A typical Macbook was used,
so the system specs are not too high end but specifically has an i7 Intel processor, 8 GB DDR3
memory, and is running OSX 10.13.3 (“High Sierra”). Though we developed the site using a
Mac, there is no reason it would not work in either a linux or windows environment as well.
Especially since the final product is a website that presents text content, there are very
non-intensive requirements for hardware.
Toolchain:

Several tools were used in the implementation of the web application on the website
“www.lingoInspect.com:3000” and they can be classified as services, editor, runtime
environment, and programs.

The main service used in the project was DigitalOcean and their purchasable virtual
machines. We bought (and later transferred billing responsibility to Dr. Okim) a virtual machine
that was GUI-less and only command line usable, 100% in the cloud, and ran the lightweight
operating system image of Ubuntu 16.04. The virtual machine allowed for us to place our
Node.js application and any other command line programs that our web toolchain part of the
project needed to interact with. The second service was a domain name registry, which we used
www.enom.com and bought the domain “LingoInspect” for a year at $13.95. We bought and
applied a domain name at Dr. Okim’s agreement so users would not have to enter in a lengthy
and hard to remember IP address to navigate to our website where our web application lived.
Applying the domain name meant changing DNS settings on both DigitalOcean’s virtual
machine information and Enom registered domain information.

For editing code throughout the development of the web application, we used the text
editor known as Vim. Vim is a very moddable text editor and accessible from the command line
in most UNIX systems. Our particular instance of Vim on the Mac machine used to build the
project had many plugins that improved speed and efficiency of writing the application like
“NERDTree” to see the file directory inside of Vim, “JSLint” to produce quality JavaScript
which used yellow to highlight the code’s bug suspicious sections and red to highlight the code’s
runtime error creating sections, and the plugin bundler “Pathogen” to easily add or remove other

http://www.lingoinspect.com:3000/
http://www.enom.com/

plugins from the Mac machine’s instance of Vim. Being that Vim is accessible from the
command line, it was our goal to get knowledgeable and comfortable with Vim because the
virtual machine (or “VM” for short) we chose to host the final product on is a GUI-less
command-line-only image of Ubuntu 16.04 so small changes there could not be made in a more
intuitive GUI text editor like Sublime or Atom. Vim on that VM, though plugin-less, was
available and small changes were easy to make even there rather than having to SCP edited files
back and forth from the Mac machine to the cloud.

The workhorse of the application in our VM is the Node.js runtime environment. As of
2009, JavaScript (or “JS” for short) was available to be used server side provided it stayed in the
Node.js runtime environment. Hosted servers accomplish server-side JS login, like our own
project, by installing Node.js on the server (following this tutorial provided by DigitalOcean:
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-16-04)
using “sudo apt-get install nodejs” and running the particular JS application (in our case
“app.js”) using shell scripts on that server to keep the JS application running. We did exactly
that and made it even easier for ourselves using the Node.js library “pm2” which wrote the
necessary check status, stop, and start shell scripts for us. We added Node.js libraries using the
official Node.js package manager aptly called “npm” which is short for “Node package
manager”. Adding Node.js libraries to the project was as easy referencing them in app.js as a
“var <someRefrenceName> = require(‘<someNPMLibrary>’)” and in the application directory
(~/capstonePraatInterface/) running “npm install <someNPMLibrary>”. Maybe there is a non
npm involving way to install Node.js libraries, but we found npm usage extremely easy.

Programs that needed to be included on our VM were MongoDB a JavaScript based
database for data storage like analysis history and account information, and GUI-less Praat: the
actual application that interprets a “.praat” script file with a sound file. Instructions for installing
and running both could be found at:

1. https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-u
buntu-16-04 for MongoDB

2. http://www.fon.hum.uva.nl/praat/download_linux.html for GUI-less Praat.

Setup:

Setting up and running the service locally is discouraged due to the many steps a person
must go through to accomplish this goal and can simply use www.lingoInspect.com after a
request to Dr. Okim Kang. That said, to the curious or those seeking to implement new features
and catch new runtime bugs, here is how to set up the web application locally.

1. Install Node.js on your machine for whichever operating system you use following this
link’s steps: https://nodejs.org/en/download/

2. Open a terminal and run the commands:
sudo git clone https://github.com/louiemontes/capstonePraatInterface.git

https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-16-04
http://www.fon.hum.uva.nl/praat/download_linux.html
http://www.lingoinspect.com/
https://nodejs.org/en/download/
https://github.com/louiemontes/capstonePraatInterface.git

cd capstonePraatInterface
npm install

3. Install MongoDB using whatever your system specifications are here
https://docs.mongodb.com/manual/installation/

4. Start MongoDB using whatever command line start command that MongoDB website
says to use per your system (on the Mac it is “sudo mongod” and on the VM its “sudo
service mongod start”).

5. Enter the Database typing in:
mongo

6. You are now in the MongoDB shell and can make the application database by entering
in:

use dbm
7. Now create the tables by running the commands:

db.createCollection(“users”)
db.createCollection(“accessCodes”)
db.createCollection(“fileHistory”)

8. Open a new tab in your terminal.
9. In this tab navigate to the folder that cloned over from Github in step 2.
10. Now install Praat in this folder by following instructions in

http://www.fon.hum.uva.nl/praat/ and navigate to anyone of the “Download Praat”
headed links in the top left corner. Use GUI-Less Praat if possible so that the interface
will not open every time you analyze a file when using your local copy of our web
application.

11. Once Praat is successfully installed, find out your operating system’s command line
command to run it. On our VM (GUI-less Ubuntu 16.04) it is “Praat --run” but on Mac
(OSX 10.13.13) it is “Praat.app/Contents/MacOS/Praat --run”. Once found, open app.js
in any text editor you would like and change the “praatStartCommand” variable
(specifically “let praatStartCommand = ‘<PraatRunCommand>’”) to equal whichever
your system specific command is.

12. Run in the cloned folder:
npm start

13. Open a web browser to “localhost:3000”
14. Enjoy a personal copy of our service*.

*Disclaimer: We make no hints at maintenance past the Spring 2018 term but would happily
accept feature requests or bug reporting from anyone to be displayed on the repo. Feel free the
fork the repository or clone it without needing to request permission.

https://docs.mongodb.com/manual/installation/
http://www.fon.hum.uva.nl/praat/

Production Cycle:

The application is being hosted on a virtual machine through Digital Ocean. Dr. Kang has
a Digital Ocean account, from which the virtual machine can be SSH’d to. To make any edits to
the application, you will need to have her give you access to her account and set up proper SSH
keys between your local machine and the server which can only be done through her
DigitalOcean interface and a little personal command line maneuvering, tutorials for this can be
found at:

1. https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-putty-on-di
gitalocean-droplets-windows-users for Windows.

2. https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocea
n-droplets for Mac.

Once you have SSH’d to the server, here are the steps to halt the server to change some features:
● You can check the status of the application by typing “pm2 status www”.
● You can also use :pm2 stop www” to halt the application.
● Now you can edit the files as you need

○ Edit front end pages by changing the files in “/capstonePraatInterface/views/”
○ Edit logic of the application in “/capstonePraatInterface/app.js”

● Once you are finished with edits, type “pm2 start www” to restart the application.

The application should be up and running again and ready to resume normal use.

AuToBI Setup
Hardware:

We developed on two separate operating systems linux and windows and believe it
should all work on any computer as long as they can run Java programs. Both machines used are
basic laptops with average processors and RAM so any modern laptop should be capable of
doing everything we did as long as they follow the setup instructions below.
Toolchain:

On the linux machine everything was done on command line with java, ant, and jars.
Whereas on the windows machine we used the Eclipse IDE for all development. The program
has a dependency on the Weka Machine Learning suite in Java and the AuToBI program
developed by Andrew Rosenberg.
Setup:

The setup varies depending on what platform you chose above but the below steps are
general guidelines on the process.

https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-putty-on-digitalocean-droplets-windows-users
https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-putty-on-digitalocean-droplets-windows-users
https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets
https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets

Install the AuToBI Runner:
Step 1: Install Apache Ant by using the following guide:
http://ant.apache.org/manual/install.html
Alternatively you could use an IDE with ant projects built in but we used command line ant.
Step 2: Make sure that you have java installed and can be run on command line.
Step 3: Download our programs files from our github at:
https://github.com/jls865/CapstoneAuToBI/tree/master/CapstoneA
Step 4: Make sure you cd into the correct directory where you placed our program files.

Install the WekaRunner & Neural Network Same Requirements as Above:
Step 1: Download our program files from the github at:
https://github.com/MattQuintana/Capstone-Labeler-Demo
Step 2: Make sure you cd into the correct directory where you placed our program files.
Step 3: Ensure that the Weka dependencies are included in the root folder of the project, or just
installed on your machine.

Production Cycle:

As previously stated we mainly used command line with a little bit of IDE for our
development but the below cycle focuses on command line.

Running AuToBI
Once you have everything setup and are in the correct directory enter the following commands
int the terminal:
Step 1: The first command is just: ant after typing ant hit the enter key
Step 2: You will be prompted to enter in four valid inputs they are as follows(Be sure to hit the
enter key for every command).
Step 3: The first input is the input audio file which you want to analyze must be of type .wav.
Step 4: The second input is the output .arff file where you want the results to be stored.
Step 5: The third input is the model that you want to use but as of now there is only one available
model so just put a 0.
Step 6: The fourth input is the type of analysis you would like to run the following inputs are
valid and their value is explained to the right:

● 0 = This command is the boundary tone classifier
● 1 = This command is the intermediate phrase boundary detector
● 2 = This command is the intonational phrase boundary detector
● 3 = This command is the phrase accent classifier
● 4 = This command is the pitch accent detector

http://ant.apache.org/manual/install.html
https://github.com/jls865/CapstoneAuToBI/tree/master/CapstoneA
https://github.com/MattQuintana/Capstone-Labeler-Demo

● 5 = This command is the pitch accent classifier

An example of exactly what you would type is below:
ant
test.wav
out.arff
0
3

This command will run AuToBI analysis on the test.wav file and it will place the results into the
output file out.arff. The analysis will be ran using the BURNC model (0) and the type of analysis
would be phrase accent classifier (3). The output file will be placed into the lib folder of the
project after analysis is complete.

Fixing AuToBI data mismatch issues
In order to fix the data mismatch issues that AuToBI generates, an external python script must be
used. The script to do replacements is located in the utils folder of the project and it is called
replacer.py.

It requires four arguments when called, the filename of the file with the issue, the name of the
attribute that has the error, the text that needs to be replaced, and text that needs to replace it.

From the command line, the command would be:
python text_replacer.py “filename” “attribute name” “text to replace” “text to replace
with”

The program searches for the specific attribute that it needs to fix in the file, and then replaces
the text in the line with the replacement text.

Weka and Neural Network
In order to run Weka and the Neural Network you will need to do the following steps:
Step 1: Make sure that you have an arff output file from AuToBI to input into the program.
Step 2: Navigate to the bin directory of the project folder.
Step 3: To call the general tester of the arff file, call the following command from the command
line.
java capstone_demo.neuralNetAnalysis [location of arff file to pass]

The program should output a guess about the proficiency score of the file input.

