Low-Cost Mobile Hydrology Reporting

Mentors: Dr. Eck Doerry, Dr. Benjamin Ruddell

Client: Dr. Benjamin Ruddell NAU Complex Systems Informatics Laboratory(CSIL)

Team: Luis Arroyo, Logan Brewer, Ryan Ladwig, Kelli Ruddy

Why Hydrological Data Collection is Important

- Flood Prevention
 - Better warnings
 - Flood preparation
- Water Management
 - Measure river flow, runoff levels
 - Infrastructure design
- Public Education Knowledge
 - Influence how community votes for public officials based on how important they think water management is
 - When to evacuate

What's Wrong With The Current System?

- USGS United States Geological Survey
- The USGS installs stream gauge sensors that monitor water level
- Works with the National Weather Service to provide emergency flood data

A Vision: Crowdsourced Hydrology

What is crowdsourcing?

- Collect information from general public
- Examples : Waze, Google Crowdsource, Starbucks Cups

What does this mean for hydrology?

- 1000's of users adding data
- How would users upload and be motivated to collect data?

First Attempt: Citizens Science

- Dr. Benjamin Ruddell
 - Associate Professor at NAU
 - Complex Systems
 Informatics Laboratory
- Dr. Robert Pastel
 - Associate Professor at
 - Michigan Tech

- Overall Plan
 - Build a station
 - Passersby take a picture of the gauge
 - Upload the picture to the website
- Drawbacks
 - Only works on the website
 - Only as accurate as the algorithm
 - No instant feedback
 - Slow process

Key Requirements

- Mobile
- Offline Functionality
 - Access graphs
- Geolocation
 - Pull users location
- Image Processing
 - Calculate water depth on phone

- Database Management
 - Store collected data
- User Accounts
 - Option to create account
- Gamification
 - Notifications and data visualization

Requirements:	Count
Functional	59
Performance	12
Environmental	6

Our Solution: Overview

- Our Plan
 - Build a station
 - Passersby take pictures of the station
 - Submit the data through our application
- Key features
 - \circ Works on mobile
 - More accurate data
 - Instant display of graph on collection
 - Faster process

Scenario

Setting Up The App

First Use

Recording Data

Finding the Water Height on Your Image

Seeing Your Data

Architecture Overview

Platform **Android**, iOS

Application Framework **Meteor JS**, PhoneGap, Android Studio

Notifications **Twilio**, Firebase

Data Visualization **Chart.js**, D3.js

Database **MongoDB**, MySQL, Apache Cassandra

Computer Vision **OpenCV**, Tracking JS, JS Feat

Implementation: How It Works

Key Modules:

- Image Processor
- Notification Manager
- Data Visualizer
- User Accounts
- Database

Challenges and Resolutions

Past Challenges:

Challenge	Solution
Meteor documentation being outdated	Read online forums and consulted experienced Meteor developers
OpenCV Package running in Meteor JS	Modify the build settings
Send offline and online notifications	Send SMS text messages

Current Challenge:

Challenge	Solution		
Automatic Upload to CUAHSI	Communicating with CUAHSI		

Schedule

September	October	November	December	January	February	March	April
Planning	Parts	s Feasibility	Demo				
		Requ	uirement		Geolocation HydroServer	Data Visualization	a l
					Notifications	Use	J O <mark>ffline Capabilit</mark> es r <mark>Manage</mark> ment
					Computer Visio	n	NWS Set up Server
					App Compilatio		User Testing
						RoughPro	Symp <mark>b</mark> aiu
					Code Refactor Code R Website Wet	gfactor Code R	factor Cd <mark>de Refact</mark> or lite W <mark>ebs</mark> te

Future Work

Improvements:

- OpenCV algorithm
- Not sending text messages as a notification
- New types of notifications

New Features:

- Providing the user history of the area where the gauge is located
- Social media integration
- Create a leaderboard
 - Encourage friendly competition
 - Promote sense of community
- Reward points when user submits data
 - Additional points if the user submits data during the rain

Conclusion

Major Improvements

- 1. Accuracy
- 2. Cost

Value To Client

- 1. 1000's of Cities Involved
- 2. Better National Models
- 3. Citizen Education

NAU Undergraduate Symposium

For more information:

Come See Us At Our Poster Session:

Location: J Lawrence Walkup Skydome

Time: 2-4pm

Section: 17D

Visit our website:

https://www.cefns.nau.edu/capstone/projects/CS/2018/HydroCitizens/