# **Hydro Citizens**

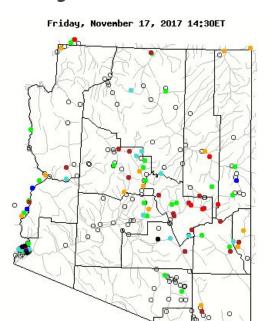
#### Citizens Science Mobile App for Hydrology Reporting

Mentors: Dr. Eck Doerry,

Dr. Benjamin Ruddell

Client: Dr. Benjamin Ruddell

Luis Arroyo, Logan Brewer, Ryan Ladwig, Kelli Ruddy




# Why Hydrological Data Collection is Important

- Flood Prevention
  - Better warnings
  - Flood preparation
- Water Management
  - Measure river flow, runoff levels
  - Infrastructure design
- Public Education Knowledge
  - Influence how community votes for public officials based on how important they think water management is
  - When to evacuate



# What's Wrong With The Current System?



- USGS United States Geological Survey
- The USGS installs stream gauge sensors that monitor water level
- Works with the National Weather Service to provide emergency flood data



#### Solution Vision - Crowdsourced Hydrology

- Dr. Benjamin Ruddell
  - Associate Professor at NAU
  - Complex Systems
     Informatics Laboratory
- Dr. Robert Pastel
  - Associate Professor at Michigan Tech





- Overall Plan
  - Build a station
  - Take a picture with their phones
  - Upload the picture to the website
- Drawbacks
  - Only works on the website
  - Requires an internet connection
  - No instant feedback
  - Slow process



#### **Key Requirements**

- Mobile
- Offline Functionality
  - Access graphs
- Geolocation
  - Pull users location
- Image Processing
  - Calculate water height on phone

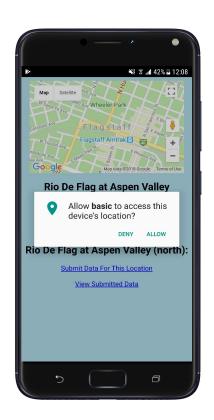
- Database Management
  - Store collected data
- User Accounts
  - Option to create account
- Gamification
  - Notifications and data visualization

#### **Our Solution: Overview**



- Our Plan
  - Build a station
  - Take image through our application
  - Upload data through our application
- Key features
  - Works on mobile
  - No internet connection required
  - Instant display of data on collection
  - o Faster, more accu




## Login Page



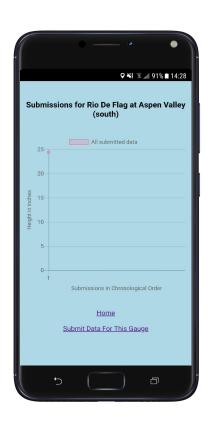


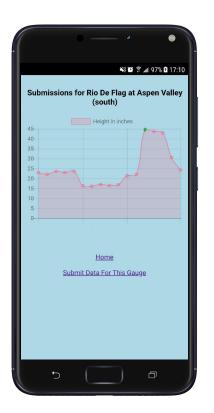


#### Home Page

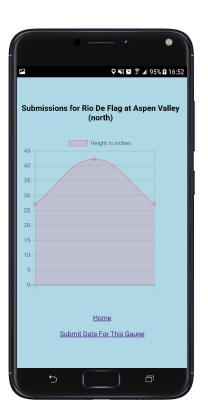


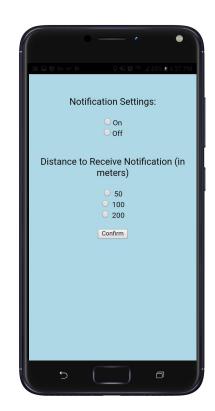



## **Submission Page**







## **View Data Page**






## **Notification Page**





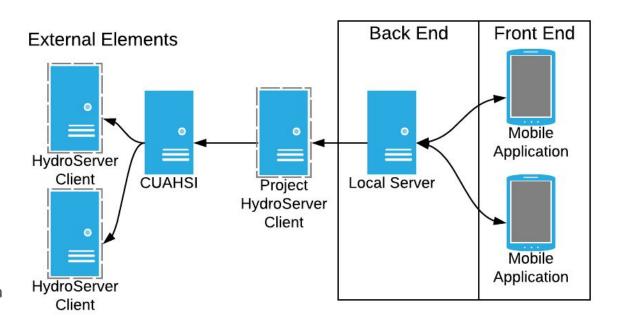




#### **Architecture Overview**

Platform **Android**, iOS

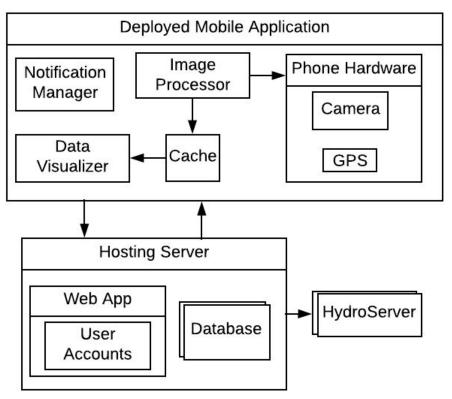
Application Framework **Meteor**, PhoneGap, Android Studio


Gamification (Notifications) Firebase, **Twilio** 

Gamification (Visualization) **Charts.js**, D3.js

Database

MongoDB, MySQL, Apache Cassandra

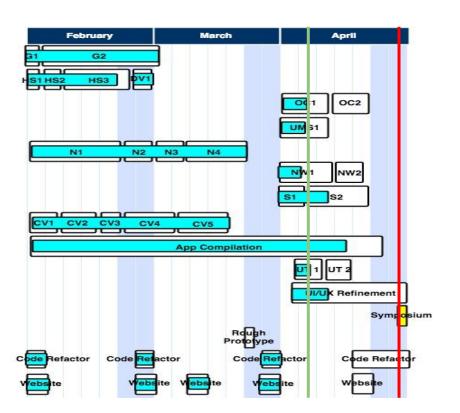

Computer Vision
OpenCV, Tracking JS, JS Feat



#### **Implementation**

#### Key Design Features:

- Image Processing
- Notifications
- Data Visualization
- Data Distribution
- User Accounts






- OpenCV
  - Modify the build settings
- Send offline and online notifications
  - Send SMS text messages.
- Auto upload to the HydroServer
  - Contact CUASHI



- Geolocation (G)
- User Management System (UMS)
- Data Visualization (DV)
- Notification (N)
- Computer Vision (CV)
- HydroServer (HS)
- National Water Model (NWM)



#### Testing Plan

- Unit Test
  - User login form
  - User data submission
  - Accuracy of the Image Processing
- Integration Test
  - Database Functionality
  - Image Processing
  - Performance Testing
- Usability Test
  - o Phase 1
    - Client, grad students, high-level CS students
  - o Phase 2
    - Non-tech savvy individuals
    - Given lab manual

#### Conclusion

#### **Key Functionalities**

- 1. Mobile application
- 2. Offline functionalities
- 3. Data Visualization



