Hydro Citizens

Citizens Science Mobile App for Hydrology Reporting

Mentors: Dr. Doerry, Dr. Ruddell Client: Dr. Ruddell

Luis Arroyo, Logan Brewer, Ryan Ladwig, Kelli Ruddy

Why Hydrological Data Collection is Important

- Flood Prevention
 - Better warnings
 - Flood preparation
- Water Management
 - Measure river flow, runoff levels
 - Infrastructure design
- Public Education/Knowledge
 - Influence how community votes for public officials based on how important they think water management is
 - When to evacuate

What's Wrong With The Current System?

- USGS United States Geological Survey
- The USGS installs stream gage sensors that monitor water level
- Works with the National Weather Service to provide emergency flood data

Our Client

- PhD, Civil Engineering, University of Illinois at Urbana-Champaign
- MS, Civil Engineering, University of Illinois at Urbana-Champaign
- BS, Engineering, Calvin College
- President of Ruddell Environmental consulting, the Director of the National Water-Economy Project (NWEP) and the Director of the FEWSion project

Citizens Science Mobile Application

- Citizens are able to set up these stations to collect hydrological data across the country
- Very simple data collection
 - Build a station
 - Take a picture on their phones
 - Upload picture to the website once they're home
- Drawbacks
 - Only works on the website
 - There is no instant feedback
 - There are no notifications

Our Solution Overview

- We are creating a mobile app that creates a fast way for users to collect hydrological data from stations that are set up in small or ephemeral waterways
- Big features
 - Instant feedback
 - User adjustable water line
 - Push notifications for several different conditions

Key Requirements

- Offline Functionality
 - Collection from water gauges when the user does not have internet access
- Geolocation
 - Identification of water gauges through device location
 - Notifications based on location
- Image Processing
 - Display a line where the algorithm thinks that the water level is
 - User will be able to adjust the algorithm's prediction before submitting the data.
- Maintainability
 - A small team will be maintaining and updating our finished product, so we need to build the application such that maintenance will be low.

Key Requirements (Continued...)

• Database

- Store water height and pictures of the sites in an online database
- User Accounts
 - The user will not need to register in order to use the application
 - Change preferences within the application
- Gamification
 - Send notifications to the user to collect data from high-value locations
 - Data visualizations
 - Plot user-collected data alongside data from the National Weather Service and the National Water Model

Risks and Feasibility

- Connecting to the HydroServer
 - Set up our own HydroServer
- National Water Information System (NWIS) data format changing
 - \circ It will support the old data format
- Change the APIs and application services
 - Well-documented and well-structured code
 - Make it easy for future developers
- Geolocation Accuracy
 - QR Code

Risk Type	Risk Level
Connecting to the HydroServer	High
National Water Information Systems	Medium
Application Services	Low
Geolocation Accuracy	Low

Schedule

Conclusion

Key Functionalities

- 1. Mobile application
- 2. Collect more data points
- 3. Save money

