

Technical Feasibility
October 27, 2017

Jet Propulsion Laboratory Image Analysis
Client: Iona Brockie NASA/JPL-Caltech

Team Hindsight
Charles Beck, Alexanderia Nelson, Adam Paquette, Hunter Rainen

Mentor: Austin Sanders
Capstone Director: Dr. Doerry

1

Table of Contents

1. Introduction 3

2. Technological Challenges 4

3. Technology Analysis 5
3.1 Problem 1: Classify Dust Free Areas 5
3.2 Problem 2: Gathering Measurements of Surface Area Cleared 8
3.3 Problem 3: Choosing Platforms and Framework 10
3.4 Problem 4: Interface for User Interaction 13

4. Technology Integration 16

5. Conclusion 17
5.1 In Summary 17
5.2 Future Work 18

2

1. Introduction
We are Team Hindsight and we are working on ‘Image Analysis of Abraded Rocks to

Determine Dust-Free Area’. Our project sponsor is the Jet Propulsion Laboratory (JPL) at the
California Institute of Technology with our main point of contact/client Iona Brockie, a
Mechatronics Engineer at JPL. One of JPL’s current projects is the Mars 2020 (M2020) rover,
an upcoming mission to Mars that will explore various regions of the Martian surface to search
for evidence of past life on Mars. The Mars 2020 rover will use a suite of tools including an
onboard drill with a set of drill bits to take measurements of the soil/rock and potentially collect
samples from the Martian surface. To identify what samples to take, the rover is also equipped
with a Planetary Instrument for X-ray Lithochemistry (PIXL) camera. The PIXL camera looks at a
particular region and analyzes it for chemical compounds and elemental makeup. Analyzing
these two aspects of a rock give some indication of life, or other interesting features of the
martian landscape such as potential signs of water. The significance of finding past life on mars
would provide more insight to the development of humans and all species on earth. If we are
able to find evidence of martian life, it would create many opportunities for space exploration.

Currently, the team at JPL are running a series of tests on the tools they will use on
Mars. For some of these tests, the team at JPL mimics the Martian atmosphere in a vacuum
chamber. However, this is a time-consuming process because they have to depressurize the
chamber to examine the results and then pressurize the chamber again to run more tests. They
also have to review and analyze each test manually, which can be subject to both human error
and human bias for what looks more “correct”. Ideally, the team at JPL want to analyze their
tests while under pressure in the vacuum chamber using only the cameras.

 The goal of this document is to present an outline of the challenges we plan to tackle
and solve. The first section is the Technological Challenges section, where we will analyze each
major technological challenge we expect to encounter and the solutions we plan to implement.
In the Technology Analysis section, we will go through each issue previously described in the
technology challenges, look at possible alternatives to addressing this issue, and explain why
we chose to go with that solution. The following section, Technology Integration, will bring
together all the solutions described in the Technology Analysis section into a coherent overall
solution. Finally, we will conclude this document to reiterate why we chose to go with our
proposed solution.

3

2. Technological Challenges

After planning our solution for the image analysis, there are a few challenges we expect
to encounter. The most problematic issues we envision running into are the following:

1. Classify dust and dust-free areas of the image
The main challenge for solving the problem is classifying parts of the abrasion
image that have dust or no dust visible in the image.

2. Get measurements of surface area cleared in abrasion using the Gas Dust Removal

Tool.
The second issue is getting the measurements of the surface area that has been
cleared of dust in the abrasion using the Gas Dust Removal Tool. The results
would be used to help analyze how effective the tool was at removing the dust
from the abrasion made in the rock.

3. Our client prefers a platform friendly to non-programmers that the team at JPL will be

able to understand and tweak.
We need to decide on what language to use for our software that will be easy to
learn for the JPL team. MATLAB is the preferred language because a majority of
the people working at JPL are engineers, however, we need to decide if there is
a better language that can solve the other challenges more easily.

4. Create an interface for our client to tweak the image analysis algorithm(s)

We need to build an interface that will allow the end users in our client’s
business to modify the algorithms used for our image analysis. The interface
needs to be straightforward enough for the users to understand how to interact
with the interface.

4

3. Technology Analysis
This section will examine each problem we plan on solving with this project. For each

problem, there will be an introduction to the issue, followed by the possible approaches to the
problem, continued with the chosen approach for the problem, and ending with proving
feasibility. Each approach will have pros and cons for why it will/won’t work for solving the
problem.

3.1 Problem 1: Classify Dust Free Areas
The main problem our team needs to address is identifying the total surface area (of the

bottom of the abrasion) covered in dust. There are a multitude of approaches to this, most
aimed at distinguishing between the texture of dust and non-dust surfaces.

3.1.1 Possible approaches

● Image Subtraction
This method utilizes the before and after images of drilling and dust removal. Using

these two images (before/after) we will create a mask of the pixels that changed (eg. dust being
blown away).

The decision for using image subtraction will also be determined by the process for
gathering statistics on the effectiveness of the dust removal tool. If we need the before and after
pictures for that analysis, we should also be willing to use the mask that is created from the
subtraction. However, if we do not need both images and the data provided by the subtraction is
not significant, then it won’t be necessary.

Approach Pros Cons

Image
Subtraction

- Provides a way to find
differences between images.

- Supported by most computer
vision libraries.

- Use a simple mask = img1 -
img2 subtracting the arrays
resulting in a mask.

- Subtracting the two images
is fast.

- Results can be inconsistent due
to shadows and lighting.

- Requires both the before and
after image to create mask. This
results in an input size of 2n for
any set of images.

- Having to read in two images at a
time is costly.

Table 1. Pros and Cons of Image Subtraction

5

● Fractal and Stochastic models
These two focus on modeling two different properties of images. Fractals focus on

properties of shapes like fractals or other common patterns (geometric) found in nature.
Stochastic focuses on modeling regions of textures (with elements of randomness), such as
probabilities for how gray level intensities are distributed in regions of an image. Stochastic
models are particularly relevant to our project as dust is a stochastic texture with not many clear
geometric shapes.

Approach Pros Cons

Fractal Model - Geometric shapes with clear
contrast

- Textures with hard edges

- Random textures with poor
contrast

- Unclear edges (gradients)
- No clear pattern

Stochastic
Model

- Doesn’t rely on a clear
repeating pattern

- Can work within a range of
values (eg intensity range)

- Textures with clear
distinction between intensity
histograms

- Geometric shapes with clear
contrast

- Textures with similar intensities/
histograms

Table 2. Pros and Cons of Fractal and Stochastic Models

● Wavelet analysis and Segmentation
These two types of analysis focus on texture properties of images. Wavelet analysis like

Gabor and Wavelet are both used for texture detection. Gabor typically is used for feature
extraction and Wavelets are generally used for analyzing

Approach Pros Cons

Gabor
Transform

- Helps figure out if direction
is a major component in
the texture (eg wood
grain)

- Textures where direction is
random and inconsistent (eg
dust)

Wavelet

- Frequency and location
(intensity values) are major
component of texture

- If location and frequency are not
a major component of the texture
(eg pattern at random locations
and frequencies)

6

Wavelet cont. - Sudden Transitions (eg
Haar)

- Complexity is O(n)

- Only theoretical use for
identifying dust (this method is
typically used for removing noise
in an image)

Segmentation - Learn what features make
up an image (eg. AR
Model)

- If color is major component
of picture

- Time consuming to train (eg
neural network)

- Trial and error for some
algorithms to get them to work
(this can be solved with basic
machine learning however)

Table 3. Pros and Cons of Wavelet Analysis and Segmentation

How well each approach provides a given capability: 1 - 5 (5 = best)

Capabilities Subtraction Fractal
Modeling

Stochastic
Modeling

Wavelets Segmentation

Fast 5 2 3 3.5 3.5

Find shapes 3 5 1 2 2

Find textures 1 1 5 4 3.5

Divide image
into regions

2 1 4 3.5 5

Table 4. Comparison of Identifying Dust Free Area Approaches

3.1.2 Chosen Approach

To find and classify dust we plan to use Image Subtraction and Stochastic Modeling
of dust (Histogram analysis), in conjunction with Color/Texture Segmentation on the abrasion
images both before and after the blast of air. Through experimentation, and research we have
found these methods provide a good base to start with. While further research and
experimentation is needed for the processes, what we have found so far is promising.

3.1.3 Proving Feasibility

1. Create demo
Develop working demo that uses image subtraction and stochastic modeling to
find dust in before and after images.

2. Test images
Input pictures to program in either single images or a batch of images.

7

3. Compare results
View images output by the program and compare them to original versions to
pinpoint correctness or what the program is identifying as dust.

4. Refactor demo
Make changes to the sensitivity of the program and the threshold for pixels it is
attempting to define as dust.

5. Repeat
Re-do the steps of development to get a refined version of program.

These three specific methods will each assist in the process for finding dust free areas,

each providing some piece of data that will contribute to a larger whole. Image subtraction
should allow us to reduce our search space, and provide us a clear indication of exact areas
where our other algorithms should look for dust. Stochastic Modeling and color/texture
segmentation should then define specific areas of dust and areas where dust is not present.
Providing a reasonably accurate map of dust/dust-free regions will give our team a solid
foundation to build other data analysis tools, and additional tools to improve dust detection.

3.2 Problem 2: Gathering Measurements of Surface Area Cleared
Generating accurate measurements for the effectiveness of the dust removal tool is a

separate challenge that requires accurate dust detection as a prerequisite. We need to analyze
how well the dust removal system removes dust from the abrasion. To get an accurate estimate
of dust removed, our team needs to find how much of the area (bottom of drilled hole) is dust
free and allow the user to adjust the algorithm to get a more accurate analysis if necessary.

3.2.1 Possible approaches

● Regional Segmentation
This approach focuses on the differences in dust pixel counts when comparing before

and after images of an abrasion. This involves developing an initial idea of what dust looks like,
establishing some threshold for said dust, then comparing the before after images histograms to
determine dust free percentage.

● Edge detection

This approach relies on our algorithm's ability to determine the dust free area of an
image, and find the abrasion within the image. We will use edge detection in combination with
mask from the image subtraction. Edge detection uses a light filter on the image to produce thin
lines leaving out pixels that are not considered a part of the edge. We can then use the edges to
mark the abrasion on the picture.

8

● Blob Detection
 This approach identifies groups of connected pixels in the image that share some

common property. Blob detection takes a threshold of a binarized image and groups connected
pixels that meet that threshold. These initial blobs are connected by any pixels within proximity
that share the same trait (similar threshold). Using the coordinates of the blobs (making them as
we group pixels) and can find the center and radius of the blobs. We then use this information to
mark areas that are dust free and apply the marked spots as a mask over the image.

Approach Pros Cons

Regional Segmentation - More direct approach (If
we already can identify
dust) we just count how
many dust pixels are no
longer in picture

- Distinguishes dust free
areas of the whole
image as either dust or
dust free

- Does not provide an
exact measurement
for the percentage
of surface area of
abrasion that is
covered by dust

- Less efficient as the
image sample sizes
for histogram
comparisons
become smaller (10
x 10 subsets vs 25 x
25 subsets for the
whole image)

Edge Detection - Uses non-maximum
suppression to eliminate
pixels not considered an
edge.

- Defines edge pixels
using hysteresis(edge
pixels > upper bound)

- Applies a gaussian
filter, blurring image.

Blob Detection - Uses grouping to gather
pixels that are in a
region.

- Returns center and
radius of blobs.

- Binarizes image,
hard to see if dust is
distinct or not.

- Gets entire picture
not just what is in
abrasion

Table 5. Pros and Cons of Regional Segmentation and Abrasion Identification

9

How well each approach provides a given capability: 1 - 5 (5 = best)

Capabilities Regional
Segmentation

Edge Detection Blob Detection

Find Abrasion 1 3 1

Define Dust Free
Regions (whole
image)

4 1 3

Define Dust Free
Regions (abrasion)

3 2 2

Efficiency 2 2 2

Table 6. Comparison of Identifying Abrasion Approaches

3.2.2 Chosen Approach

Initially, we will use the histograms and number of pixels in the dust regions to get a
rough estimate of the total dust cleared. If there is enough time, we plan to improve the
accuracy by either an algorithm or letting the user manually define the edge/area of the
abrasion. We will also be using Blob Detection to identify and mark the dust free region in the
image.

3.2.3 Proving Feasibility

1. Combine results from previous approaches
Once the tests for the image subtraction and dust detection are
successful, we will combine them to produce a clear estimate of the
abrasion and its dimensions

2. Test combination against expected answer
Use JPL’s expected result to test the algorithm to see how it is performing

3. Refractor algorithm
If algorithm is underperforming or could use improvements, the algorithm
will be refactored and we will go back to Step 2 to perform those tests
again

3.3 Problem 3: Choosing Platforms and Framework
This issue pertains to what programming languages and frameworks we will be using for

this project. We need to take into consideration what the client’s business is familiar with/has
access to and what the capabilities each has pertaining to the problem we are trying to solve.

10

3.3.1 Possible approaches
The possible approaches we have considered are MATLAB and Python as our

programming languages and OpenCV for third-party computer vision library.
● MATLAB

MATLAB is one possible language because our client is most familiar with this language.
It has toolboxes that can be used for computer vision, image processing, and machine learning.

Approach Pros Cons

MATLAB - Everything is there. It
contains most of the
functional libraries
within files. There’s no
need to load when
you want to generate
plots or do some
specialized
processing, even
though some imports
can be used.

- MATLAB allows you
to test algorithms
immediately without
recompilation. Users
can type something at
the command line or
execute a section in
the editor and
immediately see the
results.

- The Mathworks (the
company that sells the
MATLAB software)
website has
documentation and
examples for each
function in the
toolboxes.

- The algorithms
structure are
proprietary, which
means you cannot
see the code of most
of the algorithms you
are using and have to
trust that they were
implemented
correctly.

- Mathworks puts
restrictions on code
portability. You can
run your “compiled”
application using the
MATLAB Component
Runtime (MCR), but
your portable app
must exactly match
the version of the
installed MCR, which
can be a nuisance
considering that
Matlab releases a
new version every 6
months.

Table 7. Pros and Cons of MATLAB

11

● Python
Python is another possible language to use for our solution because there are a wide

variety of third-party extensions as well as the standard library and it can be applied to many
different classes of problems due to being a general-purpose programming language.

Approach Pros Cons

Python - It’s free and open-source.
- Everything in Python is an

object, so each object has
a namespace itself.

- It was created to be a
generic language that is
easy to read.

- Code can be run
everywhere since Python
is free and works on
Windows, Linux, and OS
X.

- It’s not as neatly packaged
as MATLAB. The language
installs fine on all operating
systems, but you have to
make sure you have all the
packages you need
installed.

- The computers for our
client’s business may not
have Python installed and/or
the libraries we use
installed.

Table 8. Pros and Cons of Python

● OpenCV
OpenCV is an open source computer vision library that has support for Linux, Windows,

and MacOS as well as Python and MATLAB interfaces, both languages we are considering to
use.

Approach Pros Cons

OpenCV - Is a well constructed,
efficient, and large
library for computer
vision algorithms

- Works in both Python
and MATLAB

- Poor documentation in
languages it supports.

- For MATLAB, it requires
the correct compiler for
mex functions and
requires the OpenCV
package to be up to date
with the newest version
of MATLAB.

Table 9. Pros and Cons of OpenCV

12

How well each approach provides a given capability: 1 - 5 (5 = best)

Capabilities Python MATLAB

Documentation 3 4

Testing Code 4 4

Portability 3 3

Performance (speed) 3 2

Table 10. Comparison of Language Approaches

3.3.2 Chosen Approach

Based on the research and small testing of some of the capabilities of each language’s
image analysis and computer vision libraries that we ran on the images we received, we have
decided to do our prototype in OpenCV and incorporate MATLAB in our final product where the
user can tweak parameters and the MATLAB code will call the Python code.

3.3.3 Proving Feasibility

1. Prototype in Python
Create a working prototype written in Python using the Rock Type E,
which is classified as having the dust color being a different color than the
rock

2. Incorporate MATLAB into Python code
Add MATLAB code that will call the Python code made in the prototype

3. Refactor
Make any adjustments based on feedback from client for the Rock Type E

4. Write new code in Python
Write more code in Python to have it run on the next rock type and repeat
the previous 3 steps

3.4 Problem 4: Interface for User Interaction
One issue when dealing with complex algorithms is seeing how exactly some

modifications to an algorithm's parameters will change its outcome. As we are developing a
backend of computer vision algorithms some way for users to interact with the codebase would
be ideal. This interaction will allow users to access the code base and actually use some of the
algorithms we will be implementing. Ideally, whatever we choose to do for our user interaction it
will be easy to understand, easy to use, and allow our users the ability to effectively use the
code base.

13

3.4.1 Possible approaches
The approaches we have considered for this problem are developing a GUI, using

simple sliders/parameter modifications, and allowing users (specifically our client) access to the
code base for changing things as they see fit.

● Create a GUI that interfaces with the Image analysis
Creating a GUI is one possible option as it would allow users to easily access the

backend exactly how our team would want them to. This would allow us to greatly control the
user experience, and give them easy to access tools.

● Simple parameter sliders
Simple tools for tweaking or modifying algorithms is another option as it still provides our

client with some form of interactivity.

● Let clients tweak the code manually
Finally, we could give our users access to the code to modify as they see fit. This would

allow them complete freedom to change the code base and change algorithms to their liking.

Approach Pros Cons

Create a GUI that
Interfaces with the
Image Analysis

- MATLAB, Python, and
other third party
libraries (eg. PyQt)
make creating a GUI
possible for just about
any language we do the
image analysis in

- Great for tweaking or
modifying algorithm

- Time consuming, takes
away time from
programming the image
analysis

- Limits the user to only the
tools we provide.

Simple Parameter
Sliders

- Allows minimal
tweaking that
non-programming users
can understand easily

- Not a very robust GUI
- Not as much control as

directly editing the source
code

Let Clients Tweak
the Code Manually

- Allows programming
team to focus on a
more robust image
analysis tool

- Non-programmers within
JPL may have difficulty
understanding code

- Potential problems of
erroneous modifications.

Table 11. Pros and Cons of User Interaction Approaches

14

How well each approach provides a given capability: 1 - 5 (5 = best)

Capabilities GUI Parameter Sliders Tweak Code
Manually

Interactive 5 3 1

Ease of Using 4 4 1

Customizable 2 3 4

Table 12. Comparisons of User Interaction Approaches

3.4.2 Chosen Approach

Our clients will have access to the code to tweak however they want, but we will give
them basic functionality in the form of sliders (or something similar) for parameters in our
algorithms. We will continue to improve this interface giving users more control over the analysis
(so the users have less code to manually tweak) with any left over time. The ultimate goal is to
minimize the time it takes for them to process images and by creating an interface this will make
the process go smoother for the user.

3.4.3 Proving Feasibility

In future client meetings, we plan to discuss and receive feedback on the GUI prototype
from the users of our product. The initial prototypes will be redesigned based on what the users
tell us so we can make the interactive part of the software useful for them to make any changes
to the algorithm.

1. Prototype

Develop a working model that can be used by client or users
2. Response

Get feedback on prototype from other users or client
3. Refactor

Refactor software to fit user feedback to improve the usability of the
program.

4. Improved Prototype
Develop another prototype and begin proving the concept from the
prototype stage above

15

4. Technology Integration
The challenges with this particular project are finding the right technology to use.The

solutions we have proposed in this document will need to come together in small parts in order
to create a system for our client to use for analyzing their images.

To start, our application will take in either one set of before/after images of dust being
blown out of an abrasion, or a batch of before/ after images.

Next, our application will create a simple mask of pixels that changed from the before
image to the after image(s) using image subtraction. In addition to image subtraction, we will
also run another set of algorithms to detect regions of the image that have dust textures. These
two together will create regions that we are fairly certain have dust (or lack of).

After getting the regions where dust has been removed, we will find the area of the
abrasion in the picture (using blob detection and histogram analysis).Combining these will give
us the percentage of surface area (of the abrasion) covered in dust.

The client will also want to be able to tweak the algorithms so they can adjust the
measurements our applications produces. We will create graphical sliders for users to slide and
change the parameters of the algorithms described in the chosen approach sections of each
challenge. If the users want to change the algorithms themselves, they will likely have to modify
the source code.

Once we have everything up and running, we can take our tool functionality further by
optimizing our processing time which may involve parallel processing (running multiple
algorithms at the same time) and hardware like graphics cards. However, our primary concern is
getting an algorithm which can successfully and accurately find the dust/ dust free surfaces.

16

5. Conclusion
In conclusion, the Mars 2020 rover creates abrasions covered in dust. The rover will then

release a blast of air into these abrasions to remove the dust, then take a picture of the
abrasion. The general problem that our application will solve is:

1. Calculate how how much of the surface area of an abrasion is covered in dust
2. Create an application to do the above analysis that is easy for the engineers at JPL to

use
Earlier, in section 3, we outlined the technological challenges our team envisions having

to face in the process of solving the two major problems just mentioned. Here are our solutions
and how confident we are that they will fit JPL’s needs.

1 - 3 (1 = needs testing, 2 = reasonable approach, 3 = confident)

Tech Challenge Proposed Solution Confidence Level

Dust detection Texture detection
algorithms

2.5

Area of abrasion cleared Texture detection
algorithms

2

Choose platform Matlab + Python 3

Easy to use Interface Sliders for parameters to
analyze

3

Table 13. Summary of Confidence for Proposed Solutions for Technology Challenges

5.1 In Summary
Our application will allow the mechanical and electrical engineers working on M2020 to

use computer vision analysis on the abrasions done in a vacuum chamber testbed. We are
confident that we will produce a useful tool for the team at JPL to help analyze dust cleared from
abrasions. We have seen some promising results from our research and limited testing. This will
increase the amount of testing JPL can do and save the M2020 team many hours.

We still have some open questions we will be actively working on. How will we optimize?
Will we implement a neural network for the more challenging rock types? Once we get working
code, optimization will become trivial as the languages we are using can be ported to faster
languages, and we can also expect to utilize parallel processing where applicable (eg running
multiple image filters at same time).

17

5.2 Future Work
Two possible routes we may take, depending on time, are parallel processing and

machine learning. Parallel processing (running multiple algorithms at the same time) will
significantly reduce the processing time of the images. If we decide to implement machine
learning, we can talk to experts about implementing search techniques (eg random walk) to help
automate the analysis. There are also previous examples of people using machine learning for
images analysis (typically feature extraction) such as neural networks (ANN) for face detection.
We have a large enough dataset that we could train a ANN with, making that avenue a more
realistic approach.

Our team is confident that these challenges are all achievable and expect to save the
team at JPL many hours of testing. We believe that this tool will be able to relay to JPL if their
air blaster is working correctly and efficiently.

18

